首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sorption of Cd at low concentrations onto two Danish soils (loamy sand, sandy loam) was examined in terms of kinetics and governing factors. From an environmental point of view soil sorption of Cd is a fast process: More than 95% of the sorption takes place within 10 min, equilibrium is reached in 1 hr, and exposures up to 67 wk did not reveal any long term changes in Cd sorption capacities. The soils have very high affinity for Cd at pH = 6.00 (10?3 M CaCl2) exhibiting distribution coefficients in the order of 200 to 250 (soil Cd concentration/solute Cd concentration). However, the sorption isotherms describing the distribution of Cd between soil and solute are slightly curvelinear. In the pH-interval 4 to 7.7, the sorption capacity of the soil approximately increases 3 times for a pH increase of one unit. Increasing the Ca concentration from 10?3 to 10?2 M reduces the sorption capacity of the sandy loam to one third.  相似文献   

2.
Zeolites with high porous and cation exchange capacity have been widely used for agricultural and environmental purposes. This study was conducted to assess the thermodynamics and sorption characteristics of chemically modified zeolite (CMZ) from obtained natural zeolite (NZ), and to compare its properties. At first step of the sorption experiment, effects of pH, slurry concentration, stirring time, and heat on Zn removal were determined. Linear Langmuir isotherm was well fitted to data, and maximum sorption capacities (q max) were calculated as 20.87 and 33.44 mg/g for NZ and CMZ, respectively. Dubinin-Redushkevich (D-R) isotherm showed that the adsorption process was probably controlled by chemical ion-exchange mechanism. The solubility of zinc DTPA should be so directly related to the model of D-R model. Therefore, zeolites can be used as carrier Zn in soils with insufficient zinc arid and semiarid regions. Enthalpy (ΔH°) and entropy (ΔS°) values were positive. The change values of Gibbs free energy (ΔG°) illustrated that the sorption of Zn ions onto zeolites was feasible and spontaneous. From the obtained results, it could be concluded that chemical modification increased q max value of NZ, and the findings indicate clearly the possibility of using NZ and CMZ as Zn carrier in agricultural and also environmental treatments.  相似文献   

3.
Abstract

In this study the influence of zeolite application and soil liming on cadmium (Cd) sorption by soils in Greece was investigated. The zeolite was natural and consisted mainly of clinoptilolite. The soil samples were strongly acid surface horizons of an Alfisol limed from a pH of 4.0 to 8.5, and a neutral Bt horizon. The result showed that liming and zeolite application substantially increased sorption of Cd in the soils. Cadmium sorption was described adequately by the Freundlich equation whereas the Langmuir model failed to describe Cd sorption in the soils. The Freundlich constant K increased in value by zeolite application as well as by soil liming. A strong relationship was observed between this parameter and soil pH. A high percentage of cadmium sorbed was released in the desorption procedure. The amount of Cd released was reduced by zeolite application as well as by soil liming. It is concluded that zeolite application as well as soil liming increased Cd sorption by the soils.  相似文献   

4.
Abstract

The study aims at determining the cobalt retention properties of various soil components. Therefore, cobalt (Co) sorptions and extractions were carried out using an Oxisol sample before (untreated) and after successive removal of organic matter and active manganese (Mn) oxides (H2O2‐treated) and iron (Fe) oxides (H2O2+CBD‐treated). A synthetic goethite was included for comparison. Sorption of the four sorbents was determined over a range of Co concentrations (initially 10‐8 M to 10‐4 M), pH values (3 to 8) and reaction times (2 hours to 504 hours). The Co species sorbed was Co(ll), since oxygen exclusion during sorption had no effect on the amount sorbed. The pH‐dependent sorption curve (sorption edge) was shifted to lower pH at decreasing initial Co concentration and increasing reaction time. The displacements, in particular of the sorption edges corresponding to the lowest initial Co concentrations, to successively higher pH following removal of Mn oxides, organic matter and Fe oxides could be attributed to sorption onto sites of decreasing Co affinity [Mn oxides (and organic matter) > Fe oxides > kaolinite]. Extractions of sorbed Co at pH 5.5–7.5 with 2 M HCI showed that the extractability decreased with increasing sorption time and decreasing initial Co concentration. The untreated and H2O2‐treated soil samples retained sorbed Co at least as firmly as the synthetic goethite, whereas the H2O2+CBD‐treated sample (kaolinite) was clearly less effective. The results emphasized the importance of the soil Mn and Fe oxides for Co retention in soils but also the necessity of taken interior sorption sites into consideration.  相似文献   

