首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
ABSTRACT

Field experiments were carried out for three consecutive years (2003–2006) at Bangladesh Sugarcane Research Institute farm soil on plant (first crop after planting) and subsequent two ratoon crops of sugarcane. The main objectives of the study were to assess the direct and residual effects of organic and inorganic fertilizer on growth, yield, and juice quality of plant and ratoon crops. The plant crop consisted of four treatments. After harvesting of plant crop to evaluate the residual effects on ratoon crop the plots were subdivided except the control plot. Thus, there were seven treatments in the ratoon crop. Application of recommended fertilizer [nitrogen (N150), phosphorus (P52), potassium (K90), sulfur (S35), and zinc (Zn3) kg ha? 1] singly or 25% less of it either with press mud or farmyard manure (FYM) at 15 t ha? 1 produced statistically identical yield ranged from 67.5 to 69.0 t ha? 1 in plant crop. In the ratoon experiment when the recommended fertilizer was applied alone or 25% less of its either with press mud or FYM at 15 or even 7.5 t ha? 1 again produced better yield; it ranged from 64.8 to 69.2 in first ratoon and 68.2 to 76.5 t ha? 1 in second ratoon crops. Results showed that N, P, K, and S content in leaf progressively decreased in ratoon crops over plant crop. Juice quality parameters viz. brix, pol, and purity % remained unchanged both in plant and ratoon crops. Furthermore, organic carbon (C), available N, P, K, and S were higher in post harvest soils that received inorganic fertilizer in combination with organic manure than control and inorganic fertilizer treated soil. It may be concluded that the application of 25% less of recommended fertilizer (N112, P40, K68, S26, and Zn2.2.5 kg ha? 1) either with press mud or FYM at 15 t ha? 1 was adequate for optimum yield of plant crop. Results also suggest that additional N (50% extra dosage) keeping all other fertilizers at the same level like plant crop i.e. N168, P40, K68, S26, and Zn2.25 kg ha? 1 either with press mud or FYM at 7.5 t ha? 1 may be recommended for subsequent ratoon crops to obtain good yield without deterioration in soil fertility.  相似文献   

2.
A long-term field experiment (1984–2011), was conducted on a Calcic Haploxeralf from semi-arid central Spain to evaluate the combined effect of three treatments: farmyard manure (FYM), straw and control without organic amendments (WOA) and five increasing rates of mineral N on: (1) some energetic parameters of crop production, and (2) the effect of the different treatments on soil organic carbon (SOC) and total N stocks. Crop rotation included spring barley, wheat and sorghum. The energy balance variables considered were net energy produced (energy output minus energy input), the energy output/input ratio and energy productivity (crop yield per unit energy input). Results showed small differences between treatments. Total energy inputs varied from 9.86 GJ ha?1 year?1 (WOA) to 11.14 GJ ha?1 year?1 in the FYM system. For the three crops, total energy inputs increased with increasing rates of mineral N. Energy output was slightly lower in the WOA (33.40 GJ ha?1 year?1) than in the two organic systems (37.34 and 34.96 GJ ha?1 year?1 for FYM and straw respectively). Net energy followed a similar trend. At the end of the 27-year period, the stocks of SOC and total N had increased noticeably in the soil profile (0–30 cm) as a result of application of the two organic amendments. Most important SOC changes occurred in the FYM plots, with mean increases in the 0–10 cm depth, amounting an average of 9.9 Mg C ha?1 (667 kg C ha?1 year?1). Increases in N stocks in the top layer were similar under FYM and straw and ranged from 0.94 to 1.55 Mg N ha?1. By contrast, simultaneous addition of increasing rates of mineral N showed no significant effect on SOC and total N storage.  相似文献   

