首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dry bean (Phaseolus vulgaris L.) is an important food legume for the world population. However, its average yield is low worldwide. The main reasons for low yield are biotic and abiotic stresses. Maximum economic yield of a crop can be achieved with appropriate balance between plant and environmental factors during crop growth cycle. Adopting appropriate management practices in favor of high yields can modify some of these factors. Hence, knowledge of yield physiology of dry bean is important for understanding yield formation components during crop growth and development and consequently improving yield. Dry bean growth cycle is divided into vegetative and reproductive growth stages. During vegetative stage, development of roots, trifoliate, node, and branches take place. Main features of reproductive growth stage are flowering, pod and grain formation. Important plant traits associated with yield are root and shoot dry matter yield, pod number, 100 grain weight, leaf area index, grain harvest index, and nitrogen harvest index. These plant traits are genetically controlled and also influenced by soil and plant management practices. Higher yield is possible only when there is an adequate balance among various physiological processes or yield components. The objective of this review is to discuss growth and development of bean plant including yield formation process or traits during crop growth cycle and importance of these yield components in determining yield.  相似文献   

2.
Dry bean is an important legume for human consumption in South America. A greenhouse experiment was conducted to evaluate uptake and use efficiency of macro- and micronutrients by six dry bean genotypes at two P levels (25 and 200 mg kg?1 soil). Shoot dry weight and grain yield varied significantly among genotypes and significantly increased with increasing phosphorus (P) levels. Grain harvest index (GHI) and 100-grain weight also differ significantly among genotypes and significantly increased with the increasing P levels. Based on grain yield efficiency index (GYEI), genotypes were classified as efficient and inefficient. The most efficient genotype was CNFP 10104, and inefficient genotypes were CNFP 10103 and CNFP 10120. Number of pods per plant and number of seeds per pod increased significantly with the addition of 200 mg P kg?1 of soil compared to the low level of P (25 mg P kg?1). Similarly, nitrogen (N), P, calcium (Ca), magnesium (Mg), sulfur (S), zinc (Zn), copper (Cu), and manganese (Mn) concentrations and uptake in the shoot and grain also significantly varied among genotypes. Uptake of macro- and micronutrients was greater under the greater P rate compared to the low P rate. This may be related to greater shoot or grain yield at 200 mg P kg?1 soil compared to 25 mg P kg?1 of soil.  相似文献   

3.
Dry bean is an important legume for South American population, and phosphorus (P) deficiency is the most yield-limiting nutrient for crop production in South American soils. A greenhouse experiment was conducted with the objective of evaluating influence of P fertilization on grain yield and yield components of 30 dry bean genotypes. The P levels used were 0 mg P kg?1 (natural level of the soil) and 200 mg P kg?1 applied with triple superphosphate fertilizer. Yield and yield components were significantly influenced with P as well as genotype treatments. The P?×?genotype interactions were significant for yield as well as yield components, indicating different responses of genotypes at two P levels. Root dry weight and maximum root length were also significantly increased with the addition of P fertilization. There were also significant differences among the genotypes in the growth of root system. Based on grain yield efficiency index (GYEI), genotypes were classified as P efficient, moderately efficient, and inefficient. Among 30 genotypes, 17 were classified as efficient, 12 were classified as moderately efficient, and 1 was classified as inefficient. Yield components such as pods per plant and seeds per pod were having significant positive association with grain yield. In addition, grain harvest index (GHI) was also having significant linear association with grain yield. Hence, it is possible to improve grain yield of dry bean in Brazilian Oxisol with the addition of adequate rate of P fertilization as well as use of P-efficient genotypes.  相似文献   

