首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus (P) deficiency is one of the most yield-limiting factors in lowland rice production on Brazilian Inceptisol. The objective of this study was to evaluate eight P sources for lowland rice production. The P sources were simple superphosphate (SSP), polymer-coated simple superphosphate (PSSP), ammoniated simple superphosphate (ASSP), polymer-coated ammoniated simple superphosphate (PASSP), triple superphosphate (TSP), polymer-coated triple superphosphate (PTSP), monoammonium phosphate (MAP), and polymer-coated monoammonium phosphate (PMAP). These P sources were applied in four rates (i.e., 50, 100 200, and 400 mg P kg?1) + one control treatment (0 mg P kg?1). Plant height, straw yield, grain yield, panicle number, and root dry weight were significantly increased in a quadratic fashion with increasing P levels from 0 to 400 mg kg?1 of all the P sources evaluated. However, overall maximum root length and P-use efficiency were significantly less at greater P levels. Based on regression equation, maximum plant height was obtained with 262 mg P kg, maximum straw yield was obtained with 263 mg P kg?1, maximum grain yield was obtained with 273 mg P kg?1, and maximum panicle density was obtained with 273 mg P kg?1. Plant growth and yield components had significant positive association with grain yield, except maximum root length. Based on grain yield and average P rate of maximum grain yield, which is 273 mg kg?1, P sources were classified for P-use efficiency in the order of PSSP = TSP > PTSP > PASSP > SSP > MAP > ASSP. Soil chemical properties [pH; P; potassium (K); calcium (Ca); magnesium (Mg); hydrogen (H) + aluminum (Al); cation exchange capacity (CEC); base saturation; Ca, Mg, and K saturation; acidity saturation; Ca/Mg, Ca/K, and Mg/K ratios] changed significantly with the addition of different P treatments.  相似文献   

2.
Rice is a main food crop for about half of the world's population, and phosphorus (P) is the main limiting nutrient in rice production in tropical lowlands. A greenhouse experiment was conducted to evaluate P requirements of lowland rice grown on a lowland soil (Inceptisol). Dry matter, grain yield, and yield-attributing characteristics were significantly (P < 0.01) influenced by P fertilization. Based on quadratic response, maximum shoot dry weight and grain yield were obtained with the application of 190 mg P kg?1 of soil. Maximum panicle, tiller number, and plant height were obtained with the application of 177 192, and 175 mg P kg?1 of soil, respectively. Mehlich 1–extractable P for maximum grain yield was 15.6 mg kg?1 of soil. Variability in grain yield with plant growth and yield parameters was in the order of tiller > shoot dry weight > panicle number > spikelet sterility > plant height > grain harvest index > panicle length > weight of 1000 grains. Phosphorus uptake in shoot and concentration and uptake in grain significantly (P < 0.01) increased grain yield. However, variability in grain yield was greater with concentration and uptake of P in the grain. Similarly, P harvest index was also significantly associated with grain yield. Agronomic P-use efficiency, apparent P-recovery efficiency, and P-utilization efficiency decreased quadratically with increasing P rates, whereas physiological P-use efficiency increased quadratically and agrophysiological P-use efficiency decreased linearly with increasing P rates. Agrophysiological and utilization P-use efficiencies had significant positive correlation with grain yield.  相似文献   

3.
Lowland rice significantly contributes to world as well as Brazilian rice production and information on genotypes potassium-use efficiency is limited. A greenhouse experiment was conducted with the objective to evaluate lowland rice genotypes for potassium (K)–use efficiency. Ten genotypes were evaluated at 0 mg K kg?1 (low) and 200 mg K kg?1 (high) of soil. Grain yield and shoot dry weight were significantly affected by K as well as genotype treatments. Genotypes CNAi 8860, CNAi 8859, BRS Fronteira, and BRS Alvorada were the best in relation to K-use efficiency because they produced best grain yield at low as well as at higher K levels. Shoot dry weight, number of panicles per pot, and 1000-grain weight had highly significant (P < 0.01) association with grain yield. Spikelet sterility, however, had significant negative association with grain yield. These plant parameters were mainly influenced by genotypes, indicating importance of selecting appropriate genetic material for improving grain yield. Soil K depletion was significant at harvest, suggesting large amount of K uptake by lowland rice genotypes.  相似文献   

