首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The roles of fine-earth materials in the cation exchange capacity (CEC) of especially homogenous units of the kaolinitic and oxyhydroxidic tropical soils are still unclear. The CEC (pH 7) of some coarse-textured soils from southeastern Nigeria were related to their total sand, coarse sand (CS), fine sand (FS), silt, clay, and organic-matter (OM) contents before and after partitioning the dataset into topsoils and subsoils and into very-low-, low-, and moderate-/high-stability soils. The soil-layer categories showed similar CEC values; the stability categories did not. The CEC increased with decreasing CS but with increasing FS. Silt correlated negatively with the CEC, except in the moderate- to high-stability soils. Conversely, clay and OM generally impacted positively on the CEC. The best-fitting linear CEC function (R2, 68%) was attained with FS, clay, and OM with relative contributions of 26, 38, and 36%, respectively. However, more reliable models were attained after partitioning by soil layer (R2, 71–76%) and by soil stability (R2, 81–86%). Notably FS's contribution to CEC increased while clay's decreased with increasing soil stability. Clay alone satisfactorily modeled the CEC for the very-low-stability soils, whereas silt contributed more than OM to the CEC of the moderate- to high-stability soils. These results provide new evidence about the cation exchange behavior of FS, silt, and clay in structurally contrasting tropical soils.  相似文献   

2.
Abstract

Despite the increasing prevalence of salinity worldwide, the measurement of exchangeable cation concentrations in saline soils remains problematic. Two soil types (Mollisol and Vertisol) were equilibrated with a range of sodium adsorption ratio (SAR) solutions at various ionic strengths. The concentrations of exchangeable cations were then determined using several different types of methods, and the measured exchangeable cation concentrations were compared to reference values. At low ionic strength (low salinity), the concentration of exchangeable cations can be accurately estimated from the total soil extractable cations. In saline soils, however, the presence of soluble salts in the soil solution precludes the use of this method. Leaching of the soil with a prewash solution (such as alcohol) was found to effectively remove the soluble salts from the soil, thus allowing the accurate measurement of the effective cation exchange capacity (ECEC). However, the dilution associated with this prewashing increased the exchangeable calcium (Ca) concentrations while simultaneously decreasing exchangeable sodium (Na). In contrast, when calculated as the difference between the total extractable cations and the soil solution cations, good correlations were found between the calculated exchangeable cation concentrations and the reference values for both Na (Mollisol: y=0.873x and Vertisol: y=0.960x) and Ca (Mollisol: y=0.901x and Vertisol: y=1.05x). Therefore, for soils with a soil solution ionic strength greater than 50 mM (electrical conductivity of 4 dS/m) (in which exchangeable cation concentrations are overestimated by the assumption they can be estimated as the total extractable cations), concentrations can be calculated as the difference between total extractable cations and soluble cations.  相似文献   

3.
A sampling proficiency test is evaluated to analyze the influence of soil heterogeneity and sampling parameters on sampling error of nutrient contents. The influence of parameters on sampling error was assessed by multiple linear regression, regression tree analysis, and variance component analysis (VCA). Error was governed mainly by heterogeneity. Among sampling parameters, the number of increment samples had the largest influence. VCA revealed that the component between sampling repetitions was larger than the component between samplers. This suggests a predominance of heterogeneity for the influence on sampling error, increasing with field-scale heterogeneity. Sampling patterns of low complexity seemed sufficient for the homogeneous field, whereas sampling performance was enhanced by more complex sampling pattern on fields of intermediate and high heterogeneity. Overall, the results suggest that sampling error on arable fields sampled with simplified sampling schemes is often determined by soil heterogeneity and to a lesser degree by sampling parameters.  相似文献   

4.
The physical and chemical properties of Arctic tundra soils were studied along a 250-km latitudinal transect in northern Alaska. The transect includes the nonacidic tundra of the Arctic Coastal Plain, the moist nonacidic tundra of the northern Arctic Foothills, and moist acidic tundra of the southern Arctic Foothills. The parent material of the coastal plain consists of carbonate-rich alluvium. The northern foothills have a mantle of calcareous loess. Further south the parent materials are moraines of late Quaternary. Vegetation changes from sedges on the coastal plain, to grasses on the northern foothills, and tussock and shrub tundra in southern foothills. Following the same order, soil pH and base saturation decrease and soil acidity increases. Most of the soil exchangeable acidity and cation exchange capacity are from soil organic matter.  相似文献   