4.
Upland rice is an important crop in South American cropping systems. In Brazil it is mainly grown in the central area, locally known as the Cerrado region. Soils of the Cerrado region are acidic and have poor fertility. A greenhouse experiment was conducted with the objective to evaluate thirty upland rice genotypes for acidity tolerance. Two acidity levels were created: high (without lime addition) and low (addition of 2.5 g dolomitic lime per kg soil). Plant height, straw yield, grain yield, panicle number, thousand-grain weight, spikelet sterility, grain harvest index (GHI), maximum root length, and root dry weight were significantly influenced by lime and genotype treatments. Lime × genotype interactions were also significant for most of these traits, indicating variation in these treats with the variation in acidity levels. Based on grain yield acidity tolerance index (GYATI), genotypes were classified as tolerant, moderately tolerant, and susceptible to soil acidity. Among thirty genotypes, 30 percent were classified as tolerant, 53 percent were classified as moderately tolerant, and 17 percent were classified as susceptible to soil acidity. Most of the growth, yield, and yield components had significant quadratic positive association with grain yield across two acidity levels. Soil acidity indices such as pH, base saturation, calcium (Ca) saturation, magnesium (Mg) saturation, and potassium (K) saturation increased with the addition of lime. Phosphorus content also increased with the addition of lime. However, hydrogen and aluminum (H + Al) and iron (Fe) content decreased with the addition of lime. Adequate soil acidity indices for grain yield were established.  相似文献   

5.
Dry bean is an important source of protein for the population of South America, and yield of this legume is very low in this continent. Knowledge of nutrient uptake and use efficiency of a crop is fundamental to improve yield. A greenhouse experiment was conducted to evaluate growth, nutrient uptake, and use efficiency of dry bean (Phaseolus vulgaris L., cv. BRS Valente) during the growth cycle. Plant samples were collected at 15, 30, 45, 60, 73, and 94 days after sowing. Root dry weight, maximum root length, shoot dry weight, and number of trifoliates were significantly increased in a quadratic fashion with the advancement of plant age. Root dry weight and number of trifoliates had significant positive association with shoot dry weight. Uptake of nutrients in the grain was in the order of nitrogen (N) > potassium (K) > calcium (Ca) > magnesium (Mg) > phosphorus (P) > iron (Fe) > manganese (Mn) > zinc (Zn) > copper (Cu). Hence, it can be concluded the N requirements for bean is greatest and Cu is minimal compared to other essential nutrients for grain yield. Uptake efficiency for root, shoot, and grain production was in the order of P > Mg > Ca > K > N > Cu > Zn > Mn > Fe. The greatest P-use efficiency among macro- and micronutrients can be considered a positive aspect of mineral nutrition of bean, because recovery efficiency of P in acidic Inceptsols is less than 20%.  相似文献   

6.
Rice is staple food for more than 50% of the world's population. Nitrogen (N) is one of the most yield-limiting nutrients for lowland rice production around the world. Two field experiments were conducted at two locations for two consecutive years to evaluate N-use efficiency of 12 lowland rice genotypes. Growth, grain yield, and yield components were significantly influenced by N as well as genotype treatments. Location?×?year?×?genotype and location?×?year?×?N interactions were significant for most of the growth, yield, and yield components, indicating influence of these factors on yield and yield components. Overall, the most N-efficient genotypes measured in terms of grain yield were BRA 031032, BRA 031044, and BRA 02654 and the most inefficient genotypes were BRS Jaçana, BRS Fronteira, and BRA 02674. Genotypes had linear and quadratic responses to added N in the range of 0 to 200 kg ha?1. Nitrogen significantly influenced plant height, shoot dry weight, panicle number, and 1000-grain weights. Nitrogen-use efficiency (kg grain per kg N applied) varied from 33 to 49 kg grain per kg N applied, with an average value of 40 kg grain per kg N applied. The genotype BRA 031044 produced the greatest N-use efficiency, and the lowest N-use efficient genotype was BRS Fronteira. There was a significant linear association between N-use efficiency and grain yield.  相似文献   