4.
Zinc (Zn) deficiency in rice has been widely reported in many rice-growing regions of the world. A greenhouse experiment was conducted with the objective of determining Zn requirements of lowland rice. Zinc rates used were 0, 5, 10 20, 40, 80, and 120 mg Zn kg?1 of soil applied to an Inceptisol. Zinc application significantly affected shoot dry weight and grain yield as well as concentrations and uptakes of Zn in soil and plant. Maximum yield of shoot dry weight and grain yield were achieved at 5 and 20 mg Zn kg?1 of soil, respectively. Zinc concentration and uptake in shoot as well as Zn uptake in grain had significant quadratic increases as Zn concentration increased in the soil solution. Zinc concentration as well as uptake was greater in the shoot as compared with concentration and uptake in the grain. Zinc-use efficiencies significantly decreased with increasing Zn rates in the soil except agrophysiological efficiency, which had significant quadratic increases with increasing Zn rates. On average, about 6% of the applied Zn was recovered by the lowland rice plants. Mehlich 1 extracting solution extracted much more Zn than diethylenetriaminepentaacetic acid (DTPA). However, Mehlich 1 as well as DTPA-extractable Zn had significant positive correlations with each other as well as with Zn uptake in grain and shoot.  相似文献   

5.
Rice (Oryza sativa L.) is a staple food for more than 50% of the world’s population, and phosphorus (P) is one of the most yield-limiting nutrients for rice production in tropical acidic soils worldwide. A greenhouse experiment was conducted to evaluate efficiency of six P sources for upland rice production. The P sources used were simple superphosphate (SSP), polymer-coated SSP (PSSP), triple superphosphate (TSP), polymer-coated TSP (PTSP), monoammonium phosphate (MAP), and polymer-coated MAP (PMAP). There were four P rates [50, 100 200, and 400 mg phosphorus (P) kg?1] applied with four sources plus one control treatment [0 mg phosphorus (P) kg?1]. Plant height, straw yield, grain yield, panicle density, root dry weight, maximum root length, and 1000-grain weight were significantly increased with increasing P rates in the range of 0 to 400 mg P kg?1. However, P-use efficiency (mg grain produced per mg P applied) was decreased with increasing P rate. Based on regression equation, overall maximum plant height was obtained with the application of 235 mg P kg?1, maximum straw yield with the application of 265 mg P kg?1, and maximum grain yield at 227 mg P kg?1. Based on maximum grain yield, the P source were classified as PMAP > SSP = MAP > PSSP > TSP > PTSP in the upland rice production efficiency. Overall, maximum panicle density was obtained with the addition of 231 mg P kg?1 and maximum 1000-weight was obtained with the addition of 226 mg P kg?1. Similarly, overall root dry weight and maximum root length were achieved with the application of 261 and 298 mg P kg?1 of soil. Most of the growth and yield components had a significant positive association with grain yield. Optimum soil acidity indices such as pH; exchangeable calcium (Ca), magnesium (Mg), and potassium (K); Ca, Mg, and K saturation; base saturation; and acidity saturation were established for maximum upland rice grain yield.  相似文献   