3.
ABSTRACT

Experiments were carried out with the objectives to reduce the yield gap of plant and subsequent ratoon crops, evaluate juice quality, as well as soil properties. A 3-year field experiment was utilized to assess the use of organic materials and inorganic fertilizers on plant and subsequent ratoon crops. The organic materials included press mud, farmyard manure (FYM), and green manure (GM) of Sunhemp (Crotalaria juncea); the fertilizers were urea, triple superphosphate (TSP), muriate of potash (MOP), gypsum, and zinc sulphate. Farm yard manure was applied at a rate of 15 t ha?1 accompanied with a chemical fertilizer (N178P53K54S26Zn2.6kg ha?1), which produced yield of 108.4, 96.8, and 73.5 t ha?1 in plant cane, first, and second ratoon crops, respectively. Cane yields in the first were recorded in plant cane first and second ratoon crops, respectively. Cane yields in the first and second ratoon crops were 89.3 and 67.8% of plant crop, respectively. Juice quality parameters viz., Brix, pol and purity percent progressively increased in ratoons crops as compared to corresponding plant cane. The organic carbon, total N, and available P, K, &; S contents of soils increased slightly due to incorporation of organic materials. The result of the study revealed that 25% reduction of inorganic fertilizer with FYM or press mud at 15 t ha?1 in plant cane and addition of 50% more N with same amount of fertilizer suggested for plant cane showed better yield and improved juice quality in first and second ratoon crops of sugarcane.  相似文献   

4.
A field trial was conducted on an inceptisol to assess the effect of different bio-manures on sugarcane yield, cane quality, and changes in soil physico-chemical and microbial properties in plant–ratoon system. Seven treatments, viz. control, vermicompost, farmyard manure (FYM), biogas slurry, sulphitation pressmud cake (SPMC), green manuring with intercropped Sesbania, and recommended dose of NPK (150:60:60 kg ha−1), were randomized within a block and replicated three times. Improvement in bulk density and infiltration rates was recorded after the addition of various bio-manures. The highest organic C was recorded in the vermicompost (0.54%) and pressmud (0.50%) treatments. The highest increase in soil microbial biomass C (185.5%) and soil microbial biomass N (220.2%) over its initial value was recorded with the addition of FYM. Dry matter production in plant, as well as ratoon crop, was significantly higher by bio-manure application over the control. Plant N uptake was highest in the pressmud treatment (227.7 kg ha−1), whereas P and K uptake were highest (41.4 and 226.50 kg ha−1) in vermicompost treatment. The highest number of millable canes (95.6 and 101.0 thousand ha−1) in plant and ratoon crop were obtained with the addition of pressmud. The highest yield (76.7 t ha−1) was recorded in planted cane with vermicompost application, whereas ratoon yield was highest (78.16 t ha−1) with pressmud application. In both planted and ratoon crop, organic amendments produced yields statistically similar to those with recommended NPK (76.1 and 78.1 t ha−1 for plant and ratoon cane).  相似文献   

