首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Abstract

Soil nitrogen (N) supply plays a dominant role in the N nutrition of wetland rice. Organic matter has been proposed as an index of soil N availability to wetland rice. This is based on the finding that mineralizable N produced under waterlogged conditions is related to soil organic carbon (C) and total N. The relationship between organic matter and mineralizable N is a prerequisite for determining the N requirement of wetland rice. However, no critical analysis of recent literature on organic matter–mineralizable N relationships has been made. This article evaluates current literature on the relationships of mineralizable N or ammonium N production with soil organic C in wetland rice soils. A number of studies with diverse wetland rice soils demonstrate a close relationship of N mineralized (ammonium‐N) under anaerobic conditions with organic C or total N. However, a few recent studies made on sites under long‐term intensive wetland rice cropping showed that strong positive relationships of mineralizable N with organic C or total N do not hold. Clearly, both quantity and quality of organic matter affect N mineralization in wetland rice soils. Future research is needed to clarify the role of quality of organic matter, especially its chemistry, as modified by the chemical environment of submerged soils, on the mineralization of organic N in wetland rice soils.  相似文献   

2.
Abstract

The conventional dichromate (Walkley and Black), carbon analyzer, and weight loss‐on‐ignition (WLOI) methods are compared for determination of organic matter contents in composts and organic mulches. The objective of this study was to evaluate these three methods for their reliability in determining the organic matter contents of composts and organic mulches that also contain inorganic carbon. The carbon analyzer method overestimated organic matter contents for samples containing inorganic carbon (C) as carbonate or charcoal C. The removal of inorganic C improved the correlation coefficients (r) of results obtained by the carbon analyzer method and the Walkley and Black method (0.95 vs. 0.89). The WLOI method produced results more similar to those obtained with the Walkley and Black method than with a carbon analyzer. Oven drying samples for 16–24 h at 105°C as a basal temperature for WLOI improved results compared with a basal temperature at 70°C, which is commonly used. A heating temperature of 500°C for 12 h resulted in organic matter determinations by the WLOI method in the closest agreement with those obtained by the Walkley and Black method.  相似文献   

3.
Abstract

A chromic acid method proposed for rapid determination of total nitrogen (N) in soils was evaluated by comparing its results with those obtained by a Kjeldahl method commonly used for total N analysis of soils. Analyses of 12 surface soils selected so that they differed markedly in texture and organic carbon content showed that the chromic acid method recovered only 87.5% to 94.1% (average, 90.5%) of the soil N recovered by the Kjeldahl method. The recovery of N from ammonium sulfate and soils by the chromic acid method decreased with increase in time of digestion with chromic acid from 1 minute to 15 minutes (the recommended digestion time). This indicates that the low recovery of soil N by the chromic acid method was at least partly due to oxidation of ammonium to nitrate and/or nitrite by chromic acid and subsequent gaseous loss of these forms of N. Support for this conclusion was provided by analyses showing that about half of the N that could not be recovered as ammonium after digestion of ammonium sulfate with chromic acid for 15 minutes was in the form of nitrate.  相似文献   

4.
Quantitative information about the amount and stability of organic carbon (OC) in different soil organic‐matter (OM) fractions and in specific organic compounds and compound‐classes is needed to improve our understanding of organic‐matter sequestration in soils. In the present paper, we summarize and integrate results performed on two different arable soils with continuous maize cropping (a) Stagnic Luvisol with maize cropping for 24 y, b) Luvic Phaeozem with maize cropping for 39 y) to identify (1) the storage of OC in different soil organic‐matter fractions, (2) the function of these fractions with respect to soil‐OC stabilization, (3) the importance and partitioning of fossil‐C deposits, and (4) the rates of soil‐OC stabilization as assessed by compound‐specific isotope analyses. The fractionation procedures included particle‐size fractionation, density fractionation, aggregate fractionation, acid hydrolysis, different oxidation procedures, isolation of extractable lipids and phospholipid fatty acids, pyrolysis, and the determination of black C. Stability of OC was determined by 13C and 14C analyses. The main inputs of OC were plant litter (both sites) and deposition of fossil C likely from coal combustion and lignite dust (only Phaeozem).  相似文献   

