首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commercial grade zinc (Zn) sulfate hepta hydrate (ZnSHH) is the most widely used source of Zn in India and several other countries for amelioration of Zn deficiency in crops. However, it releases water of hydration at temperature above 30°C and forms lumps on storage, which make it difficult to handle it and apply in fields. Therefore, conditioning of ZnSHH with ZnO and neem oil reduces the release of water of hydration and prevents lumps formation and can be well stored. Field experiments were conducted at the research farm of the Indian Agricultural Research Institute, New Delhi, India during rice growing seasons (July-November) of 2009 and 2010 to study the effect of conditioning ZnSHH with ZnO and neem oil on growth, productivity and Zn fortification of rice (Oryza sativa) grain and uptake by Basmati rice ‘Pusa 1121’. The experiment was conducted in a randomized block design with 3 replications comprised of 9 treatments of Zn fertilization. The present study shows that when conditioned with 2% ZnO and 4% neem oil ZnSHH improved yield attributes, grain and straw yields, Zn uptake and partial factor productivity (PFP), agronomic efficiency (AE), recovery efficiency (RE), and physiological efficiency (PE) of Zn in Basmati rice ‘Pusa 1121’. In general, ZnO was inferior to ZnSHH. Application of ZnSHH conditioned with 2% ZnO and 4% neem oil can be a better source of Zn for transplanted puddled Basmati rice on Zn deficient soils.  相似文献   

2.
Acid sulfate soils (ASS) are characterized by low pH, aluminum (Al), and iron (Fe) toxicity and are typically deficient in phosphate (PO4). The application of phosphorus (P) fertilizer could help reduce the level of exchangeable Al and Fe, thereby improving the rice growth and yield. Five levels of P (0, 20, 40, 60 and 80 kg phosphorus pentoxide (P2O5)/ha) were tested with rice varieties MTL560 in the wet season and MTL480 in the dry season. The optimum rate of P was 60 kg P2O5/ha for rice in the dry season and 80 kg P2O5/ha in the wet season. Soil testing showed at the start of the season that there was sufficient P in the soil. At the end of the season there was a reduction in soil Al and Fe in plots that had P rates above 40 kg P2O5/ha. It is therefore likely that P application reduced Al and Fe toxicity through precipitation and formation of Al-P and Fe-P compounds, which boasted yield, rather amending a soil P deficiency.  相似文献   

3.
An experiment was conducted to evaluate the effect of zinc (Zn) rates and vermicompost levels on distribution of Zn forms of a calcareous soil. After incubation periods, soil samples were air dried, and a sequential extraction scheme was used to fractionate Zn into soluble and exchangeable, bound to carbonate, organically bound, bound to manganese (Mn) oxide, bound to amorphous iron (Fe) oxide, bound to crystalline Fe oxide, and residual forms. In untreated soil, Zn was mainly in the residual fraction. Increasing rates of applied Zn significantly increased all forms of Zn. Carbonate and residual forms showed the greatest increase. Application of vermicompost significantly increased all fractions except Mn-oxide form. This increase was more pronounced for organically bound, soluble, and exchangeable forms, indicating an increase in bioavailability of soil Zn. Incubation time significantly decreased soluble, exchangeable, and organically bound forms but increased other forms of Zn, meaning a significant reduction in Zn phytoavailability in soil with time.  相似文献   

4.
Urea and ammonium sulfate are principal nitrogen (N) sources for crop production. Two field experiments were conducted during three consecutive years to evaluate influence of urea and ammonium sulfate application on grain yield, soil pH, calcium (Ca) saturation, magnesium (Mg) saturation, base saturation, aluminum (Al) saturation, and acidity (H + Al) saturation in lowland rice production. Grain yield was significantly influenced by urea as well as ammonium sulfate fertilization. Soil pH linearly decreased with the application of N by ammonium sulfate and urea fertilizers. However, the magnitude of the pH decrease was greater by ammonium sulfate than by urea. The Ca and Mg saturations were decreased at the greater N rates compared to low rates of N by both the fertilizer sources. The Al and acidity saturation increased with increasing N rates by both the fertilizer sources. However, these acidity indices were increased more with the application of ammonium sulfate compared with urea. Rice grain yield had negative associations with pH, Ca saturation, Mg saturation, and base saturation and positive associations with Al and acidity saturation. This indicates that rice plant is tolerant to soil acidity.  相似文献   