5.
Chen  Yiqin  Yu  Wenjian  Jin  Ling  Wang  Qian  Yin  Jie  Lin  Jianwei  Li  Juan-Ying 《Journal of Soils and Sediments》2019,19(12):3898-3907
Purpose

As natural zeolites have been widely used as cost-effective adsorbents for plant nutrients and heavy metals in sediments, it is worthwhile to verify the potential of natural zeolites for mixed-contaminant stabilization including hydrophobic organic contaminants (HOCs). The effectiveness of natural zeolite amendment in sediment on reducing the bioaccumulation of sediment-associated HOCs in V. philippinaram (Cb) was assessed. Then, the role of sediment pore water freely dissolved HOCs (Cfree) in Cb prediction was further identified and modeled.

Materials and methods

In this study, a bioavailability-based assessment of the HOC-stabilization efficacy of natural zeolites in maricultural sediments was performed using equilibrium passive sampling. V. philippinaram was adopted as a biological indicator for HOC bioaccumulation. Polydimethylsiloxane (PDMS) was used as a passive sampler for monitoring the concentration of the Cfree. The assumption that Cfree is a central mediator driving the bioaccumulation process of HOCs from the bulk sediment to the exposed organisms was validated by correlating the reductions in Cb and Cfree of the sediments amended with natural zeolites. Subsequently, a model based on this assumption was built and verified for the bioavailability-based assessment of the stabilization efficacy of natural zeolite amendment on sediment-associated HOCs.

Results and discussion

The results showed the bioaccumulations of four kinds of HOCs (including polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, pyrethroids, and organochlorine pesticides) in V. philippinaram were reduced by 7.3–38% after the natural zeolite amendment (10% dry weight in sediments), and the Cfree values measured with PDMS were reduced proportionally. It supported the assumption that Cfree is a central mediator driving the bioaccumulation process of HOCs. Kow of HOCs and two properties of sediment were found to be significantly correlated with the reductions of the Cfree values. Based on these findings, a model to predict the Cb values of PAHs and PBDEs in V. philippinaram was built. The model was then verified by a significant correlation between the predicted and measured values of Cb.

Conclusions

The potential of natural zeolites for the stabilization of mixed-contaminants in sediments, including HOCs, was proved as notable reductions of Cb and Cfree of HOCs in the sediments amended by natural zeolite were observed. The results also suggested PDMS is a promising tool for predicting the bioaccumulation of sediment-associated HOCs in V. philippinaram and further for assessing the stabilization efficacy of natural zeolites in maricultural sediments. Modifying natural zeolites to further improve the effectiveness of HOC stabilization is warranted.

  相似文献   

6.
Abstract

Cadmium in solution culture at 10‐4 M decreased Mn concentrations in bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) at both low and high concentrations of Mn (noncompetitive inhibition). When Mn was decreased, the concentrations of Fe and several other ions were simultaneously increased, particularly in leaves and roots. Toxicity due to the 10‐6 M Cd and the 10‐4 M Mn was additive in the experiment. When barley (Hordeum vulgare L. Atlas57)was grown in amended soil, 15μg Fe as DTPA (diethylene triamine pentaacetic acid) per g soil resulted in increased uptake of Cd and in somewhat greater yield depression for soil pH of 3.9, 6. 0, and 7.6. Acidification of soil without DTPA also increased Cd uptake to high levels with associated yield decrease. The Cd decreased the uptake of Mn and Cu most when CaCO3 had also been added to the soil. When salts were added to soil with Cd before bush beans were grown, KCl (200 μg K/g soil), and equivalent KH2PO4 increased Cd concentrations of leaves while CaSO4 and KCl did so for roots. In bush beans with different levels of Cd and Zn, there were no yield interactions, but some interactions of Cd on Zn concentrations in leaves, stems, and roots at the high Zn level.  相似文献   

