首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
ABSTRACT

Calibration of field crop responses to nutrient availability acts as a basis for making fertilizer recommendations from soil and tissue analysis. The purpose of this study was to evaluate and summarize silicon (Si) fertilization of rice in different soils of south India. The experiment consists of four levels of calcium silicate as Si with three replications. Initially, soils were analyzed using eleven different extractants. The grain and straw yield were recorded and analyzed for Si content. The critical levels for plant available Si in the soil ranged from 14 mg kg?1 (distilled water-1) to 207 mg kg?1 [0.005 M sulfuric acid (H2SO4)]. There was a wide variation in low, medium, and high categories of plant available Si for different extractants calculated based on percent relative yield. The critical level of Si in straw and grain were 2.9 and 1.2%, respectively.  相似文献   

2.
The suitability of seven chemical extractants was evaluated on 24 Indian coastal soils for prediction of plant-available potassium (K) to rice (Oryza sativa L. var. NC 492) grown in modified Neubauer technique. Average amounts of soil K extracted were in descending order: 0.5 M NaHCO3 > neutral 1 N NH4OAc > 0.02 M CaCl2 > Bray and Kurtz No.1 > 1 N HNO3 > 0.1 N HNO3 > distilled water. The highest simple correlation with plant K uptake was obtained with 0.1 N HNO3-K (r = 0.848) and lowest with CaCl2-K (r = 0.805). Predictive models were developed using plant K uptake as the dependent variable and extractable soil K, sand, silt, soil pH, and electrical conductivity as the independent variables. Based on the final R2 and ease of measurement, distilled water, 1 N NH4OAc, and 0.1 N HNO3 models were the best predictors of plant-available K in coastal soils when used along with sand or soil pH.  相似文献   

3.
In this study, we selected three soil pedons on the shoulder, backslope, and footslope along a serpentine toposequence to measure cobalt (Co) extractability using six single‐extraction procedures. These extraction procedures are distilled water, 0.11 M acetic acid in the first step of the BCR sequential extraction (BCR1), 1 M ammonium acetate (NH4OAc; pH 7.0), 0.01 M calcium chloride (CaCl2), diethylenetriamine pentaacetic acid (DTPA), and 0.1 M hydrochloric acid (HCl). Although the Co concentrations in the water extracts of the study soils ranged from 0.15 to 0.93 mg kg?1, those with HCl extraction can be up to 22.1 mg kg?1. The extractable Co concentrations in the study soils demonstrate that the extraction capacity is in the order HCl > DTPA > CaCl2 ? NH4OAc > BCR1 > H2O. The percentages of extractable Co after applying the six single‐extraction procedures reveal that Co mobility is greatest in the soils on the backslope, moderate on the footslope, and least mobile on the shoulder.  相似文献   

4.
Silicon fractions in Histosols and Gleysols of a temperate grassland site   总被引:1,自引:0,他引:1  
The importance of silicon (Si) in nutrition is currently being recognized by its beneficial effects on many crops. Therefore, it is important to determine the soil Si status and to examine different extractants for testing plant‐available Si. Little information is available about the Si status of Histosols and Corg‐rich Gleysols in temperate climate. This study was undertaken (1) to characterize different Si pools in Corg‐rich groundwater soils of an experimental site and (2) to study the influences of small‐scale variability on element distribution. At the experimental site, the thickness of the Corg‐rich layer ranges between 4 and 5 dm overlying fine‐sandy fluvial sediments. Four extractants were evaluated: 0.01 M CaCl2, 0.5 M acetic acid, 0.1 M sodium pyrophosphate, and 0.1 M Tiron (C6H4Na2O8S2 · H2O). Further, total element content was determined following HNO3/HF digestion. Calcium chloride–soluble Si shows no significant relations to other parameters analyzed. On the basis of published data, the soils investigated could be classified as Si‐deficient. The Si fraction extracted with acetic acid displays relations to Corg content of the soil and a weak correlation to CaCl2‐soluble Si, indicating that both solutions extract overlapping but not the same fractions. Sodium pyrophosphate extracts mainly organo‐mineral Fe and Al complexes in the soils studied, which is reflected in a highly positive correlation to Corg. Pyrophosphate‐soluble Si showed a negative relationship to Corg, which means a closer relation of this Si fraction to mineral matter than to Corg. The Tiron solution extracted most Si of all extractants, but this amounts only 1% of the total Si content. Taking into account the element‐specific relationship between pyrophosphate and Tiron‐extractable Fe, Al, and Si, it can be concluded that Tiron dissolves mainly the opaline silica present in Histosols and Corg‐rich Gleysols. The distribution of Corg and ash content shows clear spatial trend at the experimental site, which is correlated to pyrophosphate‐extractable as well as total Si. This small‐scale variability of soil parameters itself is related to a distinct microrelief.  相似文献   