5.
Zinc (Zn) deficiency has been identified as a major cause of poor yield in rice. Flooding and submergence bring about a decline in available Zn due to pH changes and the formation of insoluble Zn compounds. A field experiment (undisturbed randomized complete block design with three replications) was conducted in farmers’ fields of Kedah state during 2008 and 2009 to determine the direct and residual response of Zn on rice genotypes at the rates of 0 and 15 kg Zn ha?1 in low-Zn-content acidic submerged soil. The genotypes differed significantly in grain yield and its components. Single application of Zn significantly increased the growth and yield of the crop for two seasons. Based on the grain yield efficiency index, the most Zn-efficient genotypes were MR 106 and Seri Malaysia Dua. Two genotypes, MR 220 and MR 219, were moderately efficient, but MR 211 and Bahagia were classified as inefficient.  相似文献   

6.
秸秆还田对石灰性土壤Zn扩散迁移及形态转化的影响   总被引:1,自引:1,他引:1  
有机碳(特别是活性组分)通过络合、螯合等作用对土壤锌(Zn)的迁移转化起重要作用。目前,作物秸秆还田已经代替传统有机肥,成为中国提高粮田土壤有机碳含量及质量的最主要措施。基于此,采用半扩散池装置通过室内模拟试验探究了秸秆还田对石灰性土壤有效Zn(二乙三胺五乙酸浸提态Zn,即DTPA-Zn)扩散迁移及Zn形态转化的影响,以期为提高石灰性土壤Zn有效性及移动性,进而改善作物对Zn的吸收利用提供科学依据。结果表明,单独秸秆还田显著提高了土壤有机碳及活性碳组分(如溶解性有机碳(DOC)和富里酸(FA))含量,但对土壤DTPA-Zn的扩散迁移及Zn形态转化影响甚微。单施Zn肥通过提高松结有机态Zn(Lom-Zn)含量及其在全Zn中的分布,显著改善了土壤DTPA-Zn含量及扩散迁移能力;但是,其扩散的DTPA-Zn却主要被限制在非施肥区15 mm以内(45 d),这可能与外源Zn在石灰性土壤上的无效化有关。当秸秆还田与Zn配施时,土壤DTPA-Zn和各形态Zn含量与单施Zn肥相似,但DTPA-Zn的最远扩散距离可达非施肥区20 mm(45 d)处,且累积扩散量和扩散比率均高于单独施Zn。秸秆还田配施Zn肥施肥区土壤活性碳组分(DOC和FA)含量的提升,有效地抑制了外源Zn向无效态组分(残渣态)转化,进而提高了土壤DTPA-Zn的含量及扩散迁移能力。可见,在秸秆还田条件下,土壤施Zn是一种有效提升石灰性土壤有效Zn含量同时兼顾Zn扩散迁移能力的重要措施。  相似文献   

7.
Field experiments were conducted at Water Management Research Station, Begopara, Nadia, WB, India, during the rabi seasons of 2008–2009 and 2009–2010 to find out the integrated effect of nitrogen (N), phosphorus (P), potassium (K), farmyard manure (FYM) and zinc (Zn) under the system of rice intensification (SRI) techniques using eight treatments on the fertility changes in soil. The results revealed that the amounts of organic carbon and available N content in soil were found to maintain the highest fertility status with the highest yield in T6 (NPK + FYM 10 tha?1 + Zn 5 kgha?1) and gave the highest N uptake (55.98 kgha?1). The availability of P decreased with the increased level of Zn application and gave the highest P uptake (23.52 kgha?1) in the treatment T5 (NPK + FYM 10 tha?1). The highest Zn content (4.71 mgkg?1) was recorded in the treatment T7 (NPK + FYM 10 tha?1+ Zn 10 kgha?1).  相似文献   