7.
Extraction of soil with CaCl2, has been recommended as a measure of bioavailability of heavy metals. Interpretation of soil extraction data in terms of plant uptake potential may improve when the chemical behaviour of heavy metals in these extracts is ascertained. The effect of pH, Cd complexation by Cl, and competition between Cd and Ca on Cd sorption was studied at an ionic strength of 0.03 m . Sorption of cadmium was measured in 0.01 m CaCl2, in 0.01 m Ca(NO3)2, in a mixture of 0.02 m NaCl and 0.01 m NaNO3, and in 0.03 m NaNO3, at different values of pH ranging from 3.8 to 4.9. Adsorption isotherms were all linear, with a negative intercept on the y-axis. This intercept indicated (linear) desorption of only part of the initial soil Cd content. About 50% of the Cd in solution was complexed in the presence of 0.02 m Cl at ionic strength of 0.03. Due to competition between Cd and Ca, sorption of Cd was reduced by 80% in the Ca-electrolytes as compared with the Na-electrolytes. Sorption was highly sensitive to pH as each 0.5 unit increase in pH resulted in twice as much sorption of Cd. An empirical factor in the sorption equation that accounts for this effect of pH showed a similar response to changes in pH as a mechanistic factor. This mechanistic factor was developed by assuming that Cd and protons sorb onto the same sites and that a two-site Langmuir sorption isotherm for protons was able to describe the titration curve of the soil. This similarity may explain the successful application of the empirical factor in this and previous studies.  相似文献   

8.
In vegetative filter strips used to intercept pesticides present in run‐off, particulate organic matter derived from the vegetation plays an important function in pesticide sorption processes, because it accumulates at the soil surface and quickly responds to changes in land use. Two herbicides with contrasted properties: isoproturon, moderately hydrophobic (log Kow= 2.5), diflufenican, strongly hydrophobic (log Kow= 4.9), and isopropylaniline, a metabolite of isoproturon, were used to characterize the sorption and desorption properties of POM originating from soils under three different land uses: a cropped plot under conventional wheat/maize rotation, an adjacent 10‐year‐old grassed strip and a nearby 80‐year‐old oak/chestnut forest. Chemical structural composition information obtained from solid‐state 13C CPMAS NMR and estimation of hydrophobicity from contact angle measurements were used to explain the different sorption capacities of POM according to their size and origins. Sorption of isoproturon and diflufenican increased with hydrophobicity of POM, which was greater in the forest soil. Aromaticity of POM was positively correlated to sorption coefficients (Koc). Desorption of the more hydrophobic compounds, diflufenican and isopropylaniline was weak for all POM fractions, regardless of their origin and size. On the other hand, desorption of isoproturon depended on land use and POM characteristics. The sorption capacities of POM were not only controlled by their chemical composition, but also by their size, due to a greater number of sorptive sites related to a greater surface area with decreasing particle‐size.  相似文献   

9.
Cadmium sorption and desorption behaviour of hydroxy-Alinterlayered montmorillonite (pillared) was compared with unpillared montmorillonite. Characteristic properties of themontmorillonite, whose interlayer cations were replaced byhydroxy-Al polymers, are its thermal stability up to ~500 °C and increased surface area of about 300 × 103 m2 kg-1. The cation exchange capacity was reduced by ~30% after interlayering withpositively charged hydroxy-Al polymers.Cadmium sorption data for the two montmorillonites fitted verywell (R2 = 0.98 to 0.99) to the Freundlich equation. Inthe concentration range (0.89–17.79 μM Cd L-1) used for the experiment, the unpillared montmorillonite sorbed moreCd than the pillared montmorillonite. Cadmium is possibly retained by electrostatic and chemisorption mechanisms by thepillared montmorillonite whereas electrostatic attraction ismainly responsible for Cd sorption by unpillared montmorillonite. After 5 extractions with 0.01 M NaNO3the amount of Cd desorbed varied between 30–47 and 34–59% for unpillared and pillared montmorillonites, respectively. At lower concentrations of initially sorbed Cd, the amount ofCd desorbed was nearly equal for the two samples.  相似文献   