5.
To promote the use of animal waste in agriculture and prevent environmental pollution, an alternative product from the waste should be appraised. This necessitated the study to characterize animal manure ashes and determine its effect on soil pH and electrical conductivity (EC) dynamics. Dried manures of cattle, goat, and poultry, their ashes, and nitrogen (N)–phosphorus?–potassium were applied to soil at 120 kg N ha?1.? Soils collected fortnightly were analyzed for pH and EC. Results indicated that nutrients in manure ashes were comparable to that of dried manures. Changes in pH and EC were not predictable, application of manure ash increased pH by 12% and 13%, 23% and 14%, 20% and 3% while EC increased by 616% and 109%, 1274% and 156%, 2992% and 458%, relative to dried manures and control during incubation, screenhouse, and field experiments, respectively. It was concluded that incorporation of manure ashes increased soil pH and EC although dynamics were unpredictable.  相似文献   

6.
河南三种土壤阳离子交换量相关性及预测模型研究   总被引:2,自引:0,他引:2  
土壤阳离子交换量是一项重要的土壤理化性质,它是衡量土壤肥力和作物养分有效性的一个重要指标。通过对河南3种土壤1177个数据的相关性及回归分析来研究阳离子交换量与土壤有机质、pH值、粘粒含量、粉粒含量和砂粒含量的关系。结果表明:(1)对于阳离子交换量来说,砂姜黑土>水稻土>褐土;3种土壤的上层土>下层土;3种土壤的阳离子交换量比第二次土壤普查分别降低15.7%,12.7%,6.5%;(2)对与砂姜黑土和褐土来说,其阳离子交换量与pH值和0.02~2 mm砂粒含量成显著负相关,褐土与粘粒含量成显著正相关;对于水稻土来说,其阳离子交换量与有机质含量和粘粒含量成显著正相关,与砂粒含量成显著负相关;(3)利用这些数据做出的这三个土壤类型的6个回归模型是有科学依据的。总的来说,土壤有机质、pH值、粘粒含量与砂粒含量与CEC有着紧密联系,但还有其他因素影响着预测模型的准确性。  相似文献   

7.
养分缺乏是酸性土壤的主要障碍因子之一 ,筛选和培育营养高效的作物品种是维持和提高酸性土壤生产力的重要措施。本文综述了酸性土壤上作物氮、磷、钾营养高效基因型的形态学、生理学及遗传学特征 ,为深入开展作物营养高效基因型的筛选及营养高效机理的研究提供理论基础  相似文献   

8.
通过采集浙江省杭州西湖龙井茶园土壤,研究茶园土壤剖面的酸度特征、养分变化以及交换性酸在水稳性团聚体中的分布特征,以了解南方茶园土壤的酸化过程。结果表明:茶园表层土壤(0-20cm)酸化严重,最低的pHH2O值达到4.0,并且有明显的深层化趋势;表土的有机质和速效磷含量较高,速效磷含量最高可达138.2mg/kg;表土团聚体分级表明茶园土壤有良好的团聚体结构,具有良好的水稳性;除了交换性H+在0.5~0.25mm和0.25~0.106mm水稳性团聚体之间没有明显差别外,交换性酸总量、交换性H+和交换性Al 3+含量均随着水稳性团聚体粒径的减小而降低;水稳性大团聚体中交换性Al 3+相对交换性H+占有明显的优势,而在0.106~0.05mm水稳性微团聚体中交换性H+占有明显的优势。交换性酸总量、交换性H+和交换性铝主要分布于>2mm和2~0.5mm水稳性团聚体中,同时在不同粒级团聚体中的分布随粒径的减小而降低。  相似文献   