5.
Human exposure to toxic heavy metals via dietary intake is of increasing concern. Heavy-metal pollution of a rice production system can pose a threat to human health. Thus, it was necessary to develop a suitable extraction procedure that would represent the content of metal available to rice plants (Oryza sativa L.). The aim of this study was to predict, on the basis of single extraction procedures of soil heavy metals, the accumulation of heavy metals (cadium, lead, copper, and zinc) in rice plants. Six extracting agents [Mehlich 1, Mehlich 3, EDTA (ethylenediaminetetraacetic acid), DTPA–TEA (diethylenetriaminepentaacetic acid–triethanolamine), ammonium acetate (NH4OAc), and calcium chloride (CaCl2)] were tested to evaluate the bioavailability of heavy metals from paddy soils contaminated with lead–zinc mine tailings to rice. The extraction capacity of the metals was found to be of the order EDTA > Mehlich 3 > Mehlich 1 > DTPA–TEA > NH4OAc > CaCl2. The correlation analysis between metals extracted with different extractants and concentrations of the metals in the grain and stalk of the plant showed positive correlations with all metals. The greatest values of correlation coefficients were determined between the NH4OAc- and CaCl2-soluble fractions of soil and contents in plants in all four metals studied. Therefore, NH4OAc and CaCl2 were the most suitable extractants for predicting bioavailability of heavy metals in the polluted soils to rice. The results suggested that uptake of heavy metals by rice was mostly from exchangeable and water-soluble fractions of the metals in the soils. Soil-extractable metals were more significantly correlated with metal accumulation in the stalk than in the grain. The pH had more significant influence on availability of heavy metals in the soils than total content of metals and other soil properties. The bioavailability of metals for rice plants would be high in acidic soils.  相似文献   

6.
Carbohydrates are an important component of soil organic matter, and a method is needed to quantify them, which would be efficient in terms of time and cost. Different extractants and methods were examined in this work for their efficiency to extract carbohydrate C from four calcareous soils. Four extractants (distilled water, 0.5 M potassium sulfate (K2SO4), and 0.25 and 0.5 M sulfuric acid (H2SO4)) and three incubation methods (shaking for 16 h, heating in an oven (85 °C) for 16 h, and heating in a water bath (85 °C) for 2.5 h) were compared. The results show that significantly more carbohydrate C was extracted from all four soils with oven and water bath heating of the soil–extractant suspensions than with shaking them at room temperature. The efficiency of the extractants decreased in this order: 0.5 M H2SO4 > 0.25 M H2SO4 > 0.5 M K2SO4. The combination of the heated–water bath incubation method with 0.5 M H2SO4 as extractant was the most efficient method.  相似文献   

7.
Abstract

Several silicon (Si) extractants are being employed in different countries mostly for lowland acidic soils. Present investigation was conducted to evaluate suitable extractants for upland paddy grown on alkaline soils. Available Si was extracted by using ten different extractants. Tris buffer pH 7.0 (1:10) in Inceptisols showed positively highest and significant correlation with grain yield (r?=?0.870), grain Si uptake (r?=?0.887), straw yield (r?=?0.852), and straw Si uptake (r?=?0.919). However, 0.5?M acetic acid (1:2.5) in Vertisols showed positively highest and significant correlation with grain yield (r?=?0.810), grain Si uptake (r?=?0.852), straw yield (r?=?0.850), and straw Si uptake (r?=?0.929). The application of Si @ 200?kg ha?1 along with chemical fertilizers significantly increased yield and nutrient uptake of upland paddy on Vertisols. Tris buffer pH 7.0 (1:10) and 0.5?M acetic acid (1:2.5) were suitable extractant for Inceptisols and Vertisols, respectively based on its correlation with yield and nutrient uptake.  相似文献   