10.
Abstract

Two cultivars of cotton (Gossypium spp.) were grown in solution culture in a glasshouse to determine phytotoxicity effects of excesses of Ni and Cd. Leaf yield was depressed 94% by 10‐4 M NiSO4(with 198μg Ni/g leaf) in Acala SJ‐2 and 93% (with 167μg Ni/g) in Plma PS‐5. The Ni gradient was roots > stems > leaves in both cultivars. At 10‐5 M, CdSO4 gave more phytotoxicity than NiSO4. The 10‐4 M CdSO4 resulted in about the same amount of phytotoxicity as did the Ni for both cultivars. The Pima PS‐5 plant parts, however, contained less Cd than did the Acala SJ‐2 at the highest Cd concentration. At 10‐5 M CdSO4 the reverse held in leaves and stems. Interactions held for both metals but the inverse effect between Cd and Mn was less pronounced than for other species. Many other interactions were present.  相似文献   

11.
《Geoderma》2007,137(3-4):388-393
In recent years, natural substances such as zeolite have been used to absorb heavy metals in soil in an attempt to decrease their availability to plants. Compared to other techniques, the use of zeolite is fast, clean, and inexpensive. This research was carried out to investigate the effects of an Iranian natural zeolite (clinoptilolite) on stabilizing Cd-contaminated soil treated with 0.01 M CaCl2 leaching solution. Zeolite from Firoozkouh (Tehran Province) was added to four soils from Gilan province, northern Iran. The stabilization of Cd in soils mixed with zeolite was measured in both column and batch experiments. The results from the batch experiment showed that application of zeolite to soil reduced Cd leaching in all the contaminated soils. When more zeolite was added to soil, lower Cd concentrations were detected in the leaching solution. When 15% zeolite was applied, Cd concentration in the leachate decreased to below 0.1 mg l 1. Cadmium depth analysis showed little migration of Cd in sand and clay textures with no zeolite addition and after adding 15 and 75 pore volumes of leaching solution, the remaining Cd levels were 12% and 35% of the original Cd concentration, respectively. However, these values for 9% zeolite treatments were 97% and 99%, respectively. The higher cation exchange capacity of the zeolite/soil mixture and the higher pH levels were responsible for stabilizing Cd in these soils. The effect of preventing heavy metals from leaching was found to be more pronounced when zeolite was applied to clay soils.  相似文献   

12.

Purpose

Many amendments have been applied to immobilize heavy metals in soil. However, little information is available on the changes of immobilization efficiencies of heavy metals in contaminated soils over time. This work investigated the immobilization efficiencies of copper (Cu) and cadmium (Cd) in contaminated soils in situ remediated with one-time application of three amendments for 1 year and 4 years.

Materials and methods

Apatite, lime, and charcoal were mixed with the topsoil of each plot with the amounts of 22.3, 4.45, and 66.8 t/ha, respectively. Soil chemical properties and fractions of Cu and Cd were examined after in situ remediation for 1 year and 4 years. Soil sorption and retention capacities and desorption proportions for Cu and Cd were investigated by batch experiments.