5.
Productivity of rainfed finger millet in semiarid tropical Alfisols is predominantly constrained by erratic rainfall, limited soil moisture, low soil fertility, and less fertilizer use by the poor farmers. In order to identify the efficient nutrient use treatment for ensuring higher yield, higher sustainability, and improved soil fertility, long term field experiments were conducted during 1984 to 2008 in a permanent site under rainfed semi-arid tropical Alfisol at Bangalore in Southern India. The experiment had two blocks—Farm Yard Manure (FYM) and Maize Residue (MR) with 5 fertilizer treatments, namely: control, FYM at 10 t ha?1, FYM at 10 t ha?1 + 50% NPK [nitrogen (N), phosphorus (P), potassium (K)], FYM at 10 t ha?1 + 100% NPK (50 kg N + 50 kg P + 25 kg K ha?1) and 100% NPK in FYM block; and control, MR at 5 t ha?1, MR at 5 t ha?1 + 50% NPK, MR at 5 t ha?1 + 100% NPK and 100% NPK in MR block. The treatments differed significantly from each other at p < 0.01 level of probability in influencing finger millet grain yield, soil N, P, and K in different years. Application of FYM at 10 t ha?1 + 100% NPK gave a significantly higher yield ranging from 1821 to 4552 kg ha?1 with a mean of 3167 kg ha?1 and variation of 22.7%, while application of maize residue at 5 t ha?1 + 100% NPK gave a yield of 593 to 4591 kg ha?1 with a mean of 2518 kg ha?1 and variation of 39.3% over years. In FYM block, FYM at 10 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.45%), available N (204 kg ha?1), available P (68.6 kg ha?1), and available K (107 kg ha?1) over years. In maize residue block, application of MR at 5 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.39%), available soil N (190 kg ha?1), available soil P (47.5 kg ha?1), and available soil K (86 kg ha?1). The regression model (1) of yield as a function of seasonal rainfall, organic carbon, and soil P and K nutrients gave a predictability in the range of 0.19 under FYM at 10 t ha?1 to 0.51 under 100% NPK in FYM block compared to 0.30 under 100% NPK to 0.67 under MR at 5 t ha?1 application in MR block. The regression model (2) of yield as a function of seasonal rainfall, soil N, P, and K nutrients gave a predictability in the range of 0.11 under FYM at 10 t ha?1 to 0.52 under 100% NPK in FYM block compared to 0.18 under MR at 5 t ha?1 + 50% NPK to 0.60 under MR at 5 t ha?1 application in MR block. An assessment of yield sustainability under different crop seasonal rainfall situations indicated that FYM at 10 t ha?1 + 100% NPK was efficient in FYM block with a maximum Sustainability Yield Index (SYI) of 41.4% in <500 mm, 64.7% in 500–750 mm, 60.2% in 750–1000 mm and 60.4% in 1000–1250 mm rainfall, while MR at 5 t ha?1 + 100% NPK was efficient with SYI of 29.6% in <500 mm, 50.2% in 500–750 mm, 40.6% in 750–1000 mm, and 39.7% in 1000–1250 mm rainfall in semi-arid Alfisols. Thus, the results obtained from these long term studies incurring huge expenditure provide very good conjunctive nutrient use options with good conformity for different rainfall situations of rainfed semiarid tropical Alfisol soils for ensuring higher finger millet yield, maintaining higher SYI, and maintaining improved soil fertility.  相似文献   

6.
ABSTRACT

A meta-analysis of 297 treatment data from the Vezaiciai Branch of the Lithuanian Research Centre for Agriculture and Forestry long-term field experiment published from 2006 to 2015 was used to characterize the changes in SOC under different fertilization treatments and residue management practices in Lithuania’s acid soil. A meta-analysis was performed to quantify the relative annual change (RAC) of SOC content and the average RAC rate of SOC under four fertilization modes (farmyard manure (FYM) (40?t?ha?1)); alternative organic fertilizers (in the manure background (40?t?ha?1)); FYM (60?t?ha?1); alternative organic fertilizers (in the manure background (60?t?ha?1)) in two soil backgrounds (naturally acid and limed soil). The average RAC under four fertilization modes was 1.46 g?kg?1?yr?1, indicating that long-term fertilization had considerable SOC sequestration potential. Incorporation of alternative organic fertilizers in unlimed soil showed negative effects (?0.39 and ?0.66 g?kg?1?yr?1) in the observed long-term experiment. The RAC in the limed soil with incorporated organic fertilizers (FYM and alternative organic fertilizers), compared to the control, and varied from 0.25 g?kg?1?yr?1 in the treatment with incorporated alternative organic fertilizers (in the manure background (40?t?ha?1)) to 0.71 g?kg?1?yr?1 in the soil with FYM (60?t?ha?1). In this study, the average RAC rate of SOC under organic fertilization treatments in limed soil (5.07–6.54%) was longer than organic fertilization in unlimed soil (2.11–3.49%), which might be attributed to the application of organic manure that would result in a slow release of fertilizer efficiency. Our results indicate that the application of manure (40 or 60?t?ha?1) showed the greatest potential for C sequestration in agricultural soil and produced the longest SOC sequestration duration.  相似文献   