9.
10.
Abstract

Speciation study of microelements in soils is useful to assess their retention and release by the soil to the plant. Laboratory and greenhouse investigations were conducted for five soils of different agro‐ecological zones (viz., Bhuna, Delhi, Cooch‐Behar, Gurgaon, and Pabra) with diverse physicochemical properties to study the distribution of zinc (Zn) among the soil fractions with respect to the availability of Zn species for uptake by rice plant. A sequential extraction procedure was used that fractionated total soil Zn into water‐soluble (WS), exchangeable (EX), specifically adsorbed (SA), acid‐soluble (AS), manganese (Mn)‐oxide‐occluded (Mn‐OX), organic‐matter‐occluded (OM), amorphous iron (Fe)‐oxide‐bound (AFe‐OX), crystalline Fe‐oxide‐bound (CFe‐OX), and residual (RES) forms. There was a wide variation in the magnitude of these fractions among the soils. The studies revealed that more than 90% of the total Zn content occurred in the relatively inactive clay lattice and other mineral‐bound form (RES) and that only a small fraction occurred in the forms of WS, EX, OM, AFe‐OX, and CFe‐OX. Rice (Oryza sativa L.) cultivars differ widely in their sensitivity to Zn deficiency. Results suggested that Zn in water‐soluble, organic complexes, exchange positions, and amorphous sesquioxides were the fractions (pools) that played a key role in the uptake of Zn by the rice varieties (viz., Pusa‐933‐87‐1‐11‐88‐1‐2‐1, Pusa‐44, Pusa‐834, Jaya, and Pusa‐677). Isotopic ally exchangeable Zn (labile Zn) was recorded higher in Typic Ustrochrept of Pabra soil, and uptake of Zn by rice cultivars was also higher in this soil. The kinetic parameters such as maximum influx at high concentrations (Imax) and nutrient concentration in solution where influx is one half of Imax (Km) behaved differentially with respect to varieties. The highest Imax value recorded was 9.2×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate for Pusa‐933‐87‐1‐11‐88‐1‐2‐1, and the same was lowest for Pusa‐44, being 4.6×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate. The Km value was highest for Pusa‐44 (2.1×10?4µmol cm?2 s?1) and lowest for Pusa‐933‐87‐1‐11‐88‐1‐2‐1 (1.20×10?4µmol cm?2 s?1). The availability of Zn to rice cultivars in Typic Ustrochrepts of Bhuna and Delhi soils, which are characterized by higher activation energy and entropy factor, was accompanied by breakage of bonds or by significant structural changes.  相似文献   

11.
A pot experiment was carried out to study alleviation of soil acidity and Al toxicity by applying an alkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acid sandy loam (pH 4.5). Barley (Hordeum vulgare L. cv. Forrester) was used as a test crop and was grown in the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that the alkaline biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandy loam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil and from 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yield increased greatly in the amended treatments compared with the unamended controls. These observations indicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity in strongly acid soils by increasing soil pH and lowering Al bioavailability.  相似文献   

12.
Some Inceptisols representing the Singla catchment area in Karimgaunge district of Assam, India, were studied for lime requirement as influenced by the nature of soil acidity. The electrostatically bonded (EB)-H+ and EB-Al3+ acidities constituted 33 and 67 percent of exchangeable acidity while EB-H+, EB-Al3+,exchangeable and pH-dependent acidities comprised 6, 14, 20 and 80 percent of total potential acidity. The pH-dependent acidity made a major contribution towards the total potential acidity (67%~84%). Grand mean of lime requirement determined by the laboratory incubation method and estimated by the methods of New Woodruff, Woodruff and Peech as expressed in MgCaCO3 ha-1 was in the order: Woodruff (15.6) > New Woodruff (14.9) > Peech (5.1) > incubation (5.0). Correlations analysis among different forms of acidity and lime requirement methods with selected soil properties showed that pH in three media, namely water, 1 mol L-1 KCl and 0.01 mol L-1 CaCl2, had a significant negative correlation with different forms of acidity and lime requirement methods. Exchangeable Fe and Al showed significant positive correlations with EB-Al3+ acidity, exchangeable acidity, pH-dependent acidity and total potential acidity, and also lime requirement methods. Extractable Al showed positive correlations with different forms of acidity except EB-H+ and EB-Al3+ acidities. The lime requirement by different methods depended upon the extractable aluminium.Significant positive correlations existed between lime requirements and different forms of acidity of the soils except EB-H+ acidity and incubation method. The nature of soil acidity was mostly pH-dependent. Statistically, the Woodruff method did slightly better than the New Woodruff, incubation and Peech methods at estimating lime requirement and hence the Woodruff procedure may be recommended for routine soil testing because of its speed and simplicity.  相似文献   