6.
Abstract

Use of adequate rates of phosphorus (P) in crop production on high‐P‐fixing acid soils is essential because of high crop response to P fertilization and the high cost of P fertilizers. Information on lowland rice response to thermophosphate fertilization grown on Inceptisols is limited, and data are also lacking for soil‐test‐based P fertilization recommendations for this crop. The objective of this study was to evaluate response of lowland rice to added thermophosphate and to calibrate P soil testing for making P fertilizer recommendations. A field experiment was conducted for two consecutive years in central Brazil on a Haplaquept Inceptisol. The broadcast P rates used were 0, 131, 262, 393, 524, and 655 kg P ha?1, applied as thermophosphate Yoorin. Rice yield and yield components were significantly increased with the application of P fertilizer. Average maximum grain yield was obtained with the application of 509 kg P ha?1. Uptake of macro‐ and micronutrients had significant quadratic responses with increasing P rates. Application of thermophosphate significantly decreased soil acidity and created favorable macro‐ and micronutrient environment for lowland rice growth. Across 2 years, soil‐test levels of Mehlich 1–extractable P were categorized, based on relative grain yield, as very low (0–17 mg P kg?1 soil), low (17–32 mg P kg?1 soil), medium (32–45 mg P kg?1 soil), or high (>45 mg P kg?1 soil). Similarly, soil‐test levels of Bray 1–extractable P across 2 years were very low (0–17 mg P kg?1 soil), low (17–28 mg P kg?1 soil), medium (28–35 mg P kg?1 soil), or high (>35 mg P kg?1 soil). Soil P availability indices for Mehlich 1 extractant were slightly higher at higher P rates. However, both the extracting solutions had highly significant association with grain yield.  相似文献   

7.
Nitrogen (N) is one of the most yield limiting nutrients in lowland rice production. Improving N use efficiency is essential to reduce cost of crop production and environmental pollution. A greenhouse experiment was conducted with the objective to compare conventional and polymer coated urea for lowland rice production. Grain yield, straw yield, panicle density, maximum root length, and root dry weight were significantly increased in a quadratic fashion with the increase of N rate from 0 to 400 mg kg?1 soil. Nitrogen source X N rate interactions for most of these traits were not significant, indicating that lowland rice responded similarly to change in N rates of two N sources. Based on regression equations, maximum grain yield was obtained with the application of 258 mg N kg?1 soil and maximum straw yield was obtained with the addition of 309 mg N kg?1 soil. Nitrogen use efficiency (grain yield per unit of N applied) was maximum for polymer coated urea compared to conventional urea. Root length and root dry weight improved at an adequate N rate, indicating importance of N fertilization in the absorption of water and nutrients and consequently yield. Polymer coated urea had higher soil exchangeable calcium (Ca) and magnesium (Mg), Ca saturation, Mg saturation, base saturation, and effective cation exchange capacity compared to conventional urea. There was a highly significant decrease in soil exchangeable potassium (K) with increasing N rates at harvest of rice plants.  相似文献   

8.
ABSTRACT

Rice is a staple food for more than 50% of the world's population and nitrogen (N) is one of the most yield limiting nutrients in lowland rice ecosystems. A field experiment was conducted for two consecutive years to evaluate dry matter production and grain yield of 12 lowland rice genotypes (BRS Jaçanã, CNAi 8860, BRS Fronteira, CNAi 8879, CNAi 8880, CNAi 8886, CNAi 8885, CNAi 8569, BRSGO Guará, BRS Alvorada, BRS Jaburu, and BRS Biguá) at five N rates (0, 50, 100, 150, and 200 kg ha? 1). Genotypes showed significant variation in grain yield and shoot dry weight. Genotype BRSGO Guará was highest yielding, whereas genotype BRS Jaburu was lowest yielding and the remaining genotypes were intermediate in grain yielding potential. Grain yield and shoot dry weight were having significant quadratic increase with increasing N rates in the range of 0 to 200 kg ha? 1. However, 90% of the maximum yield is often considered as an economical rate, which was 120 kg for shoot dry weight and 136 kg N ha? 1 for grain yield. Shoot dry matter was having significant positive quadratic association with grain yield across 12 genotypes.  相似文献   

9.
Rice is staple food for more than 50% of the world's population. Nitrogen (N) is one of the most yield-limiting nutrients for lowland rice production around the world. Two field experiments were conducted at two locations for two consecutive years to evaluate N-use efficiency of 12 lowland rice genotypes. Growth, grain yield, and yield components were significantly influenced by N as well as genotype treatments. Location?×?year?×?genotype and location?×?year?×?N interactions were significant for most of the growth, yield, and yield components, indicating influence of these factors on yield and yield components. Overall, the most N-efficient genotypes measured in terms of grain yield were BRA 031032, BRA 031044, and BRA 02654 and the most inefficient genotypes were BRS Jaçana, BRS Fronteira, and BRA 02674. Genotypes had linear and quadratic responses to added N in the range of 0 to 200 kg ha?1. Nitrogen significantly influenced plant height, shoot dry weight, panicle number, and 1000-grain weights. Nitrogen-use efficiency (kg grain per kg N applied) varied from 33 to 49 kg grain per kg N applied, with an average value of 40 kg grain per kg N applied. The genotype BRA 031044 produced the greatest N-use efficiency, and the lowest N-use efficient genotype was BRS Fronteira. There was a significant linear association between N-use efficiency and grain yield.  相似文献   