8.
Abstract

Zinc availability was studied using five soils from Hawaii which had histories of massive phosphorus applications. Heavy phosphate fertilization usually increased extractable Zn, irrespective of the extractant used. The extra extractable Zn associated with the added P probably came from Zn as an accessory element in the fertilizer. Treble superphosphate commonly used in Hawaii contains about 1400 ppm Zn. The Zn content of phosphate fertilizers must be considered before making statements about the effect of fertilizer P on Zn solubility and availability in soils.

Two solutions (0.1N HCl and 0.005M DTPA) were compared as Zn extractants for Hawaii soils. DTPA extracted less Zn than 0.1N HCl. Zinc extracted by repeated HCl treatment was more closely related to the labile Zn pool (E‐values and L‐values) than was DTPA‐extractable Zn. The results suggest that 0.1N HCl extractable Zn, Zn E‐value and Zn L‐value measured the quantity of a single fraction of soil Zn.

Repeated extraction of soil with 0.1N HCl seems to be a suitable procedure for evaluating the Zn status of acid, highly weathered soils of Hawaii.  相似文献   

9.
锌离子活度对水稻锌积累与分配的影响   总被引:3,自引:0,他引:3  
采用HEDTA螯合剂缓冲营养液培养法,选用籽粒含锌量有明显差异的2个基因型水稻(BY和Z921),设置4种锌离子活度(pZn2+9.7、10.3、11.0、11.4),研究了锌离子活度对水稻锌积累、分配的影响以及对不同时期水稻叶片中锌的化学形态的影响。结果显示:(1)2个基因型水稻各器官的锌含量都随着锌离子活度的升高而升高,但不同基因型间,同一基因型不同器官间均存在差异,供锌正常的的条件下,锌首先向代谢活性较弱的营养器官分配;缺锌的条件下,锌首先满足籽粒的需要;(2)从籽粒锌分配看,当锌离子活度(pZn2+)小于10.3时,糙米锌含量最高,当pZn2+升高到9.7时,颖壳锌含量则超过糙米,糙米和精米锌含量的比值在0.79~0.90之间,并以pZn2+为9.7时为最小;(3)任一锌离子活度下,BY籽粒锌含量均大于Z921。表明通过筛选籽粒富锌水稻品种来提高稻米锌含量是经济可行的,且通过增加环境锌离子活度来改善水稻的锌营养能显著提高水稻籽粒的锌含量;(4)营养生长前期,水稻叶片中的锌主要以活性较低的醋酸提取态(重金属磷酸盐)存在;营养生长后期,锌主要以乙醇提取态(醇溶性蛋白、氨基酸等)存在。  相似文献   

10.
Phosphorus (P) deficiency is one of the most yield-limiting factors in lowland rice production on Brazilian Inceptisol. The objective of this study was to evaluate eight P sources for lowland rice production. The P sources were simple superphosphate (SSP), polymer-coated simple superphosphate (PSSP), ammoniated simple superphosphate (ASSP), polymer-coated ammoniated simple superphosphate (PASSP), triple superphosphate (TSP), polymer-coated triple superphosphate (PTSP), monoammonium phosphate (MAP), and polymer-coated monoammonium phosphate (PMAP). These P sources were applied in four rates (i.e., 50, 100 200, and 400 mg P kg?1) + one control treatment (0 mg P kg?1). Plant height, straw yield, grain yield, panicle number, and root dry weight were significantly increased in a quadratic fashion with increasing P levels from 0 to 400 mg kg?1 of all the P sources evaluated. However, overall maximum root length and P-use efficiency were significantly less at greater P levels. Based on regression equation, maximum plant height was obtained with 262 mg P kg, maximum straw yield was obtained with 263 mg P kg?1, maximum grain yield was obtained with 273 mg P kg?1, and maximum panicle density was obtained with 273 mg P kg?1. Plant growth and yield components had significant positive association with grain yield, except maximum root length. Based on grain yield and average P rate of maximum grain yield, which is 273 mg kg?1, P sources were classified for P-use efficiency in the order of PSSP = TSP > PTSP > PASSP > SSP > MAP > ASSP. Soil chemical properties [pH; P; potassium (K); calcium (Ca); magnesium (Mg); hydrogen (H) + aluminum (Al); cation exchange capacity (CEC); base saturation; Ca, Mg, and K saturation; acidity saturation; Ca/Mg, Ca/K, and Mg/K ratios] changed significantly with the addition of different P treatments.  相似文献   