7.
In an ongoing field experiment, organic and conventional farming (control) were compared for onion bulb yield, biochemical quality, soil organic carbon (SOC), and microbial activity after the sixth cropping cycle. The treatments used for organic production were farmyard manure (FYM, 20,000 kg ha?1), poultry manure (PM, 10,000 kg ha?1), vermicompost (VC, 10,000 kg ha?1), neem cake (NC, 5000 kg ha?1), and a combination of FYM (5000 kg ha?1), PM (2500 kg ha?1), VC (2500 kg ha?1), and NC (1250 kg ha?1); all treatments were compared with the control. Organic treatments produced 24.6–43.6% lower yield consistently for 6 years than the control treatment. No significant difference was observed between PM, FYM, and VC treatments for the bulb yield. Bulb analysis during the sixth year indicated that plants that received FYM, PM, or VC had higher levels of total phenol, total flavonoid, ascorbic acid, and quercetin-3-glucoside than the control plants. All the five organically treated sets had significantly higher values of SOC, microbial population, fungal-to-bacterial ratio, and dehydrogenase activity than the control and the initial values in each treated set. The results indicate that FYM, PM, or VC application enhances biochemical quality and organic farming is more sustainable than conventional farming.  相似文献   

8.
A long-term (30 years) soybean–wheat experiment was conducted at Hawalbagh, Almora, India to study the effects of organic and inorganic sources of nutrients on grain yield trends of rainfed soybean (Glycine max)–wheat (Triticum aestivum) system and nutrient status (soil C, N, P and K) in a sandy loam soil (Typic Haplaquept). The unfertilized plot supported 0.56 Mg ha−1 of soybean yield and 0.71 Mg ha−1 of wheat yield (average yield of 30 years). Soybean responded to inorganic NPK application and the yield increased significantly to 0.87 Mg ha−1 with NPK. Maximum yields of soybean (2.84 Mg ha−1) and residual wheat (1.88 Mg ha−1) were obtained in the plots under NPK + farmyard manure (FYM) treatment, which were significantly higher than yields observed under other treatments. Soybean yields in the plots under the unfertilized and the inorganic fertilizer treatments decreased with time, whereas yields increased significantly in the plots under N + FYM and NPK + FYM treatments. At the end of 30 years, total soil organic C (SOC) and total N concentrations increased in all the treatments. Soils under NPK + FYM-treated plots contained higher SOC and total N by 89 and 58% in the 0–45 cm soil layer, respectively, over that of the initial status. Hence, the decline in yields might be due to decline in available P and K status of soil. Combined use of NPK and FYM increased SOC, oxidizable SOC, total N, total P, Olsen P, and ammonium acetate exchangeable K by 37.8, 42.0, 20.8, 30.2, 25.0, and 52.7%, respectively, at 0–45 cm soil layer compared to application of NPK through inorganic fertilizers. However, the soil profiles under all the treatments had a net loss of nonexchangeable K, ranging from 172 kg ha−1 under treatment NK to a maximum of 960 kg ha−1 under NPK + FYM after 30 years of cropping. Depletion of available P and K might have contributed to the soybean yield decline in treatments where manure was not applied. The study also showed that although the combined NPK and FYM application sustained long-term productivity of the soybean–wheat system, increased K input is required to maintain soil nonexchangeable K level.  相似文献   

9.
A field experiment was conducted during 2008 and 2009 at the Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India, to study the effect of organic sources of nutrient on yield, nutrient uptake, fertility status of soil, and quality of stevia crop in the western Himalayan region. The experiment comprised eight different combinations of organic manure [farmyard manure (FYM), vermicompost (VC), and apple pomace manure (AP)]. Total leaf dry biomass increased by 149% over the control with application of VC 1.5 t ha?1 + AP 5 t ha?1. Application of organic manures enhanced organic carbon and available nutrient status of soil more than the control. Nitrogen (N) and phosphorus (P) content in stem were significantly affected by the application of organic manures over the control. Stevia plants supplied with FYM 10 t ha?1 + AP 2.5 t ha?1 recorded more total glycoside than other treatments. Stevioside yield (kg ha?1) was greater with application of FYM 10 t ha?1 + AP 2.5 t ha?1.  相似文献   