10.
Rice (Oryza sativa L.) is the staple food for more than 50% world population and nitrogen (N) is one of the most yield-limiting nutrients for rice production worldwide. A greenhouse experiment was conducted to evaluate the efficiency of three N sources for lowland rice production. The N sources used were ammonium sulfate, common urea, and polymer-coated urea. There were three N rates, i.e. 100, 200, and 400 mg N kg?1 applied with three sources plus one control treatment (0 mg N kg?1). Growth, yield, and yield components were significantly increased either in a linear or quadratic fashion with the addition of N fertilizers in the range of 0–400 mg kg?1 soil. Maximum grain yield was obtained with the addition of ammonium sulfate at 100, 200, and 400 mg kg?1 of soil. Common urea and polymer-coated urea were more or less similar in grain production at 100 and 200 mg N kg?1. However, at 400 mg N kg?1 treatments, polymer-coated urea produced the lowest grain yield. Most of the growth and yield components were positively related to grain yield, except spikelet sterility which was negatively related to grain yield. Nitrogen use efficiency decreased with increasing N rate in all the three N sources. Maximum N use efficiency was obtained with the addition of ammonium sulfate at lower as well as at higher N rates compared with other two N sources.  相似文献   

11.
Rice is a staple food for about 50 percent of the world’s population. Potassium (K) is absorbed in large amounts by rice plants and adequate amounts of this element are fundamental to improve productivity and maintain sustainability of the cropping systems. A greenhouse experiment was conducted to determine the adequate rate of K for lowland rice grown on a Brazilian Inceptisol. The K rates used were 0, 50, 100, 200, 400, and 600 mg K kg?1 soil. Most of the growth, yield, and yield components were significantly and quadratically increased with increasing K levels. Based on a quadratic equation, maximum grain yield was obtained with the addition of 371 mg K kg?1 soil. Maximum plant height and shoot dry weight were obtained at 414 and 398 mg K kg?1 soil, respectively. Root growth (maximum length and dry weight) was also significantly increased in a quadratic fashion with the increasing K rate in the growth medium. Maximum root length was achieved at 58 mg K kg?1 whereas maximum root dry weight was obtained with the addition of 394 mg K kg?1 soil. Plant height, shoot dry weight, 1000-grain weight, root length, and root dry weight were significantly associated with grain yield. Hence, manipulation of these growth and yield components with the addition of K fertilizer can improve yield of lowland rice in varzea soils of central part of Brazil. Potassium uptake increased significantly in a quadratic fashion with increasing K rate. However, K-use efficiency (mg grain per mg K applied) decreased significantly with increasing K rate in a quadratic fashion. Maximum grain yield was obtained with 117 mg kg?1 Mehlich 1–extractable K, base saturation of 53 percent, Mg saturation of 9 percent, K saturation of 2 percent, and Ca/Mg ratio of 4.  相似文献   