5.
The influence of Cd on the decomposition of various types of organic materials in soil was studied. CdCl2 or CaCl2 (control) was added to a Gley soil at a level of 10 mmol kg-1 soil. Three days later, organic materials including glutamic acid, glucose, casein, starch, cellulose, lignin, rice straw, rice straw compost, or 3 kinds of sludges were mixed with the soil in a proportion of 1%, respectively. During an 8-week period of incubation at 28°C, CO2 evolution was measured periodically. At the end of the incubation period, the form of Cd in the soil was analyzed by successive extractions with water, CaCl2, CH3COOH, Na4P2O7, and with hot HCl after HNO3-HClO4 digestion.

The decomposition of all the organic materials was inhibited by the addition of Cd, but the degree of inhibition varied considerably among the types of organic materials. The decomposition of rice straw, rice straw compost, and sludges was markedly inhibited by Cd. The amount of water-soluble Cd was less in the soils treated with rice straw, rice straw compost, and sludges than in the soils treated with other types of organic materials, while the amounts of CaCI2-extractable Cd were much larger in the latter soils. In the case of rice straw, rice straw compost, and sludges Cd was easily adsorbed from the CdCl2 solution.

These results suggest that the inhibition of organic matter decomposition by Cd is caused by the adsorption of Cd onto organic matter.  相似文献   

6.
Abstract

The evolution of the organic matter during the maturation of solid samples of pig sludges and pig manure composted with straw was followed. A sample of pig sludge about 15 years old also was characterized for comparison. The organic matter of the composts and sludges was extracted and the humic (HA) and fulvic acids (FA) were separated. The organic carbon in the total extract (TEC) in the fulvic fraction and in the humic fraction was determined in order to evaluate the stabilization level of the organic matter using some humification parameters. The nature of the organic extract also was evaluated by characterization with analytical isoelectric focusing (IEF). The results confirm that the degree of humification (DH) decreases during the first period of maturation of the organic matter, because of the degradation of humic and fulvic‐like compounds contained into the raw organic materials, while then it increases progressively for all the maturation period. The data collected in this study confirm that the FA fraction could be the main cause of the lack of regularity in the trend of increasing DH as maturation progresses. The FA/TEC ratio infact decreases progressively for all the maturation period, while the HA/TEC ratio increases. The results obtained in the IEF characterization confirm the validity of this analytical technique. Moreover, the results do not appear to be affected by the presence of the humic‐like compounds. The presence of the bands focused at the higher pH values appear to be directly related to the stabilization of the organic material.  相似文献   

7.
Twenty‐six soil samples were collected from 13 paired orchards (organically vs. conventionally managed) homogeneous for age, rootstock and cultivars, belonging to the Eastern Sicily Organic Citrus farm Network. The soil quality was evaluated by chemical and biochemical indicators. The total organic C, humification parameters and isoelectric focusing of extracted organic matter were measured to quantify the size of relevant soil C pools. In addition, C turnover was evaluated by determining microbial C mineralization, C microbial biomass and by calculating the mineralization and metabolic quotient (qCO2). The results obtained demonstrated that organic citrus soils were characterized by a general increase in all the organic matter pools, which means a greater C supply for soil metabolic processes. This observed trend did not directly influence the organic matter turnover, indicating that the organic approach could act as a soil C‐sink. The soil microflora of organically managed soils showed an improved efficiency in use of energy and organic resources, corresponding to an increased ability of soils under organic management to sustain biological productivity in the long term.  相似文献   

8.
Abstract

Crystalline minerals in anaerobically digested sewage sludges were determined by x‐ray diffraction analysis. Sludge samples were prepared for x‐ray analysis by either washing with H2O to remove soluble salts or oxidizing organic matter with H2O. A limited number of minerals are present as crystalline materials in sludge. Even though the sludges contained appreciable concentrations of Cu, Zn, Cd, Pb and Ni, no crystalline metal sulfides, phosphates, hydroxides, oxides or carbonates were found with the exception of a possible Cu, Zn carbonate hydroxide. All other crystalline components detected are common minerals such as quartz, feldspar, montmorillonite, chlorite, mica, dolomite and calcite.  相似文献   