10.
A field experiment was conducted during the summer season of 2009 and 2010 at Vivekananda Parvatiya Krishi Anusandhan Sansthan, Hawalbagh, Almora, Uttarakhand, under the mid-hills of north-western Himalaya, to study the effect of farmyard manure and fertilizers on fruit yield, economics, energetics of pepper (Capsicum annuum L.) and on soil chemical properties. The highest level of farmyard manure (20 t ha?1) along with 125% of recommended NPK (125, 27.5, and 52.1 kg N, P and K ha?1) resulted in significantly higher fruit yield (33.9 t ha?1) over other combinations. Both farmyard manure and inorganic fertilizers significantly increased fruits/plant, average fruit weight, plant height, fruit length, and fruit diameter. The maximum net returns (4520 $ ha?1) was achieved at 20 t of FYM along with 125% of recommended NPK. Energy ratio of 1.29 and 1.13 was the highest under 20 t FYM ha?1 and 125% of recommended NPK, respectively. Available nutrients (N, P, and K) improved the status of the soil significantly due to 20 t ha?1 of FYM and 125% of recommended NPK over other treatments.  相似文献   

11.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

12.
Field experiments were conducted to assess the effect of nutrients management practices on yield and rainwater use efficiency of green gram (Vigna radiata), and soil fertility under moist sub-humid Alfisols at Phulbani, India, during 2005–2008. Ten treatment combinations of lime @ 10% and 20% of lime requirement (LR) @ 8.3 t ha?1, farmyard manure (FYM) @ 5 t ha?1, green leaf manure @ 5 t ha?1, and nitrogen, phosphorus, and potassium (N–P–K) (20–40–20 kg ha?1) were tested. The analysis of variance indicated that treatments differed significantly from each other in influencing yield and rainwater use efficiency. Application of lime @ 20% LR + FYM @ 5 t/ha + 40 kg P + 20 kg K ha?1 was superior with maximum mean yield of 531 kg ha?1, while lime @ 10% LR + FYM @ 5 t ha?1 + 40 kg P + 20 kg K ha?1 was the second best with 405 kg ha?1 and maintained maximum soil fertility of nutrients. The superior treatment gave maximum sustainability yield index of 67.5%, rainwater use efficiency of 0.49 kg ha?1 mm?1, improved soil pH, electrical conductivity, and soil nutrients over years.  相似文献   

13.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

14.
The effect of medium-term (5 years) application of organic and inorganic sources of nutrients (as mineral or inorganic fertilizers) on soil organic carbon (SOC), SOC stock, carbon (C) build-up rate, microbial and enzyme activities in flooded rice soils was tested in west coast of India. Compared to the application of vermicompost, glyricidia (Glyricidia maculate) (fresh) and eupatorium (Chromolaena adenophorum) (fresh) and dhaincha (Sesbania rostrata) (fresh), the application of farmyard manure (FYM) and combined application of paddy straw (dry) and water hyacinth (PsWh) (fresh) improved the SOC content significantly (p < 0.05). The lowest (p < 0.05) SOC content (0.81%) was observed in untreated control. The highest (p < 0.05) SOC stock (23.7 Mg C ha?1) was observed in FYM-treated plots followed by recommended dose of mineral fertilizer (RDF) (23.2 Mg C ha?1) and it was lowest (16.5 Mg C ha?1) in untreated control. Soil microbial biomass carbon (Cmb) (246 µg g?1 soil) and Cmb/SOC (1.92%) were highest (p < 0.05) in FYM-treated plot. The highest (p < 0.05) value of metabolic quotient (qCO2) was recorded under RDF (19.7 µg CO2-C g?1 Cmb h?1) and untreated control (19.6 µg CO2-C g?1 Cmb h?1). Application of organic and inorganic sources of nutrients impacted soil enzyme activities significantly (p < 0.05) with FYM causing highest dehydrogenase (20.5 µg TPF g?1 day?1), phosphatase (659 µg PNP g?1 h?1) and urease (0.29 µg urea g?1 h?1) activities. Application of organic source of nutrients especially FYM improved the microbial and enzyme activities in flooded and transplanted rice soils. Although the grain yield was higher with the application of RDF, but the use of FYM as an organic agricultural practice is more useful when efforts are intended to conserve more SOC and improved microbial activity.  相似文献   