12.
Upland rice is an important crop in South American cropping systems. In Brazil it is mainly grown in the central area, locally known as the Cerrado region. Soils of the Cerrado region are acidic and have poor fertility. A greenhouse experiment was conducted with the objective to evaluate thirty upland rice genotypes for acidity tolerance. Two acidity levels were created: high (without lime addition) and low (addition of 2.5 g dolomitic lime per kg soil). Plant height, straw yield, grain yield, panicle number, thousand-grain weight, spikelet sterility, grain harvest index (GHI), maximum root length, and root dry weight were significantly influenced by lime and genotype treatments. Lime × genotype interactions were also significant for most of these traits, indicating variation in these treats with the variation in acidity levels. Based on grain yield acidity tolerance index (GYATI), genotypes were classified as tolerant, moderately tolerant, and susceptible to soil acidity. Among thirty genotypes, 30 percent were classified as tolerant, 53 percent were classified as moderately tolerant, and 17 percent were classified as susceptible to soil acidity. Most of the growth, yield, and yield components had significant quadratic positive association with grain yield across two acidity levels. Soil acidity indices such as pH, base saturation, calcium (Ca) saturation, magnesium (Mg) saturation, and potassium (K) saturation increased with the addition of lime. Phosphorus content also increased with the addition of lime. However, hydrogen and aluminum (H + Al) and iron (Fe) content decreased with the addition of lime. Adequate soil acidity indices for grain yield were established.  相似文献   

13.
Dry bean is an important legume worldwide, and potassium (K) deficiency is one of the important constraints for bean production in most of the bean growing regions. A greenhouse experiment was conducted with the objective to evaluate fifteen dry bean genotypes grown on a Brazilian lowland (Inceptisol) United States Soil Taxonomy classification and Gley humic Brazilian Soil Classification system), locally known as “Varzea” soil. The K rate used was 0 mg kg?1 (low, natural soil level) and 200 mg kg?1 (high, applied as fertilizer). Straw yield, seed yield, pods per plant, seeds per pod, 100 seed weight, and seed harvest index were significantly increased with the addition of K fertilizer. These traits were also significantly influenced by genotypic treatment. Similarly, root length and root dry weight were also influenced significantly by K and genotype treatments. The K X genotype interactions for most of these traits were also significant, indicating variation in these traits with the variation in K level. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in K use efficiency. Maximum grain yield was obtained with 74 mg K kg?1 extracted by Mehlich 1 extracting solution. Similarly, K saturation required for maximum grain yield was 1.1%.  相似文献   

14.
以大穗型水稻品种BL006和R-农白为试验材料,中穗型品种黄华占为对照,在大田栽培条件下,比较不同穗型水稻品种的灌浆动态、群体干物质积累、茎鞘非结构性碳水化合物(NSC)含量、输导组织特征及产量性状,探讨大穗型水稻品种的灌浆结实特性及源-流-库特性。结果表明:(1)大穗型水稻品种BL006和R-农白灌浆起步早、前期灌浆速率快,最终粒重高,不同部位籽粒的灌浆动态基本一致,部位间互为同步灌浆。(2)与中穗型水稻品种相比,大穗型水稻品种BL006和R-农白的穗粒数和千粒重分别升高16.83%、33.75%和13.19%、10.07%,谷粒充实率无显著差异,每穴有效穗数及R-农白的受精率分别降低39.48%、31.24%和10.78%;大穗型水稻品种BL006(全生育期)和R-农白(齐穗期后)的群体干物质积累量升高36.06%和6.59%;灌浆期间茎鞘NSC含量升高99.03%和70.32%;穗颈维管束数量、面积和枝梗维管束的面积显著增加。总之,大穗型水稻品种BL006和R-农白的灌浆速率高、灌浆耗时短、粒重高,其中,BL006的受精率更高,籽粒灌浆更优。灌浆期间,两个大穗型水稻品种“源”足、“流”畅,通过适当减少有效穗数,实现了籽粒的优异灌浆充实,这为探明大穗型水稻品种的灌浆特性及调控机理奠定了基础。  相似文献   

15.
Increasing manganese (Mn) deficiency in soils emphasizes strategies for breeding genotypes with increased Mn efficiency. The present investigation evaluated Mn efficiency of 11 rice genotypes w.r.t. basal, foliar, and basal+foliar Mn application in field and glasshouse conditions. The genotypes with B + F application had higher leaf area (LA), SPAD index, root length (RL), root surface area (RSA) and mean half distance between roots (MHDR), and ultimately higher Mn efficiency under both growing conditions. The results of correlation analysis depicted strong positive relation between grain yield and LA (0.60) and SPAD index (0.53). The root characteristics viz., RL, RSA, and MHDR could, respectively, explain 76%, 77%, and 83% of variation in grain yield emphasizing the importance of superior root geometry in regulating mechanism pertaining to differential Mn efficiency. The breeders could select the traits for better root geometry along with high yield in breeding programs to develop Mn efficient genotypes.  相似文献   