7.
In tropical regions, soil acidity and low soil fertility are the most important yield‐limiting factors for sustainable crop production. Using legume cover crops as mulch is an important strategy not only to protect the soil loss from erosion but also to ameliorate soil fertility. Information is limited regarding tolerances of tropical legume cover crops to acid soils. A greenhouse experiment was conducted to determine the differential tolerance of 14 tropical legume cover crops to soil acidity. The acidity treatments were high (0 g lime kg?1 soil), medium (3.3 g lime kg?1 soil), and low (8.3 g lime kg?1 soil). Shoot dry weight of cover crops were significantly affected by acidity treatments. Maximum shoot dry weight was produced at high acidity. Jack bean, black mucuna, and gray mucuna bean species were most tolerant to soil acidity, whereas Brazilian lucern and tropical kudzu were most susceptible to soil acidity. Overall, optimal soil acidity indices were pH 5.5, hydrogen (H)+ aluminum (Al) 6.8 cmolc kg?1, base saturation 25%, and acidity saturation 74.7%. Species with higher seed weight had higher tolerance to soil acidity than those with lower seed weight. Hence, seed weight was associated with acidity tolerance in tropical legume species.  相似文献   

8.
ABSTRACT

Rice is a staple food for more than 50% of the world's population and nitrogen (N) is one of the most yield limiting nutrients in lowland rice ecosystems. A field experiment was conducted for two consecutive years to evaluate dry matter production and grain yield of 12 lowland rice genotypes (BRS Jaçanã, CNAi 8860, BRS Fronteira, CNAi 8879, CNAi 8880, CNAi 8886, CNAi 8885, CNAi 8569, BRSGO Guará, BRS Alvorada, BRS Jaburu, and BRS Biguá) at five N rates (0, 50, 100, 150, and 200 kg ha? 1). Genotypes showed significant variation in grain yield and shoot dry weight. Genotype BRSGO Guará was highest yielding, whereas genotype BRS Jaburu was lowest yielding and the remaining genotypes were intermediate in grain yielding potential. Grain yield and shoot dry weight were having significant quadratic increase with increasing N rates in the range of 0 to 200 kg ha? 1. However, 90% of the maximum yield is often considered as an economical rate, which was 120 kg for shoot dry weight and 136 kg N ha? 1 for grain yield. Shoot dry matter was having significant positive quadratic association with grain yield across 12 genotypes.  相似文献   

9.
Dry bean is important pulse for the diet of South American population and results related to comparison of genetically modified and conventional dry bean genotypes to soil fertility are limited. A greenhouse experiment was conducted to compare genetically modified and conventional dry bean genotypes to soil fertility. Genotypes evaluated were Olathe Pinto, Olathe 5.1 (genetically modified), BRS Pontal, BRS Pontal 5.1 (genetically modified), Pérola and Pérola 5.1 (genetically modified). Fertility levels were 1 g fertilizer (5-30-15) kg?1 soil (low fertility level) and 2 g fertilizer (5-30-15) per kg soil (high fertility level). These fertility levels were designated as low and high, respectively. Grain yield, number of pods per plants, and seed per pod were significantly increased with the increase in soil fertility. Shoot dry weight, seed per pod, and 100 seed weight were also significantly influenced by genotype treatment. Fertility X genotypes interaction was significant for maximum root length and root dry weight, indicating genotypes responded differently at two fertility levels in relations to these two traits. Shoot dry weight, number of pods per plant, and grain harvest index had significant association with grain yield, indicating that increase in these three traits grain yield can be increased. Grain yield efficiency index (GYEI) was having significant linear association with grain yield. Hence, on the basis of GYEI, genotypes were classified as efficient (E), moderately efficient (ME), and inefficient in nutrient use. Three conventional genotypes (Olathe Pinto, BRS Pontal and Pérola) and one genetically modified genotype (Olathe Pinto 5.1) were classified as moderately efficient and two genetically modified genotypes (Pérola 5.1 and BRS Pontal 5.1) were classified as efficient. None of the genotypes fall into the inefficient group.  相似文献   

10.
Copper (Cu) is an essential micronutrients and its deficiency has been reported in many crops including dry bean. A greenhouse experiment was conducted to evaluate thirty dry bean genotypes (G) for Cu-use efficiency. The Cu levels used were low (natural soil level) and adequate [10 mg Cu kg?1 soil, applied with copper sulfate (24 percent Cu)]. Straw yield, seed yield, number of pods per plant, seed per pod, seed harvest index (SHI), maximum root length (MRL), and root dry weight (RDW) were significantly affected by Cu and genotype treatments. The Cu × G interactions were also significant for these traits, indicating variation in genotype responses with the variation in Cu levels. Based on seed yield efficiency index (SYEI), genotypes were grouped in three classes: Cu efficient, moderately Cu efficient, and Cu inefficient. Fifty-three percent of the genotypes were classified as efficient, 40 percent were classified as moderately efficient, and 7 percent were classified as inefficient in Cu-use efficiency.  相似文献   