9.
Abstract

A detailed study was made of the well‐known organic carbon determination that is based on measuring the absorbance of the green chromium(III) complex generated when organic matter is oxidized by potassium dichromate in acidic medium. The green chromic colour proved to be unstable, turning slowly to a violet colour. It was also found that chromic sulphate exerts a catalytic influence on the decomposition of excess dichromate. Based on this work, a modified method was developed which is simple, rapid, and very accurate when working under carefully controlled conditions.  相似文献   

10.
Abstract

Particulate organic matter (POM) is recognized as a valuable measure of labile soil organic matter. The method usually requires hand‐sieving through a 2‐mm sieve. Hand‐sieving has not been widely adopted by soil testing laboratories, where samples are generally mechanically ground. Composites of 20–25 cores (2×15 cm) were collected from a long‐term crop rotation×fertility treatment study in central Pennsylvania and from 11 central and eastern Pennsylvania farms. Subsamples of each sample were hand‐sieved through a 2‐mm sieve or mechanically ground and analyzed for POM carbon (C). The POM‐C of hand‐sieved and ground samples were similar except for one site with large POM concentrations; at this site, grinding generated lower POM‐C yields than hand‐sieving. Grinding soil samples may be an effective means to increase the availability of POM analysis, but additional work is necessary to determine if this method decreases POM yield, particularly in high POM samples.  相似文献   

11.
In carbonate‐containing soils a reliable determination of organic C requires a method that effectively separates organic and inorganic C without altering the organic matter. This study was conducted to determine whether HCl vapor completely removes carbonates even in dolomite‐rich soils and to what extent a widely used acid‐fumigation method has to be modified for humus‐rich soils. Furthermore, it was tested whether HCl fumigation alters organic‐C content. Since C and N parameters are often analyzed simultaneously we also tested the influence of acid‐vapor treatment on N content and on δ13C of soil organic matter. We applied fumigation with 37% HCl for 8 and 32 h using 9 carbonate‐containing soil samples. Inorganic C ranged from 7 to 124 and organic C from 9 to 267 g kg–1. The maximum contents of dolomite and calcite were 940 and 640 g kg–1, respectively. A time of 8 h was enough to completely remove all carbonates. Neither the content nor the δ13C of organic C were significantly affected by fumigation. In contrast, N contents were altered by acid treatment. Based on these results and on our experience in analyzing more than 1000 soil samples, a recommended procedure for acid fumigation of carbonate‐containing soils with a wide range of organic‐ and inorganic‐C contents was derived. Samples pretreated in this way can be analyzed reliably for their organic‐C content and δ13C. Furthermore, N and inorganic‐C contents can be determined with a quality sufficient for many purposes.  相似文献   

12.
Abstract

In acid soils, where organic carbon (C) corresponds to total C, direct determination of organic C by dry combustion is possible, whereas in soils with carbonates also a separate measurement of inorganic C is required. In this case, direct quantification of organic C can be accomplished by the Walkley‐Black method, which is time‐consuming and involves greatly polluting by‐products. Hence, a method able to determine directly organic C by dry combustion is strongly needed for soils with carbonates. This study proposes such a method, after it was found to be highly reliable in calcareous soils of a Mediterranean island. The correction factor to use in the Walkley‐Black method to account for nonrecoverable C was calculated. It does not show any overall relationship with the contents of either organic C or inorganic C, and for all land uses examined in the island, it is not significantly different from the commonly suggested value 1.30.  相似文献   