16.
Zinc (Zn) deficiency is very common in annual crops grown on Brazilian Oxisols. A greenhouse experiment was conducted to evaluate Zn-use efficiency of 20 upland rice genotypes. The Zn levels used were 0 mg kg?1 (natural level of the soil) and 20 mg kg?1 of soil applied with zinc sulfate (ZnSO4). Zinc × genotype interactions were significant for grain yield, panicle number, panicle length, root dry weight, and specific root length, indicating different responses of genotypes with the variation of Zn levels and that selection for Zn-use efficiency is necessary at low as well as at high Zn rates. Based on Zn-use efficiency index, 11 genotypes were classified as efficient and nine were classified as moderately efficient. The most Zn-efficient genotypes were BRA 01596, BRA 042156, BRA 052053, BRA Primavera, and BRA 01506. The most inefficient genotypes in Zn-use efficiency were BRA 042094, BRA 052045, BRA 052034, and BRA 052023. Grain yield and most of the yield attributing characteristics have significant Zn × genotype interactions, which indicate that genotypes respond differently under different Zn levels. Thus, genotype selection is an important strategy for upland rice production in Brazilian Oxisols.  相似文献   

17.
秸秆还田与栽插方式对水稻根系生长及产量的影响   总被引:3,自引:2,他引:3  
通过明确不同秸秆还田与栽插方式下水稻根系及产量形成的差异,为不同栽插方式下秸秆还田提供理论和实践依据,以迟熟型杂交籼稻F优498为试验材料,采用2因素裂区设计,主区设置秸秆不还田、覆盖还田和翻埋还田3种还田方式,副区为人工移栽和毯苗机插2种栽插方式,研究不同秸秆还田方式和栽插方式下水稻根干质量、根冠比、根系形态生理特征及产量形成的差异。结果表明:1)秸秆还田对根系生长的影响表现为前抑后促,抑制了分蘖盛期单茎和群体根系的生长,促进了拔节期至成熟期根系的生长,齐穗期翻埋还田水稻根系生长更好,成熟期则是覆盖还田根干质量、根数更高。各生育时期根系直径,分蘖盛期和成熟期的单茎、群体根系指标以及根干质量,拔节后15 d、齐穗后15 d和成熟期单茎伤流强度均表现为人工移栽毯苗机插,但拔节期和齐穗期根系形态指标和群体根干质量小于毯苗机插。不同于翻埋还田对毯苗机插稻齐穗期根系生长有利,覆盖还田能有效促进人工移栽稻齐穗期根系生长,减缓花后根系衰老,维持单茎较大伤流强度。2)与秸秆不还田相比,秸秆还田平均使水稻增产3.50%,与人工移栽互作的增产率为2.03%~9.81%,与毯苗机插互作的增产不明显,其中又以秸秆覆盖还田与人工移栽互作增产效果最佳。3)分蘖盛期根干质量,成熟期根干质量、单茎根系指标和群体根系指标,分别与每穗粒数、总颖花量和产量显著正相关,分蘖单茎和群体根系形态指标与有效穗呈显著负相关。综上所述,秸秆还田后人工移栽均实现了增产,而毯苗机插多表现为减产,覆盖还田产量较翻埋还田高。覆盖还田与人工移栽互作下的水稻根系早生快发、衰老慢、单茎伤流强度大,产量最高,翻埋还田促进了毯苗机插中期的根系生长,但齐穗后根系衰老快,单茎伤流强度小。  相似文献   