13.
Developing a fast and reliable soil testing method is critical for improving soil testing efficiency and ensuring reliable fertilizer recommendation. The objectives of this study were to evaluate Mehlich-3 (M-3) as a replacement for ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) to extract phosphorus (P) and potassium (K) and to determinate the relationships between extractable P and K and their uptakes by crop in calcareous soils. M-3 and AB-DTPA were compared by using two approaches. In the first approach, the amounts of extracted P and K were compared by analyzing soil samples collected from agricultural production areas; in the second approach, snap beans (Phaseolus vulgaris) were grown in pot to determine the P and K uptakes by crop. There were significant correlations between M-3 and AB-DTPA for both soil test P and K based on soils collected from the agricultural field and the pot study. Soil test P and K by both extractants were significantly correlated with their uptakes by snap bean. The critical value of M-3-P regarding snap bean uptake was 47 mg kg?1 and was higher than that (18 mg kg?1) for AB-DTPA-P, whereas critical soil test K levels were similar between M-3 and AB-DTPA. M-3 was identified as an alternate improved extraction method instead of AB-DTPA in calcareous soils based on this study. However, more work will be needed to identify the correlation of the two extractants and crop responses under a field condition.  相似文献   

14.
Abstract

The effects of liming (7 500 kg CaCO3/ha) and rate of urea application (0,50,100, and 200 kg N/ha) and its placement at the surface or at 5 cm depth on grain yield and nutrient uptake by corn grown on an acidic tropical soil (Fluventic Eutropept) were studied. Liming significantly increased grain yield, N uptake, and P and K uptake although Ca and Mg uptake, generally, were unaffected. Sub‐surface application of urea increased N uptake only. Yield response to applied N was observed up to 50 kg N/ha when limed but at all rates in the absence of liming. It therefore, reduced the fertilizer N requirement for optimum grain yield. Liming the acidic soil also reduced exchangeable Al but increased nitrification rate and available P in the soil profile (at least up to 0.6 m depth).  相似文献   

15.
Twenty acid soils of West Bengal, India, representing Alfisols, Entisols and Inceptisols orders, were studied to characterize their acidity in relation to physicochemical properties. Total potential acidity (TPA), pH-dependent acidity (PDA), total acidity (TA), hydrolytic acidity (HA) and exchange acidity (EA) ranged from 2.02–6.90, 1.75–6.05, 1.18–2.75, 0.98–1.90 and 0.06–0.85 cmol(p+) kg?1, respectively. Relative order for all forms of acidity was: Entisols>Alfisols>Inceptisols. Average contribution of EA to TPA and TA was 9.7% and 19.7%, respectively, and that of PDA to TPA was 90.1%. Contribution of electrostatically bound H+ to EA was highest for Inceptisols followed by Entisols>Alfisols, and reverse was true for electrostatically bound aluminum (Al3+). All forms of acidity showed significant positive correlations with organic carbon (C) forms of Al but negative correlations with pH of soil. They also showed significant correlations with each other. Soil pH, organic C and exchangeable Al caused most of the variations in different forms of soil acidity.  相似文献   

16.
The amelioration of an acid Alfisol from a tea garden was studied by incorporating various plant materials: canola straw, wheat straw, rice straw, corn straw, soybean straw, peanut straw, faba bean straw, Chinese milk vetch shoot and pea straw prior to incubation for a maximum of 65 days. Soil pH increased after incubation with all the incorporated materials with the legumes causing the largest increases. The final soil pH was correlated with ash alkalinity ( r 2 = 0.73), base cations ( r 2 = 0.74) and N content ( r 2 = 0.93) of the applied materials. It was assumed that the incubation released the base cations in plant materials as they decomposed which ultimately increased the base cation saturation of the soil. Similarly, soil exchangeable Al was also decreased with the incorporation of the legume plant materials and corn straw and rice straw. Our investigation demonstrated that legumes are the preferred choice for controlling the soil acidity and also for reducing the toxicity of Al in acid soils.  相似文献   

17.
板栗土壤中微量营养元素地球化学特征   总被引:1,自引:0,他引:1  
同时采用有效态和欧共体BCR(the Community Bureau of Reference)三步提取法对0-20 cm和20-40 cm土层中Ca,Mg,Fe,Zn,Cu,Mn进行形态分析,探索燕山山区板栗土壤中微量营养元索活性、形态分布特征和迁移能力.结果表明.栗粮间作会影响板栗对营养元素的吸收,且两层土壤中各元素活性相差不大;板栗纯林中0-20 cm土层的Cu,Zn活性明显高于20-40 cm土层;淋溶褐土和褐土性土两种土壤亚类,不同栽培制度对微量营养元素在板栗土壤中的形态分布特征影响不大.Cu,Zn,Fe主要以残渣态存在,Mn主要以可还原态和残渣态存在.且弱酸提取态高于其它元素.板栗土壤中元素的迁移能力排序为:Ca>Mg>Mn>Cu>Zn>Fe.  相似文献   