11.
Rice is a main food crop for about half of the world's population, and phosphorus (P) is the main limiting nutrient in rice production in tropical lowlands. A greenhouse experiment was conducted to evaluate P requirements of lowland rice grown on a lowland soil (Inceptisol). Dry matter, grain yield, and yield-attributing characteristics were significantly (P < 0.01) influenced by P fertilization. Based on quadratic response, maximum shoot dry weight and grain yield were obtained with the application of 190 mg P kg?1 of soil. Maximum panicle, tiller number, and plant height were obtained with the application of 177 192, and 175 mg P kg?1 of soil, respectively. Mehlich 1–extractable P for maximum grain yield was 15.6 mg kg?1 of soil. Variability in grain yield with plant growth and yield parameters was in the order of tiller > shoot dry weight > panicle number > spikelet sterility > plant height > grain harvest index > panicle length > weight of 1000 grains. Phosphorus uptake in shoot and concentration and uptake in grain significantly (P < 0.01) increased grain yield. However, variability in grain yield was greater with concentration and uptake of P in the grain. Similarly, P harvest index was also significantly associated with grain yield. Agronomic P-use efficiency, apparent P-recovery efficiency, and P-utilization efficiency decreased quadratically with increasing P rates, whereas physiological P-use efficiency increased quadratically and agrophysiological P-use efficiency decreased linearly with increasing P rates. Agrophysiological and utilization P-use efficiencies had significant positive correlation with grain yield.  相似文献   

12.
氨基酸螯合微肥对旱作水稻苗期生长及生理效应的影响   总被引:5,自引:0,他引:5  
通过盆栽试验研究氨基酸螯合微肥(AA-Met)对早作水稻苗期生长的影响。结果表明:AA-Met能显著提高早作水稻的株高、根长及生物量。喷施后72h内每24h用SPAD-502测定叶绿素相对含量,发现旱作水稻对螯合态微肥的吸收同化速率显著大于无机微肥,但AA—Met与EDTA—Met(EDTA螫合微肥)间差异不显著。等量施用微量元素下,AA—Met和EDTA—Met处理的生物量、叶绿素和生长素含量均显著高于无机微肥处理,而两螯合态微肥处理间差异不显著。可溶性蛋白含量3种微肥处理间差异显著,表现为AA-Met处理〉ED—TA—Met处理〉无机微肥处理(P〈0.05),表明AA—Met可完全替代EDTA—Met。分别喷施稀释100(AA—Met1)和250(AA—Met2)倍AA—Met的溶液时,作物生物量、叶绿素、生长素及可溶性蛋白含量两处理间差异不显著,但显著高于喷施稀释500(AA—Met)倍的AA—Met溶液的处理。  相似文献   