18.
Rice is important crop for world population, including Brazil. Nitrogen (N) is one of the most yield limiting nutrients in rice production under all agro-ecological conditions. A greenhouse experiment was conducted to evaluate N responses to 12 lowland rice genotypes. Soil used in the experiment was a Gley humic according to Brazilian soil classification system and Inceptisol according to USA soil taxonomy classification. The N rates used were 0 mg kg?1 (low) and 300 mg kg?1 (high) of soil. Plant height, straw yield, grain yield, panicle density, 1000 grain weight, and root dry weight were significantly increased with the addition of N fertilization. These growth, yield, and yield components were also significantly influenced by genotype treatment. Grain yield had significant linear or quadratic association with shoot dry weight, panicle number and 1000 grain weight Based on grain efficiency index genotypes were classified as efficient, moderately efficient and inefficient in N use. The N efficient genotypes were ‘BRS Tropical’, ‘BRS Jaçanã’, ‘BRA 02654’, ‘BRA 051077’, ‘BRA 051083’, ‘BRA 051108’, ‘BRA 051130’ and ‘BRA 051250’. Remaining genotypes fall into moderately efficient group. None of the genotypes were grouped as inefficient in N use efficiency.  相似文献   

19.
稻草与生石灰对设施土壤微量元素含量和番茄产量的影响   总被引:3,自引:0,他引:3  
为了探究设施内添加稻草与生石灰对土壤微量元素含量和番茄产量的影响,以长期施肥定位试验为依托,比较了施用鸡粪(M)的基础上,添加稻草(MR)、生石灰(MCa)、稻草与生石灰同时添加(MRCa)各处理全土及各粒级团聚体中有效态Fe、Mn、Cu、Zn含量和番茄产量的变化。结果表明:(1)添加稻草可增加土壤中有效态Fe、Mn、Zn含量,MR处理较M处理分别增加3.2%,80.9%,15.1%,对有效态Cu含量无显著影响;添加生石灰也可增加土壤中微量元素含量,其中Mn含量增加显著。土壤中有效态Fe、Mn、Cn、Zn含量与pH呈极显著负相关(P<0.01),与有机质含量呈极显著正相关(P<0.01)。(2)随着土壤团聚体粒级的减小,有效态微量元素含量呈下降趋势。添加稻草和生石灰可增加1~0.25mm粒级中有效态Mn含量,MRCa处理较其他处理增加6.6%~46.6%;添加稻草可增加<0.25mm粒级中有效态Zn含量。土壤中有效态Fe含量与<1mm粒级中含量呈显著正相关(P<0.01);土壤中有效态Mn、Zn含量分别与各粒级中含量呈显著正相关(P<0.01);土壤中有效态Cu含量与1~0.25mm粒级中含量呈显著正相关(P<0.01)。(3)施入稻草或生石灰可增加番茄产量,且稻草和生石灰同时施入产量最高,MRCa处理较MCa、MR处理分别增加12.6%,33.8%。土壤有效态Fe、Cu含量与产量正相关,其中有效态Fe含量对产量具有直接作用,决策系数最高,土壤有效态Cu含量对产量具有间接作用。因此,可以通过长期添加稻草和适量生石灰缓解设施土壤微量元素短缺的现状,且可获得最高作物产量,为设施内土壤可持续利用和设施农业可持续发展提供保障。  相似文献   

20.
Rice, dry bean, corn, and soybean are important food crops. Phosphorus (P) deficiency is one of the most yield-limiting factors for these crops grown on highly weathered Brazilian Oxisols. Four greenhouse experiments were conducted to determine P requirements of these four crops. The P levels used were 0, 50, 100, 200, and 400 mg kg?1. Growth, yield, and yield components evaluated of four crop species were significantly increased with the application of P fertilization. Most of the responses were quadratic in fashion when the P was applied in the range of 0 to 400 mg kg?1. Maximum grain yield of upland rice was obtained with the application of 238 mg P kg?1 of soil, maximum dry bean grain yield was obtained with the application of 227 mg P kg?1 of soil, and maximum grain yield of soybean was obtained with the application of 224 mg P kg?1 of soil. Maximum shoot growth of corn was obtained with the addition of 323 mg P kg?1 of soil. Most of the growth and yield components had significant positive association with grain yield or shoot dry weight. Phosphorus concentration and uptake were greater in the grain compared to straw in upland rice and dry bean plants. Overall, P-use efficiencies decreased with increasing P rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号