13.
Abstract

The effects of different management systems on the level and composition of humified organic matter in an entic Haplustoll from the semiarid Pampean region were studied. The systems were: TPc, wheat‐mixed pasture; TV, wheat (Triticum aestivum), oat (Avena sativa), corn (Zea mays) and triticale grasses; TP, wheat‐cattle grazing; and V, virgin, non cultivated. Humic acids were extracted, fractionated, and analyzed for their organic carbon (OC) content, elemental composition, and E4:E6 spectral ratios. The infrared (IR), electron spin resonance (ESR). and 13C‐NMR spectra were registered on these humic acids. The TP rotation showed the lowest humic acid‐carbon to fulvic acid‐carbon (HA‐C:FA‐C) ratio. The lower O:C ratio of humic acids from the cropped soils indicates a higher level of oxidation than that of the virgin one. The comparison of the different methodologies allowed us to conclude that crop rotations and conservation tillage were adequate to mantain the level and composition of the soil organic matter and humus which affected the soil fertility and level of productivity  相似文献   

14.
Abstract

Organic matter in Urbic Anthrosols often contains chemically and biologically inert organic carbon. This material, called black carbon (BC), originates from municipal wastes, coal‐mine deposits and/or fly ash. This black carbon needs to be differentiated from the other soil organic substances because of its very different physical and chemical nature. In this paper, we propose a new method for determining BC, integrated into the humic fractionation procedure. The remaining organic carbon in the soil residue left after lipid extraction, alkaline extraction [0.5 M sodium hydroxide (NaOH)], and further oxidation with 30% hydrogen peroxide (H2O2) is defined as inert organic carbon or BC. The common fractions of soil organic matter, such as lipids, fulvic and humic acids, and humins are thus supplemented with a new fraction, BC. According to our results by 13C‐NMRspectroscopy, this fraction consists mainly of polyaromatic hydrocarbons with few functional groups.  相似文献   

15.
Abstract

Renewed interest in temporal soil organic carbon (SOC) stock changes has stressed the importance of reliable methods for quantitative assessment of organic compound (OC) content. Particularly with the establishment of modern dry‐combustion analyzers, which are replacing the traditional wet‐oxidation methods, the need for correct relationships between both is of crucial importance for comparison of past and current SOC data in long‐term SOC stock change studies. Dry combustion with a Variomax CNS‐analyzer was the standard to evaluate three other methods for Belgian agricultural soils. Excellent linear relationships were found with the Walkey and Black method and the Springer and Klee method, whereas a Shimadzu TOC‐analyzer slightly underestimated the OC content. Precision of the investigated methods was comparable and tended to be dependent on the sample size used for measurement. The OC oxidation efficiency of the most widely applied method of Walkey and Black for the soils in this study was very close to the generally accepted 75%. Mass loss on ignition at 800°C could be very well related to the soil OC content and the clay content. The traditional factor of 1.724 used to convert OC measurements to organic matter percentages is not valid for the investigated soils, which demonstrates that rather regional‐specific factors (in this study 1.911) should be determined and adopted.  相似文献   

16.
Abstract

A simple and rapid procedure for the determination of organic matter content in mineral soils by loss‐on‐ignition without pretreatment was studied. Attention was given to the possible effect of inorganic compounds abundant in mineral soils on the estimation of organic matter content by this method. Both fast heating (DTA‐TGA type) studies and prolonged heating procedures were employed on natural and “synthetic”; soils. The results were compared to those obtained by the dichromate wet‐oxidation method widely used in soil laboratories for organic matter determination. In a group of 91 soils collected from various mineral soils in Israel, and having OM contents between 0.09 and 13.23%, a correlation coefficient of 0.972 was obtained for the linear regression between organic matter content measured by the proposed method and organic carbon measured by the dichromate wet‐oxidation method.  相似文献   