13.
Rice grows in all agro‐ecological zones in Nigeria and it is largely grown by small‐scale farmers. An investigation was conducted to assess the representative pedons used for rice cultivation in the southwestern part of Nigeria. The aims were to assess how suitable these lands are for rice cultivation and what constraints to continuous and sustained rice production occurs on these soils. Data (climate, soil, water, etc.) were collected from rain‐forest agro‐ecological zones (AEZ) in which these pedons are located. After laboratory analyses, the land qualities/characteristics (LQ/LC) of these pedons were compared with the land‐use requirements (LUR) for cultivating lowland rice using two methods of evaluation (conventional/FAO approach and the parametric method). Results showed that the two methods rated the aggregate suitability of these pedons for rice between marginal (S3) and unsuitable (N1). Major constraints identified in these pedons are poor soil texture, which translates to poor water management coupled with suboptimal nutrient contents [i.e., available phosphorus (P), exchangeable potassium (K), and cation exchange capacity (CEC)], which may predispose rice plants to excessive iron (Fe2+) uptake (or bronzing or yellowing symptoms). Grain yields (GYs) collected from the farmers' field (1994 and 1995 cropping seasons) showed that in the current state of two of the soil series (Apomu and Matako), the GY of the two rice cultivars ranged between 0.61 and 2.13 t/ha and declines progressively across years in the two cropping seasons. The result suggests that in spite of good climate for irrigated lowland rice cultivation in SW Nigeria and indeed all Nigeria, special attention must be paid to the soils on which this crop is grown in terms of the soil texture, appropriate water management, and optimum contents of soil nutrients, especially available P, exchangeable K, and CEC. Thus for a sustained and continuous rice production on these soils, it is important that nutrient contents of the soil be augmented with fertilizer (organic and inorganic) coupled with appropriate water management.  相似文献   

14.
Rice is very sensitive to low zinc(Zn) supply in submerged paddy soils and Zn deficiency is one of the major limiting factors in determining rice production in India. A field experiment was conducted during the summer-rainy seasons of 2009 and 2010 at the research farm of the Indian Agricultural Research Institute, New Delhi, to determine the effects of summer green manure crops and Zn fertilizers on diethylenetriaminepentaacetic acid(DTPA)-extractable(available) Zn concentration in soil and total Zn content in Basmati rice cultivar Pusa Basmati 1 at periodic intervals. Summer green manure crops included Sesbania aculeata(Dhaincha),Crotalaria juncea(Sunhemp), and Vigna unguiculata(Cowpea) and the Zn fertilizers used were ethylenediaminetetraacetic acid(EDTA)-chelated Zn, ZnSO_4·7H_2O, ZnSO_4·H_2O, ZnO, and ZnSO_4·7H_2O + ZnO. Beneficial effects of summer green manure crops and Zn fertilizers on DTPA-extractable Zn concentration in soil and total Zn content in dry matter of Basmati rice at periodic intervals were observed, with significant increases in all the determined parameters, in comparison with those in the control(no Zn application or summer fallow). The rate of increase varied among summer green manure crops and Zn fertilizers during both years. Among the summer green manures, incorporation of S. aculeata led to a significant increase in mean Zn content in Basmati rice grain and straw when compared with C. juncea, V. unguiculata, and summer fallow treatments. Among the Zn fertilizers, significant increases in Zn content in Basmati rice dry matter and DTPA-extractable Zn concentration in soil during various growth stages of the plant were recorded with EDTA-chelated Zn application, followed by the application of ZnSO_4·7H_2O, ZnSO_4·H_2O, ZnSO_4·7H_2O + ZnO, ZnO,and no Zn. The highest mean Zn content in Basmati rice grain and straw was recorded with EDTA-chelated Zn application in 2009 and 2010, respectively. The application of ZnSO_4·7H_2O was the second best treatment after EDTA-chelated Zn; however, it was statistically inferior to EDTA-chelated Zn. The lowest values were recorded with the control(no Zn application) during both years of study. The amount of Zn concentration in soil was found to be significantly positively correlated with the Zn content in Basmati rice dry matter during both years. Significantly higher levels of residual fertility in soil after the harvest of Basmati rice were observed with application of EDTA-chelated Zn and incorporation of S. aculeata when compared with those of other Zn sources and summer green manures.  相似文献   