8.
Adequate evaluation and interpretation of silicon (Si) phytoavailability in soil is a key to fertilizer recommendation. This study was conducted to determine the effect of soil texture on the choice of Si extractant, and provide baseline data on the relationship between extractable Si and sugarcane Si accumulation. The effects of soil texture and extractant solutions of Si were investigated on soil of nine areas of sugarcane cultivation. Si contents in clayey soils were higher than in sandy soils only in the extraction with standard calcium chloride, acetic acid, potassium chloride (KCl), and sodium acetate buffer. Other extractants failed to reveal differences in the Si availability among the three soil textures. The choice of the extractant should consider soil texture for the determination of adequate Si contents in soils planted with sugarcane, and the extractants that proved to be more efficient in the three soil textures was acetic acid and KCl.  相似文献   

9.
Field experiments were conducted on rice (cv ‘IET 4094’) in an Aeric endoaquept (pH 7.2) to evaluate the various zinc (Zn) extractants in lowland rice soil under the influence of Zn sulfate and chelated Zn. The diethylenetriaminepentaacetic acid (DTPA), 0.1 N hydrochloric acid (HCl), and 0.05 N HCl‐extractable Zn concentrations in soil increased initially up to the Z29 stage of crop growth when Zn was applied as a single basal source, being greater with Zn ethylenediaminetetraacetic acid (Zn‐EDTA) compared to zinc sulfate (ZnSO4) application. Among the various extractants, the performance of 0.1 N HCl in extracting Zn was better than the other two extractants and followed the trend 0.1 N HCl > 0.005 M DTPA > 0.05 N HCl. The greatest increase in grain and straw yield of rice was 37.8 and 20.4%, respectively, over the control in the treatment T7 (1 kg Zn ha?1 as Zn‐EDTA at basal).  相似文献   

10.
A significant proportion of the total nutrient in soil solution can be bound to organic molecules and these often constitute a major loss from soil to freshwater. Our purpose was to determine whether chemical extractants used for measuring inorganic N could also be used to quantify dissolved organic nitrogen (DON) and carbon (DOC) in soil. In a range of soils, DOC and DON were extracted with either distilled water or 2 M KCl and the amount recovered compared with that present in soil solution recovered by centrifugal-drainage. The recovery of DON and DOC from soil was highly dependent upon the method of extraction. Factors such as soil sampling strategy (number of samples over space and time), sample preparation (sieving and drying), soil storage, extraction temperature, shaking time, and soil-to-extractant volume ratio all significantly affected the amount of DOC and DON extracted from soil. To allow direct comparison between independent studies we therefore propose the introduction of a standardized extraction procedure: Replicate samples of unsieved, field-moist soil extracted as soon as possible after collection with distilled water, 0.5 M K2SO4 or 2 M KCl at a 1:5 w/v ratio for 1 h at 20 °C.  相似文献   

11.
The effectiveness of eight chemical extraction methods was evaluated on 15 Indian soils for the prediction of plant-available potassium (K+) to Sudan grass (Sorghum vulgare var. sudanensis) grown in modified Neubauer technique. Average amounts of soil K+ extracted were in descending order: Morgan’s reagent > 0.5 M sodium bicarbonate (NaHCO3) > neutral 1N ammonium acetate (NH4OAc) > 1N nitric acid (HNO3) > 0.02 M calcium chloride (CaCl2) > 0.1N HNO3 > Bray and Kurtz No.1> distilled water. The highest simple correlation with plant K+ uptake was obtained with NH4OAc-K+ (r = 0.866**) and the lowest with CaCl2-K+ (r = 0.45*). To develop the predictive models using stepwise regression, plant K+ uptake was used as the dependent variable and the extractable soil K+, pH, sand, silt and organic carbon (C) contents as the independent variables. Based on the final R2, the NH4OAc model was found to be the best predictor of plant-available K+ in the soils when used along with sand and organic C.  相似文献   