Results and discussion

The addition of amendments significantly increased soil pH, but decreased exchange acid and aluminum (Al). The amendments significantly decreased the CaCl2 extractable Cu and Cd and transformed them from active to inactive fractions. After the application of amendments for 1 year, the maximum sorption capacities ranged from 35.6 to 38.8 mmol/kg for Cu and from 14.4 to 17.0 mmol/kg for Cd, which were markedly higher than those of the application of amendments for 4 years (Cu, 29.6–34.7 mmol/kg; Cd, 10.9–16.4 mmol/kg). Desorption proportions (D) of Cu and Cd using three extractants followed the order of \( {D}_{{\mathrm{NaNO}}_3}<{D}_{{\mathrm{CaCI}}_2}<{D}_{{\mathrm{MgCI}}_2} \) . Moreover, the retention capacities (R) of Cu and Cd both increased and followed the order of R apatite?>?R lime?>?R charcoal, resulting in higher Cu and Cd in the amended soils than the untreated soil.

Conclusions

Apatite, lime, and charcoal increased the soil sorption and retention capacities of Cu and Cd and resulted in higher immobilization efficiencies in the amended soils than the untreated soil. However, the immobilization efficiencies of Cu and Cd decreased with the decrease of sorption capacities after 4 years. It was concluded that apatite had the best effect on the long-term stability of immobilized Cu and Cd and can be applied to immobilize heavy metals in contaminated soils.  相似文献   

13.
Purpose

The use of eco-friendly and cost-effective adsorbent materials in the remediation of soils contaminated by potentially toxic elements (PTE) is a sustainable way of reducing the transfer of these elements into the food chain. However, an evaluation of the potential of natural zeolites to immobilize toxic elements in contaminated soils was required to enable their efficient use.

Materials and methods

The effect of natural zeolite (Stilbite-Stellerite) from the Munella area (Northern Albania), added at rates ranging from 1.25 to 10 % w/w on a contaminated soil was investigated in a greenhouse pot experiment with ryegrass (Lolium multiflorum L.) and by selective extractions. PTE availability for plants was assessed either as their accumulation in plant tissue or by DTPA-extraction. Oral bio-accessibility was estimated by the in vitro PBET method and the mobility and consequent potential risk of leaching by the USEPA TLCP method. The effect of zeolites on soil properties (pH, electrical conductivity-EC, organic C, and total N) was also investigated. A five steps sequential extraction procedure (SEP) was applied to investigate the immobilization mechanism.

Results and discussion

The addition of 2.5% w/w of natural zeolites caused a significant decrease of PTE mobility, but to observe a significant reduction of DTPA-extractable metals, it was necessary to reach 10% addition rate. In contrast, plant growth showed a gradual increase with addition rate and a corresponding decrease of concentration of PTE in plant tissue. Correlation between DTPA-extractable PTE and their concentration in both root and shoot plant tissue was rather poor. Human hazard due to soil ingestion (PBET method) changed only for Cu and Zn in the gastric phase with 1.25 and 5% addition rate respectively, whereas decreased for Cu and Zn at 5% rate in the Intestinal phase. The results of SEP support the hypothesis that the main mechanism involved in metals fixation are as follows: (1) insolubilization by pH rise, (2) adsorption on Fe/Mn oxides (3) increase of cation exchange retention, (4) organic complexation.

Conclusions

The results of this work suggest that the addition of natural zeolites from the Munella area (AL) is a sustainable practice to reduce the environmental impact of PTE contaminated soils, but an assessment on the longevity of their immobilization need to be evaluated in the long-term perspectives.

  相似文献   

14.
Cd sorption isotherms (n = 24) were established for arable, sandy soils of the ‘Fuhrberger Feld’ catchment area northeast of Hannover (Germany) using 0.01 Mc Ca(NO3)2 solution with Cd additions ranging from 0 to 44 μMc Cd. Alternative fractions of initially (prior to analysis) sorbed Cd (S0) were added to the amount sorbed during the experiments. The Freundlich equation was fitted to the resulting isotherms. The obtained retention parameters k and M varied with respect to the different S0 fractions. Isotherms corrected with CdEDTA as S0 fraction were nonlinear in their log-form. The highest degree of log-linearity is obtained if S0 is characterized by 40% of the agua regia extractable Cd. The corresponding k values ranged from 36 to 1275 g1-M LM kg?1 (mean 338 g1-M LM kg?1, cv = 92%). The Freundlich exponent M showed less variation (0.7 to 1.1, cv = 12%) with a mean of 0.88. Functions based on these parameters predicted Cd concentrations in Ca(NO3)2?soil suspensions well (r2 = 0.96) but were hardly related to Cd concentrations of ‘fresh’ soil solutions (r2 = 0.20).  相似文献   