15.
ABSTRACT

Rice is a staple food for more than 50% of the world's population and nitrogen (N) is one of the most yield limiting nutrients in lowland rice ecosystems. A field experiment was conducted for two consecutive years to evaluate dry matter production and grain yield of 12 lowland rice genotypes (BRS Jaçanã, CNAi 8860, BRS Fronteira, CNAi 8879, CNAi 8880, CNAi 8886, CNAi 8885, CNAi 8569, BRSGO Guará, BRS Alvorada, BRS Jaburu, and BRS Biguá) at five N rates (0, 50, 100, 150, and 200 kg ha? 1). Genotypes showed significant variation in grain yield and shoot dry weight. Genotype BRSGO Guará was highest yielding, whereas genotype BRS Jaburu was lowest yielding and the remaining genotypes were intermediate in grain yielding potential. Grain yield and shoot dry weight were having significant quadratic increase with increasing N rates in the range of 0 to 200 kg ha? 1. However, 90% of the maximum yield is often considered as an economical rate, which was 120 kg for shoot dry weight and 136 kg N ha? 1 for grain yield. Shoot dry matter was having significant positive quadratic association with grain yield across 12 genotypes.  相似文献   

16.
The extractable silicon (Si) using selected extractants irrespective of the soils used for the study was in the order of 0.005 M sulfuric acid (H2SO4) > 0.1 M citric acid > N sodium acetate (NaOAc) 2 > N NaOAc 1 > 0.5 M acetic acid 3 > 0.5 M acetic acid 2 > 0.5 M acetic acid 1> 0.01 M calcium chloride (CaCl2) > 0.5 M ammonium acetate (NH4OAc) > distilled water 4 > distilled water 1. Silicon extraction with N NaOAc 1 appeared to be the most suitable for evaluating Si, followed by extraction with 0.5 M acetic acid 2 and N NaOAc 2. These extractants showed the greatest degree of significant correlation with the percentage of Si in straw and grain, as well as Si uptake by straw and grain. These methods also rapidly extract soil Si in comparison to the other methods and appear to be the most suitable for routine soil testing for plant-available Si in the rice soils of southern India.  相似文献   

17.
Local farmers who living in South Kalimantan (Banjarese farmers) apply almost none of phosphatic (P) fertilizers to grow local rice varieties. This practice has been adopted for many years. We have investigated the mechanisms involved in P availability for the crop. This study focuses on identifying microorganisms involved in solubilizing insoluble P. The study was conducted in Balandean District, South Kalimantan, Indonesia. The soil was classified as acid sulfate soil. Three out of 8 rice varieties grown were selected for net P balance in the soil-plant system and the microbial studies. We found that the P uptakes by the rice crop was much higher than the sum of P released from soil, water and soil microbial biomass P. It was also observed that these soils harboured bacteria and fungi that have the capability of dissolving aluminium phosphate (AIPO4) and tricalcium phosphate [Ca3(PO4)2].
Based on the area of clear zone on plates, it seem that there were variations of ability in dissolving Al-P or Ca-P. DNA sequence analysis shown that Burkholderia sp. was the common P solubilizing bacterium found in the rhizosphere of rice varieties Siam Unus, Siam Ubi and Siam Puntal. The presence of other bacteria was specific for each rice variety grown.  相似文献   

18.
With increasing water shortages in China, rice (Oryza sativa L.) cultivation is gradually shifting away from continuously flooded conditions to partly or even completely aerobic conditions. The effects of this shift on the growth and iron (Fe) nutrition of different aerobic and lowland rice genotypes are poorly understood. A field experiment was conducted to determine the effects of cultivation system (aerobic vs. flooded), genotype (five aerobic rice varieties and one lowland rice variety), and Fe fertilization [no Fe and 30 kg ha?1 ferrous sulfate (FeSO4·7H2O] on rice grain yield and Fe nutrition. Plants were sampled at tillering and physiological maturity. In both aerobic and flooded plots, Fe application significantly increased shoot dry weight, shoot Fe concentration, and shoot Fe content at tillering but not physiological maturity. At physiological maturity, grain yield and Fe and grain harvest indices were significantly lower in aerobic than in flooded plots. Shoot dry weight and shoot Fe content differed among genotypes at tillering and at physiological maturity. The grain harvest index of aerobic rice genotype 89B-271-17(hun) was significantly greater than that of the other five genotypes when no Fe was applied. Because soil Fe fertilization did not improve the Fe nutrition of rice in aerobic plots, the results indicate that the shift from flooded to aerobic cultivation will increase Fe deficiency in rice and will increase the problem of Fe deficiency in humans who depend on rice for nutrition.  相似文献   