12.
Abstract

Mustard (Brassica juncea) is an important oilseed crop of northern India, which is widely grown in Delhi and adjoining States. This crop has a relatively high requirement of sulphur (S), and is sensitive to S‐deficiency. For predicting response of mustard to S application, several extractants have been tried with variable results. Since selection of a promising extractant for a particular soil needs careful consideration, the present investigation was planned to select the most promising extractant to predict the availability of S to mustard grown on Inceptisols of Delhi. For this purpose, a greenhouse experiment was conducted with twenty soils (two from each often important soil series from the cultivated alluvial soil belt of Delhi. Nine extractants, commonly used for estimating the availability of S, were evaluated and S in soil extract and in plant digest was estimated using the turbiditimetric method. The results indicate that the phosphate salt methods extracted comparatively more S than other extractants. The amount of S extracted by these extractants was found in the following order: KH2PO4‐500 ppm P>Ca(H2PO4)2‐500 ppm P>0.001 M HCl>NaOAc+HOAc>heat soluble S>0.15% CaCl2>l% NaCl> water soluble S>NH4OAc+HOAc. Simple correlation coefficients of the amounts of S extracted by different extractants and the forms of S with the plant parameters were worked out. To determine the combined effect of soil characteristics on S extraction by different extractants, stepwise multiple regression analysis was carried out. Based on this study, the suitability of the extractants for mustard crops in Inceptisols of Delhi may be arranged as follows: 0.15% CaCl2>water soluble S>0.001 M HCl>Ca(H2PO4)2‐500 ppm>1%NaCl>NH4OAc+HOAc>NaOAc+HOAc>KH2PO4‐500 ppm P>heat soluble S.  相似文献   

13.
Four frequently used extractants (H2O, 0.1 M NaCl, 0.016 M KH2PO4, and 0.5 M NaHCO3) as well as different extraction conditions have been tested for sulphate extraction from gypsum‐free agricultural soils. Water is the preferable extractant for soils with pH > 6. Two extraction steps have to be carried out for complete extraction (> 95%). A 0.016 M KH2PO4 solution was found to be the most efficient extractant for soils with a pH < 6 within a single extraction step. A shaking frequency of 170 min‐1 and a duration of extraction of 4 hours are the optimized conditions for the sulphate extraction with H2O and KH2PO4 solution.  相似文献   

14.
While silicon (Si) fertilization is widely practiced in rice production, establishing critical soil Si levels has remained understudied. Field trials were established at 12 sites across Louisiana from 2013 to 2015 to determine critical soil Si for rice cultivation. Five silica slag (14% Si) rates at 0, 1, 2, 4, 6, and 8 Mg ha?1 and two lime rates (2 and 4 Mg ha?1) were arranged in randomized complete block design with four replications. Post harvest soil samples were analyzed for Si using seven extraction procedures. The critical soil Si levels established by the linear plateau model using 0.5 M acetic acid-1 hr (OAc-1) extraction procedure were 36, 41 and 50 mg kg?1 for plant Si uptake, grain yield, and relative yield as response variables, respectively. Generally, soils having high initial Si and pH had minimal responses to Si fertilization, whereas Si content of soils with low initial Si was significantly increased.  相似文献   

15.
Samples of the surface layer (Ap) and of grass, collected from: (1) grass ley fertilized in the normal way; (2) permanent pasture fertilized in the normal way; and (3) permanent pasture treated with large amounts of sewage sludge five years earlier, were analysed for Mn, Zn, Cu, Cr, Co, Ni, Pb, and Cd.The soil samples were extracted with: (1) distilled water saturated with CO2; (2) 1 M neutral ammonium acetate; (3) ammonium acetate + acetic acid, pH 4.75; and (4) 2 M nitric acid on a waterbath. The efficiency of these extractants differed greatly and, in relative values, was: 1 for H2O + CO2, 3.4 for NH4OAc, 20.7 for NH4OAc + HOAc, and 343 for 2 M HNO3- The dissolving effects of the extractants differed markedly with the kind of element.Grass from the field treated with sewage sludge showed much higher contents of Mn and Zn and somewhat higher contents of Cu and Pb than grass from the untreated field. The levels of Cr, Co, Ni, and Cd were practically uninfluenced by the treatment. Grass from a field close to a highway accumulated large amounts of air-borne Pb and Cd during the summer.It is concluded that the total contents of heavy metals in soils have only limited importance for the uptake by plants. Weak extractants therefore give better information about the plant-available amounts in soils.  相似文献   