15.
A field experiment was conducted for two crop cycles during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow in subtropical India. Trichoderma viride and Gluconacetobacter diazotrophicus amended farm yard manure (FYM) increased organic carbon (19.44 Mg ha−1) and available nitrogen (260 kg N ha−1) content of soil from 14.78 Mg ha−1 (OC) and 204 kg N ha−1 observed under farmer's practice (sole N application). Application of bioagents amended FYM improved soil porosity and reduced compaction (bulk density—1.39 Mg m−3 over 1.48 Mg m−3 under farmer's practice). Sugarcane ratoon crop removed the highest amount of nitrogen (N—165.7 kg ha−1), phosphorus (P—24.01 kg ha−1) and potassium (K—200.5 kg ha−1) in the plots receiving FYM with Trichoderma and Gluconacetobacter. Inoculation of FYM with bioagents improved population of ammonifying and nitrifying bacteria in the soil. Phosphorus and potassium uptake of the crop was greatest in the plots receiving FYM, Trichoderma and Gluconacetobacter. Bioagents (Trichoderma and Gluconacetobacter) amended FYM increased ratoon cane (70.2 Mg ha−1) and sugar yields (7.93 Mg ha−1) compared with control (62.3 and 7.06 Mg ha−1 ratoon cane and sugar yields, respectively).  相似文献   

16.
The effects of integrated nitrogen management (INM) on saffron yield, corm production, nutrient concentration, crocin content, and soil health were studied in field experiments at the Dryland (Karewa) Agriculture Research Station, Budgam District of Kashmir Himalayas, India, during 2006–2010. The levels of fertilizers applied were 0, 45, and 90 kg ha?1 of nitrogen; 0, 30, and 60 t ha?1 of farm yard manure (FYM), and 0 and 5 kg ha ?1 of Azotobacter in solid form. The greatest yields of 3.64 and 3.51 kg ha?1 were observed when nitrogen was applied at 90 kg ha?1 and FYM was applied at 60 t ha?1. The increases over the controls (2.31 and 2.45 kg ha?1) were 57.57% and 43.26%, respectively. The maximum corm productions (10.26 and 13.10 t ha?1) were observed with the application of nitrogen at 90 kg ha?1 and FYM at 60 t ha?1 respectively, with the corresponding increases of 79.62% and 260.97% over their respective controls. Biofertilizer application in the form of viable strain of Azotobacter significantly increased the corm production only. The influence of INM on nutrient and crocin content of saffron and soil health was also found to be sustainable over nonapplication of organic and inorganic fertilizers.  相似文献   

17.
Enrichment of soil organic carbon (SOC) stocks through sequestration of atmospheric CO2 in agricultural soils is important because of its impacts on adaptation to and mitigation of climate change while also improving crop productivity and sustainability. In a long‐term fertility experiment carried out over 27 y under semiarid climatic condition, we evaluated the impact of crop‐residue C inputs through rainfed fingermillet (Eleusine coracana [L.] Gaertn.) cropping, fertilization, and manuring on crop yield sustainability and SOC sequestration in a Alfisol soil profile up to a depth of 1 m and also derived the critical value of C inputs for maintenance of SOC. Five treatments, viz., control, farmyard manure (FYM) 10 Mg ha–1, recommended dose of NPK (50 : 50 : 25 kg N, P2O5, K2O ha–1), FYM 10 Mg ha–1 + 50% recommended dose of NPK, and FYM 10 Mg ha–1 + 100% recommended dose of NPK imposed in a randomized block design replicated four times. Application of FYM alone or together with mineral fertilizer resulted in a higher C input and consequently built up a higher C stock. After 27 y, higher profile SOC stock (85.7 Mg ha–1), C build up (35.0%), and C sequestration (15.4 Mg C ha–1) was observed with the application of 10 Mg FYM ha–1 along with recommended dose of mineral fertilizer and these were positively correlated with cumulative C input and well reflected in sustainable yield index (SYI). For sustenance of SOC level (zero change due to cropping) a minimum quantity of 1.13 Mg C is required to be added per hectare per annum as inputs. While the control lost C, the application of mineral fertilizer served to maintain the priori C stock. Thus, the application of FYM increased the C stock, an effect which was even enhanced by additional amendment of mineral fertilizer. We conclude that organic amendments contribute to C sequestration counteracting climate change and at the same time improve soil fertility in the semiarid regions of India resulting in higher and more stable yields.  相似文献   