19.
Water and nitrogen (N) are considered the most important factors affecting rice production and play vital roles in regulating soil microbial biomass, activity, and community. The effects of irrigation patterns and N fertilizer levels on the soil microbial community structure and yield of paddy rice were investigated in a pot experiment. The experiment was designed with four N levels of 0 (N0), 126 (N1), 157.5 (N2), and 210 kg N ha-1 (N3) under two irrigation patterns of continuous water-logging irrigation (WLI) and water-controlled irrigation (WCI). Phospholipid fatty acid (PLFA) analysis was conducted to track the dynamics of soil microbial communities at tillering, grain-filling, and maturity stages. The results showed that the maximums of grain yield, above-ground biomass, and total N uptake were all obtained in the N2 treatment under WCI. Similar variations in total PLFAs, as well as bacterial and fungal PLFAs, were found, with an increase from the tillering to the grain-filling stage and a decrease at the maturity stage except for actinomycetic PLFAs, which decreased continuously from the tillering to the maturity stage. A shift in composition of the microbial community at different stages of the plant growth was indicated by principal component analysis (PCA), in which the samples at the vegetative stage (tillering stage) were separated from those at the reproductive stage (grain-filling and maturity stages). Soil microbial biomass, measured as total PLFAs, was significantly higher under WCI than that under WLI mainly at the grain-filling stage, whereas the fungal PLFAs detected under WCI were significantly higher than those under WLI at the tillering, grain-filling, and maturity stages. The application of N fertilizer also significantly increased soil microbial biomass and the main microbial groups both under WLI and WCI conditions. The proper combination of irrigation management and N fertilizer level in this study was the N2 (157.5 kg N ha-1) treatment under the water-controlled irrigation pattern.  相似文献   

20.
轮作水稻对大棚土壤硝化作用和氮挥发的影响   总被引:1,自引:2,他引:1  
通过大棚茄子—水稻轮作(GER)和大棚茄子—揭膜休闲(GEF)2种栽培模式在大棚茄子栽培期间土壤硝化作用强度、氨挥发速率和土壤水热条件指标动态变化的比较,研究了轮作水稻对大棚土壤硝化作用和氨挥发的影响。结果表明:(1)GER模式在大棚茄子各生育期土壤硝化作用强度都显著高于GEF土壤,苗期最高峰时表土和根际土硝化作用强度分别为56.6,101.4mg/(kg·h),比GEF模式增加了34.8%和42.4%;(2)GER模式在大棚茄子基肥和追肥施用后土壤氨挥发速率都显著低于GEF土壤,累积氨挥发量为1.21kg/hm~2,比GEF模式减少了76.7%;(3)GER模式在大棚茄子各生育期表土和根际土NH4+—N含量都低于GEF土壤,NO3-—N含量高于GEF模式;(4)GER和GEF模式在大棚茄子收获后表土NH4+—N含量分别为30.4,45.9mg/kg,NO3-—N含量分别为265.4,255.5mg/kg,存在明显的氮素累积。夏季轮作水稻缓解了大棚土壤酸化、提高了大棚茄子生长期间土壤pH、温度和含水量,对大棚土壤硝化作用有明显的促进作用,可减少土壤氨挥发损失。但硝化作用强度的增加促进了土壤中硝酸根的累积,存在加剧土壤次生盐渍化和氮损失的风险,应加强轮作周期氮肥合理施用技术研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号