16.
Abstract

Evaluation of nutrient status in soil is important for nutritional, environmental, and economical aspects. This research was carried out to determine the potassium (K) available to corn (Zea mays) in 15 soils from the Hamedan province in the west of Iran. The treatments included two K levels [0 and 200 mg K kg?1 as potassium sulfate (K2So4)] and 15 soils in a factorial experiment in a randomized block design with three replications. The results indicated that K application increased yield, K concentration, and K uptake of corn. According to the mechanism of the extraction, these extractants can be classified into four groups. The first group of extractants, acidic extractants, includes 0.02 M strontium chloride (SrCl2)+0.05 M citric acid, 0.1 M hydrochloric acid (HCl), and Mehlich 1. The second group includes 0.1 M barium chloride (BaCl2), 0.01 M calcium chloride (CaCl2), and 1 M sodium acetate (NaOAc). The third group includes 1 M ammonium acetate (NH4OAc), ammonium bicarbonate–diethylenetriamine tetraacetic acid (AB‐DTPA), and finally distilled water. The results showed that correlation between extractants in each groups were significantly high. Correlation studies showed that NH4OAc and AB‐DTPA cannot be used as available K extractants. The correlation of other extractants with relative yield, plant response, and K uptake were significantly high. Therefore, these extracting solutions can be used as available K extractants.

Potassium critical levels by extractants were also determined using the method by Cate and Nelson (1971) Cate, R. B. and Nelson, L. A. 1971. A simple statistical procedure for partitioning soil test correlation into two classes. Soil Science Society of America Proceeding, 35: 658660. [Crossref], [Web of Science ®] [Google Scholar]. Potassium critical levels for 90% relative yield were 29, 27, 82, 84, 45, 145, and 272 mg kg?1 for 0.002 M SrCl2, distilled water, 0.02 M SrCl2+0.05 M citric acid, 0.1 M HCl, Mehlich 1, 1 M NaOAC, and 0.1 M BaCl2, respectively.  相似文献   

17.
Abstract

Standardization of the P soil test procedures is desirable; however, both NaOAc and NaHCO3 are currently used to extract P from soils in the Pacific Northwest region of the USA. The purpose of this study was to determine the relationship between NaOAc and NaHCO3 extractable P in soils and to evaluate the effect of plant material on this relationship in a northern Idaho soil. The Ap horizon of a Latahco silt loam was used and alfalfa (Medicago sativa), pea (Pisum sativum) and wheat (Triticum aestivum) plant materials were added as amendments at rates of 0%, 1%, 5% and 10% (w/w). The soils were incubated for 20 weeks under controlled conditions. In addition, other parameters studied included soil water potential (‐0.05, ‐0.15 and ‐0.40 MPa), incubation temperature (10, 20 and 30°C and incubation period. P in samples was extracted by NaOAc and NaHCO3 extractants. A statistically significant linear relationship between NaOAc and NaHCO3 extractable P was observed (r2 = 0.96). In addition, the types of plant residues added to soil differently affected P extraction by the two extractants. The difference between NaOAc and NaHCO3 extractable P was greatest in the wheat material treatment while alfalfa material resulted in the smallest effect. Sodium acetate extractable P values increased faster than NaHCO3 extractable P with increasing amendment rate.