18.
A field experiment was conducted during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow, India to study the effect of Trichoderma viride inoculation in ratoon sugarcane with three trash management practices, i.e. trash mulching, trash burning and trash removal. Trichoderma inoculation with trash mulch increased soil organic carbon and phosphorus (P) content by 5.08 Mg ha−1 and 11.7 kg ha−1 over their initial contents of 15.75 Mg ha−1 and 12.5 kg ha−1, respectively. Soil compaction evaluated as bulk density in 0- to 15-cm soil layer, increased from 1.48 Mg m−3 at ratoon initiation (in April) to 1.53 Mg m−3 at harvest (in December) due to trash burning and from 1.42 Mg m−3 at ratoon initiation (in April) to 1.48 Mg m−3 at harvest (in December) due to trash mulching. The soil basal respiration was the highest during tillering phase and then decreased gradually, thereafter with the advancement of crop growth. On an average, at all the stages of crop growth, Trichoderma inoculation increased the soil basal respiration over no inoculation. Soil microbial biomass increased in all plots except in the plots of trash burning/removal without Trichoderma inoculation. The maximum increase (40 mg C kg−1 soil) in soil microbial biomass C, however, was observed in the plots of trash mulch with Trichoderma inoculation treatment which also recorded the highest uptake of nutrient and cane yield. On an average, Trichoderma inoculation with trash mulch increased N, P and K uptake by 15.9, 4.68 and 23.6 kg ha−1, respectively, over uninoculated condition. The cane yield was increased by 12.8 Mg ha−1 with trash mulch + Trichoderma over trash removal without Trichoderma. Upon degradation, trash mulch served as a source of energy for enhanced multiplication of soil bacteria and fungi and provided suitable niche for plant–microbe interaction.  相似文献   

19.
Information on the combined use of organic and inorganic fertilizers on wheat (Triticum aestivum L.) productivity is lacking under moisture stress conditions of Northwest Pakistan. The present experiment was designed to ascertain the combined effect of organic and inorganic fertilizer management on rainfed wheat. Four levels of farm yard manure, FYM, (0, 10, 20, and 30 Mg FYM ha?1) and nitrogen (0, 30, 60, 90, and 120 kg N ha?1) were used. The experiment was conducted at the Agriculture Research Farm of NWFP Agricultural University Peshawar, Pakistan during crop season of 2003–04. The experiment was laid out in randomized complete block design with four replications. Plant height, productive tillers m?2, grains spike?1, grain yield, straw yield, and harvest index were significantly higher in plots which received 30 Mg FYM ha?1. In the case of nitrogen (N) no distinctive differences between the effect of 90 and 120 kg ha?1 was observed for most of the parameters. Nitrogen application at 90 kg ha?1 had significantly higher; plant height, grains spike?1, grain yield, straw yield, and harvest index as compared with the lower levels, i.e., 0, 30, and 60 kg N ha?1 but were at par with 120 N kg ha?1. Significantly higher numbers of productive tillers m?2, grains spike?1, grain yield, straw yield and harvest index were recorded with application of 30 Mg FYM ha?1 + 90 kg N ha?1. The present study suggested that application of 30 Mg FYM ha?1 + 90 kg N ha?1 are promising levels for higher production of wheat under moisture stress conditions. Further research work is needed to ascertain the effect of N above 90 kg ha?1 under different moisture regimes.  相似文献   

20.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号