11.
Dry bean is an important legume for human consumption worldwide. Low soil fertility, including zinc (Zn) deficiency, is one of the main factors limiting yield of this legume in South America, including Brazil. The objective of this study was to evaluate 30 dry bean genotypes for zinc (Zn)–use efficiency. The Zn rates used were 0 mg Zn kg?1 (low) and 20 mg Zn kg?1 (high) of soil. Grain yield, straw yield, number of pods, hundred-seed weight, number of seeds per pod, maximum root length, and rood dry weight were significantly affected by Zn and genotype treatments. The Zn × genotype interactions were also significant for growth, yield, and yield components, indicating that some genotypes were highly responsive to the Zn application while others were not. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in Zn-use efficiency. Most efficient genotypes were CNFP 10104, BRS Agreste, BRS 7762 Supreme, CNFC 10429, BRS Estilo, CNFC 10467, BRS Esplendor, and BRS Pitamaba. The most inefficient genotype was BRS Executive. Remaining genotypes were moderately efficient in Zn-use efficiency.  相似文献   

12.
Phosphorus (P) deficiency in the soil is one of the major factors limiting common bean production in Ethiopia. A pot experiment was conducted in a glasshouse at Hawassa University in southern Ethiopia to evaluate twelve common bean cultivars for P use efficiency at three phosphorus rates (0, 120, and 240 kg P2O5 ha?1). The results of the study revealed that the interaction effect of cultivar and P rates significantly (P < 0.01) influenced grain yield efficiency index (GYEI), grain yield and yield attributing traits, leaf P concentration, root length, diameter and surface area. Grain yield efficiency index at low and medium phosphorus rates indicated that Red-Wolaita, Dinkinesh, Tabour, Nasir and Haramaya are P-efficient, whereas Chore was found to be P-inefficient. These genotypic variations could be exploited for sustainable production of the crop by fitting suitable varieties to soils with variable P availability. Thus, the P-efficient cultivars indicated above could be recommended for cultivation by smallholder farmers in soil with low P availability that is dominant in the study area.  相似文献   

13.
Dry bean along with rice is a staple food for the population of South America. In this tropical region beans are grown on Oxisols and phosphorus (P) is one of the most yield limiting factors for dry bean production on these soils. A greenhouse experiment was conducted to evaluate P use efficiency in 20 elite dry bean genotypes grown at deficient (25 mg P kg?1 soil) and sufficient (200 mg P kg?1) levels of soil P. Grain yields and yield components were significantly increased with P fertilization and, interspecific genotype differences were observed for yield and yield components. The grain yield efficiency index (GYEI) was having highly significant quadratic association with grain yield. Based on GYEI most P use efficient genotypes were CNFP 8000, CNFP 10035, CNFP10104, CNFC 10410, CNFC 9461, CNFC 10467, CNFP 10109 and CNFP 10076 and most inefficient genotypes were CNFC 10438, CNFP 10120, CNFP 10103, and CNFC 10444. Shoot dry weight, number of pods per plant, 100-grain weights and number of seeds per pod was having significant positive association with grain yield. Hence, grain yield of dry bean can be improved with the improvement of these plant traits by adopting appropriate management practices. Soil pH, extractable P and calcium (Ca) saturation were significantly influenced by P treatments. Based on regression equation, optimum pH value in water was 6.6, optimum P in Mehlich 1 extraction solution was 36 mg kg?1 and optimum Ca saturation value was 37% for dry maximum bean yield.  相似文献   