A simple regression relationship will allow conversion between NaOAc and NaHCO3 extractable P in the Latahco soil. Additions of less than 5 mt/ha plant material will have a minimal impact on this relationship.  相似文献   

18.
Abstract

Rice (Oryza sativaL. CV. Lemont) was grown on 19 soils, and eight extractants were evaluated for determining the availability of Cu to rice plants. Correlation analyses were employed as criteria for evaluating methods that would provide the best index of Cu availability. The order of removal of Cu from soils was: 0.5NHC1 + 0.05NA1C13> 0.5NHNO3> 0.5 N HC1 > EDTA + NH4OAc > 0.1NHC1 > EDTA + (NH4)2CO3? DTPA‐TEA, pH 7.3 >>> 1 N NH40Ac, pH 4.8.

Uptake of Cu by rice plants was significantly correlated with soil Cu. Among the eight extractants evaluated, Cu extracted with DTPA‐TEA, pH 7.3 was better related to the concentration (r = 0.563 ) and uptake (r = 0.673 ) of Cu by rice plants grown on the soils with different chemical and physical properties.

A significant negative correlation was found between the concentration of Cu in rice plants and the organic matter content of the soils. Each one percent increase in the organic matter of the soils resulted in a corresponding decrease of approximately one mg/kg in the concentration of Cu in the rice‐plant tissue. Multiple regressions of extractable Cu by eight methods with soil organic matter content accounted for from 53.4 to 70.0% of the variations in the prediction of the concentration of Cu in the rice plants. Combinations of other soil chemical properties measured with extractable Cu did not significantly improve the predictability  相似文献   

19.
Abstract

Different plant analysis methods including varied incubation times with 0.5N and IN hydrochloric acid (HCl), diacid [nitric (HNO3) and perchloric (HClO4) acids], triacid [HNO3, sulfuric acid (H2SO4) and HClO4], H2SO4+hydrogen peroxide (H2O2) (Wolf method), and 0.5N and lN ammonium acetate (NH4OAc) were evaluated for measuring the potassium (K) concentration in straw and grain samples of cereal, legumes, oilseed crops, and fruit‐tree leaves. The average K concentration in nine plant materials indicated that K extracted by 0.5N and lN HCl for 5 minutes, 1 hour, and 17 hours contact periods did not differ significantly. But the amount of K extracted by these acidic solutions gradually decreased during incubation, possibly due to reabsorption of released K by the plant material. The amount of K released in to the 0.5N HCl and IN HCl extractants was in close agreement with that obtained with the standard triacid method. The IN NH4OAc extraction method slightly overestimated the K concentration in the materials compared to the other methods. Differences were observed among the methods in extracting K from different plant materials. In case of grain samples, the triacid method gave slightly higher values than that obtained by IN NH4OAc extraction. The results suggest that the 0.5N HCl and lN NH4OAc extraction methods can be used for the determination of K in plant tissues as these methods gave lower standard deviation and coefficient of variation values compared to the triacid method.  相似文献   

20.
Many studies have highlighted the importance of the Amorphous Silica (ASi) pool to the overall mass balance in the biogeosphere. In order to advance our knowledge of measurements and quantification of this pool, it is necessary to compare the ability of different extractants to dissolve ASi in soils and to test methods developed in the aquatic sciences to soils systems. The methods used in this work included three acid extraction techniques (0.2 m NH4‐oxalate, 0.1 m NH4‐citrate and 0.5 m NH4‐acetate) and two alkaline extraction techniques (0.094 m Na2CO3 and 0.5 m NaOH), which are more commonly used for the measurement of ASi in aquatic sediments. Our results indicate that the amount of Si extracted from phytolith samples with the acid methods was two orders of magnitude less than the amount of extracted by alkaline extractions. When applied to natural soil samples, these extractions show that the acid techniques are only able to extract loosely‐bound components such as adsorbed Si and Si bound in amorphous matrices with Al and Fe. While Na2CO3 or NaOH extracted the same amount of ASi in Podzols, Na2CO3 was able to extract only part of the ASi extracted with NaOH in Chernozems. Pre‐treatment of the samples with 0.1 m HCl before the Na2CO3 extraction did not increase amounts of ASi extracted. The present work suggests that alkaline methods used commonly for ASi on aquatic sediment samples can be used on a wide variety of soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号