18.
ABSTRACT

We studied the effect of integrated nutrient management (INM) combinations on supplement of plant nutrient for quantitative and qualitative fruit production in sapota. Thus, 17 combinations of INM practices were evaluated on fruit yield of sapota and nutrient availability in a Vertisol of Chambal region, India. The results demonstrated that almost all treatment combinations comprised of recommended dose of fertilizer (RDF), i.e. 1,000:500:500 g NPK plant?1 with application of organic and inorganic sources of nutrients had a significant effect on the fruit yield of sapota, soil microbial biomass, NPK content of leaf, fruit and soil over control (T1). Among different treatments, application of 2/3rd part of RDF + 50 kg FYM + 250 g Azospirillum + 250 g Azotobacter plant?1 (T11) significantly enhanced the number of fruits plant?1 (327.88), yield plant?1 (29.03 kg) and yield ha?1 (4.52 t). However, the soil microbial count of fungi (8.89 cfu g?1 soil), bacteria (11.19 cfu g?1 soil) and actinomycetes (5.60 cfu g?1 soil) at fruit harvest was higher under the 2/3 of RDF +10 kg vermicompost + 250 g Azospirillum + 250 g Azotobacter plant?1 (T15). The leaf nitrogen content (N, 2.03%) was higher in T15, while phosphorus (P, 0.28%) and potassium (K, 1.80%) content were higher in T11. It is evident that treatment T11 increased fruit yield by 32% in Sapota cv. Kalipatti compared to control. Therefore, combined application of nutrient sources proved not only beneficial for enhancing fruit yield of sapota but also sustaining soil health in Chambal region of south-eastern Rajasthan.  相似文献   

19.
Investigation of soil properties such as cation exchange capacity (CEC) and soil infiltration is an important role in environmental research. The measurement of these parameters is time-consuming and costly. In this study, intelligence-based models [artificial neural networks (MLP and RBF), adaptive neuro-fuzzy inference system (ANFIS), and multiple regression (MR) techniques] are employed as alternatives to estimate the CEC and soil infiltration parameters from more readily available soil data. Two hundred soil samples were collected from soil 0–30 cm deep from two sites of the Ghoshe Region in Semnan Province, Iran. The first site was a flood plain and second site was agriculture land. The input data for models were electrical conductivity (EC), soil texture, lime percentage, sodium adsorption ratio (SAR), and bulk density. To evaluate the performance of these models, the statistical parameters such as root mean square error (RMSE), mean absolute error (MAE), mean error (ME), and coefficient of determination (R2) were used. Then the results of the intelligence-based models and MR were compared to each other’s. The results show that the MLP model was better than ANFIS, MR, and RBF models. Finally, sensitivity analysis was conducted to determine the most and the least influential variables affecting the soil infiltration and CEC parameters. It was found that EC and bulk density have respectively the most and the least effect on soil infiltration, and for CEC they were clay percentage and bulk density, respectively.  相似文献   

20.
Silicon (Si), applied as calcium silicate (Ca-silicate), was evaluated for effects on yield; yield-contributing parameters in sugarcane, such as chlorophyll content, gas exchange characteristics, moisture content, and leaf nutrient concentrations; and soil fertility in the greenhouse in two different soil types. Seven levels of Si (0 20, 40, 60, 80, 120, and 150 g pot–1) were tested by applying them with traditional fertilizers. Gas exchange characteristics such as photosynthesis, transpiration, and stomatal conductance were significantly greater with the plants fertilized with silicate over unamended control for both soils. Silicate fertilization increased chlorophyll and moisture contents in the top visible dewlap (TVD) leaf tissues, but results were not significantly better in both soils when compared with unamended control. In our 12-month study, we found that the Si content reached up to 2.64% and 1.86% per dry mass in TVD leaf tissues when amended with Ca-silicate fertilizer in soils 1 and 2, respectively. Results showed that as compared to unamended control, Si-amended treatments significantly increased maximum dry matter and cane yield by 77% and 66% in soil 1 and 41% and 15% in soil 2, respectively. With increasing silicate application, iron, copper, zinc, and manganese contents significantly decreased in leaf tissues and soil contents in both soils. Soil pH, Si contents, available sulfur, exchangeable Ca and magnesium, and cation exchange capacity were increased significantly more or less, whereas aluminum contents of soil decreased dramatically in both soils when amended with Ca-silicate. Our results indicate that different soil fertility status and rates of Si application are important factors influencing the yield, growth parameters, chlorophyll, and nutrient contents of sugarcane leaf as well as soil properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号