14.
Dry bean is an important legume worldwide, and potassium (K) deficiency is one of the important constraints for bean production in most of the bean growing regions. A greenhouse experiment was conducted with the objective to evaluate fifteen dry bean genotypes grown on a Brazilian lowland (Inceptisol) United States Soil Taxonomy classification and Gley humic Brazilian Soil Classification system), locally known as “Varzea” soil. The K rate used was 0 mg kg?1 (low, natural soil level) and 200 mg kg?1 (high, applied as fertilizer). Straw yield, seed yield, pods per plant, seeds per pod, 100 seed weight, and seed harvest index were significantly increased with the addition of K fertilizer. These traits were also significantly influenced by genotypic treatment. Similarly, root length and root dry weight were also influenced significantly by K and genotype treatments. The K X genotype interactions for most of these traits were also significant, indicating variation in these traits with the variation in K level. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in K use efficiency. Maximum grain yield was obtained with 74 mg K kg?1 extracted by Mehlich 1 extracting solution. Similarly, K saturation required for maximum grain yield was 1.1%.  相似文献   

15.
Dry bean is an important legume and nitrogen (N) deficiency is one of the most yield-limiting factors in most of the bean-growing regions. A greenhouse experiment was conducted with the objective to determine influence of N on growth, yield, and yield components and N uptake and use efficiency of 23 dry bean genotypes. Straw yield, grain yield, yield components, maximum root length, and root dry weight were significantly increased with the addition of N but varied with genotypes. The N × genotype interactions were also significant for most of these traits, indicating variation in responses of genotypes with the variation in N levels. There was significant difference in N uptake and use efficiency among genotypes. Most of growth and yield components were significantly and positively associated with grain yield. Based on grain yield efficiency index (GYEI), genotypes were classified into efficient, moderately efficient, or inefficient group in N-use efficiency. Nitrogen concentration was greater in grain compared to straw, indicating greater N requirement of dry bean genotypes.  相似文献   

16.
Molybdenum (Mo) is an essential micronutrient for crop plants, and its deficiency has been reported in many parts of the world. Two greenhouse experiments were conducted with the objective to determine Mo requirements of dry bean (Phaseolus vulgaris L.) grown on a Brazilian Oxisol with and without liming. The Mo treatments were 0, 5, 10, 15, and 20 mg kg?1. In one experiment dolomitic lime was added at the rate of 2.5 g per kg of soil before the application of Mo treatments and incubated 5 weeks before sowing. In other experiments, Mo treatments were same as the lime-added experiment but no lime was added. Most of the growth, yield, and yield components were significantly increased with the addition of Mo in both the experiment. Growth, yield, and yield components were increased in a quadratic fashion when Mo was applied in the range of 0 to 20 mg kg?1. Maximum shoot dry weight was obtained with the addition of 17 mg Mo kg?1 in the experiment with Mo rates without lime and 9.69 mg Mo kg?1 in the experiment of Mo rates with lime application. Maximum seed yield was obtained with the application of 10.48 mg Mo kg?1 in the experiment that did not receive lime along with Mo treatments and 10.28 mg Mo kg?1 in the experiment that received lime along with Mo treatments. Similarly, the maximum number of pods per plant was obtained with the addition of 9.33 mg Mo kg?1 in the experiment that did not receive lime and 8.83 mg Mo kg?1 in the experiment that did receive lime. Maximum root length was obtained with the addition of 12.38 Mo kg?1 in the experiment that did not receive lime and 9.75 mg Mo kg?1 in the experiment that received lime. Maximum root dry weight was obtained with the addition of 11.67 mg Mo kg?1 in the experiment that did not receive lime and 9.28 mg Mo in the experiment that received lime. Soil properties determined after harvest of dry bean plants were not influenced significantly with the addition of Mo in the Oxisol under investigation.  相似文献   