17.
Due to high nitrogen deposition in central Europe, the C : N ratio of litter and the forest floor has narrowed in the past. This may cause changes in the chemical composition of the soil organic matter. Here we investigate the composition of organic matter in Oh and A horizons of 15 Norway spruce soils with a wide range of C : N ratios. Samples are analyzed with solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy, along with chemolytic analyses of lignin, polysaccharides, and amino acid‐N. The data are investigated for functional relationships between C, N contents and C : N ratios by structural analysis. With increasing N content, the concentration of lignin decreases in the Oh horizons, but increases in the A horizons. A negative effect of N on lignin degradation is observed in the mineral soil, but not in the humus layer. In the A horizons non‐phenolic aromatic C compounds accumulate, especially at low N values. At high N levels, N is preferentially incorporated into the amino acid fraction and only to a smaller extent into the non‐hydrolyzable N fraction. High total N concentrations are associated with a higher relative contribution of organic matter of microbial origin.  相似文献   

18.
The retention of dissolved organic matter in soils is mainly attributed to interactions with the clay fraction. Yet, it is unclear to which extent certain clay‐sized soil constituents contribute to the sorption of dissolved organic matter. In order to identify the mineral constituents controlling the sorption of dissolved organic matter, we carried out experiments on bulk samples and differently pretreated clay‐size separates (untreated, organic matter oxidation with H2O2, and organic matter oxidation with H2O2 + extraction of Al and Fe oxides) from subsoil horizons of four Inceptisols and one Alfisol. The untreated clay separates of the subsoils sorbed 85 to 95% of the dissolved organic matter the whole soil sorbed. The sorption of the clay fraction increased when indigenous organic matter was oxidized by H2O2. Subsequent extraction of Al and Fe oxides/hydroxides caused a sharp decrease of the sorption of dissolved organic matter. This indicated that these oxides/hydroxides in the clay fraction were the main sorbents of dissolved organic matter of the investigated soils. Moreover, the coverage of these sorbents with organic matter reduced the amount of binding sites available for further sorption. The non‐expandable layer silicates, which dominated the investigated clay fractions, exhibited a weak sorption of dissolved organic matter. Whole soils and untreated clay fractions favored the sorption of ”︁hydrophobic” dissolved organic matter. The removal of oxides/hydroxides reduced the sorption of the lignin‐derived ”︁hydrophobic” dissolved organic matter onto the remaining layer silicates stronger than that of ”︁hydrophilic” dissolved organic matter.  相似文献   

19.
ABSTRACT

The aim of this study was to examine the usefulness of physical and chemical fractionation in quantifying soil organic matter (SOM) in different stabilized fraction pools. Soil samples from three land use types in Lorestan province, Southwest Iran were examined to account for the amount of organic carbon and nitrogen in different SOM fractions. Size/density separation and chemical oxidation methods were applied to separate the SOM fractions including particulate organic matter (POM), Si + C (silt and clay), DOC (dissolved organic C), rSOM (oxidation-resistant organic carbon and nitrogen) and S + SA (sand and stable aggregates). The values obtained for TOC, TN, and HWC were highest in forest lands followed by the range and agricultural lands. Among the SOM fractions, S + SA showed the highest values (5.75, 5.77 and 20.6 g kg?1 for agriculture, range and forest lands respectively) followed by POM, Si + C, rSOM, and DOC. The concentrations of C and N in the labile fractions obtained the higher values than in the stabilized fractions. Forest lands had the highest amounts of organic C and N among all fractions whereas agricultural lands showed highest values for inorganic C content of soils in different fractions.  相似文献   

20.
Abstract

To evaluate contributions of organic matter, oxides, and clay fraction to copper (Cu) adsorption in six characterized soils, adsorption isotherms and distribution coefficients were obtained by a batch experimental method. Copper adsorption isotherms from untreated soil, organic matter removed from samples, and organic‐matter‐ and oxide‐removed samples were compared with curve patterns and correlated to Langmuir and Freundlich models. Copper sorption data on untreated soils described L or H‐curves, whereas in soils deprived of any component, their curves were S‐type. Distribution coefficients allowed knowing Cu adsorption capacity of untreated soil and of organic matter, oxides, and clay fraction. Soil organic matter is the main component that affects Cu adsorption as long as soil pH is near neutrality. At acid pH, oxides are the main component that affects Cu adsorption, although to a much smaller extent than organic matter near neutral conditions. Soil pH is the main soil factor that determines Cu adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号