17.
Phosphorus deficiency is main constraints for lowland rice production in various rice producing regions of the world. A greenhouse experiment was conducted using lowland (Inceptisol) soil with the objective to determine response of seven lowland rice (Oryza sativa L.) genotypes to phosphorus fertilization and to evaluate their phosphorus (P) use efficiency. Phosphorus treatments included control (0 mg P kg?1) and 200 mg P kg?1 of soil. Plant height and shoot dry weight were significantly (P < 0.001) influenced by P treatments. Phosphorus X genotypes interaction was significant for shoot dry weight, indicating different response of genotypes under two P levels. At low P level, none of the genotypes produced grain yield, indicating original P level in the soil was too low for lowland rice yield. However, genotypes differed significantly in grain yield at high P level. Panicle number, panicle length, and thousand grains weight had a significant quadratic association with grain yield. However, spikelet sterility had a significant linear negative association with grain yield. The P use efficiency expressed as agronomic efficiency (AE), physiological efficiency (PE), agro-physiological efficiency (AP), apparent recovery efficiency (ARE), and utilization (UE) were significantly different among genotypes. These efficiencies were having significantly positive association with grain yield, with exception to ARE, indicating improving grain yield with improved P use efficiencies in rice.  相似文献   

18.
Rice, dry bean, corn, and soybean are important food crops. Phosphorus (P) deficiency is one of the most yield-limiting factors for these crops grown on highly weathered Brazilian Oxisols. Four greenhouse experiments were conducted to determine P requirements of these four crops. The P levels used were 0, 50, 100, 200, and 400 mg kg?1. Growth, yield, and yield components evaluated of four crop species were significantly increased with the application of P fertilization. Most of the responses were quadratic in fashion when the P was applied in the range of 0 to 400 mg kg?1. Maximum grain yield of upland rice was obtained with the application of 238 mg P kg?1 of soil, maximum dry bean grain yield was obtained with the application of 227 mg P kg?1 of soil, and maximum grain yield of soybean was obtained with the application of 224 mg P kg?1 of soil. Maximum shoot growth of corn was obtained with the addition of 323 mg P kg?1 of soil. Most of the growth and yield components had significant positive association with grain yield or shoot dry weight. Phosphorus concentration and uptake were greater in the grain compared to straw in upland rice and dry bean plants. Overall, P-use efficiencies decreased with increasing P rates.  相似文献   

19.
Zinc (Zn) deficiency in annual crops is very common in Brazilian Oxisols. Data are limited on Zn uptake and use efficiency during crop growth cycles. A field experiment was conducted during two consecutive years with the objective to determine shoot dry weight and Zn uptake and use efficiency in upland rice, dry bean, corn, and soybean during growth cycles. Shoot dry weight of four crops was significantly increased in an exponential quadratic fashion with increasing plant age. Rice and corn had higher shoot dry weights and grain yields than dry bean and soybean. Zinc concentration in rice and corn decreased in a quadratic fashion with increasing plant age. However, in dry bean and soybean, Zn concentration had a quadratic increase. Zinc uptake followed an exponential quadratic response in four crops, and it was higher in corn and upland rice than in dry bean and soybean. Zinc use efficiency in shoot dry‐weight production had significant quadratic responses in upland rice and soybean with increasing plant age. In corn, Zn use efficiency for shoot dry‐weight production was linear as a function of plant age. Zinc use efficiency for grain production was maximum for corn and minimum for soybean. Hence, cereals had higher Zn use efficiency than legumes.

Zinc concentration in grain of dry bean and soybean was higher than in upland rice and corn, which is a desirable quality factor for human consumption so as to avoid Zn deficiency.  相似文献   

20.
Potassium (K) uptake is greatest among essential nutrients for rice. Data related to yield, yield components, and K-use efficiency by upland rice genotypes are limited. A greenhouse experiment was conducted to evaluate influence of K on growth, yield and yield components, and K-use efficiency by upland rice genotypes. Potassium levels applied to an Oxisol were zero (natural K level) and 200 mg K kg1 of soil and 20 upland rice genotypes were evaluated. Plant height, shoot dry weight, grain yield, 1000-grain weight, and spikelet sterility were significantly affected by K and genotype treatments. Genotypes Primavera and BRA 1600 were the most efficient and genotype BRAMG Curinga was most inefficient in producing grain yield. Plant growth (plant height and shoot dry weight) and yield components (panicle number, grain harvest index, 1000-grain weight, and panicle length) were significantly and positively associated with grain yield. However, spikelet sterility was significantly and negatively correlated with grain yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号