15.
Batch adsorption experiments were conducted to assess the effects of pH and ionic strength (I) on cadmium (Cd) adsorption by two Brazilian Oxisols. Adsorption envelopes were constructed through soil sample reactions with 0.01, 0.1, and 1 mol L?1 calcium nitrate [Ca(NO3)2] solutions containing 5 mg L?1 of Cd, with an increasing pH value from 3 to 8. The adsorption increased drastically with increasing pH, varying from 20 to 90% in a narrow pH range (4–6 in topsoil and 5–6 in subsoil). Gibbs energy (ΔG) for Cd adsorption was negative, and the phenomenon became more thermodynamically spontaneous with an increase in pH. Under the standard 0.01 mol L?1 I and at pH close to natural, the ΔG values ranged from ?796 to ?3427 J mol?1. No effect of I was observed on the ΔG values for Cd adsorption at pH values less than 6. At values greater than pH 6, sharp changes in the Cd adsorption pattern were observed on subsoil samples. The only soil attribute significantly correlated with the spontaneity of Cd adsorption was the effective cation exchange capacity, ECEC (r = 0.97; p < 0.1).  相似文献   

16.
The effects of Ca competition, ionic strength, inorganic complexation and pH on cadmium adsorption by a sandy soil were studied. Sorption of Cd was measured using four different electrolytes CaCl2, Ca(NO3)2, NaNO3 and NaCl at a constant ionic strength (I) of 0.003 M at three different pHs, at variable Ca/Na ratio with a constant ionic strength of 0.03 and at variable ionic strengths between 0.003 and 0.3 M for two different pHs for Ca(NO3)2 and NaNO3. The measured Cd sorption isotherms were non-linear. In the case of Cl as electrolyte anion, 13% of the Cd in solution is complexed at I= 0.003 (0.002 M Cl) and 91% of Cd is complexed at I= 0.3 (0.2 M Cl). If NO3 is the anion, none of Cd is complexed at I= 0.003 and 11% at I= 0.3. The Cd complexes do not adsorb significantly. Calcium competition, at an ionic strength of 0.03, reduced the Cd adsorption by 60–80% compared with the case that Na is the cation. Increasing the ionic strength from 0.003 to 0.3 decreased Cd sorption by 60% for Ca(NO3)2 and 25% for NaNO3 due to a decrease of the activity coefficient, increase of inorganic complexation and increase of Ca competition. A decrease of one pH unit reduces Cd sorption of about 75%. Sorption of Cd by soil could be described adequately with the three-species Freundlich (3SF) equation in which pH, complexation, Ca competition and ionic strength effects were taken into account.  相似文献   

17.
This work is the first of several projects concerned with the study of higher-affinity reactions of Cd, Zn and Ni ions with soil clay fractions. Procedures for the separation of sorbed metals into fractions of lower and higher affinity for soil surfaces are described and evaluated.Various concentrations of Cd, Zn and Ni were allowed to react in the presence of 0.01 M Ca(NO3)2 with soil clays for 1 week after stabilization of suspension pH. The adsorbed metals were partitioned by a brief extraction with 0.01 M Ca(NO3)2 and the resultant fractions, called specifically and non-specifically sorbed metals, were measured by radioisotopic procedures.Measured separation factors showed that the fraction of sorbed metals that was desorbed by a rapid Ca(NO3)2 extraction still had a preference, sometimes marked, over Ca on the soil clay fraction. Separation of fractions of sorbed metals on the basis of affinity was reproducible, but the boundary conditions defined by separation factors vary appreciably between adsorbents, with values in the range 3–20 for amounts sorbed equivalent to ≦ 0.05% of cation exchange capacity and for pH values < 7.The proportions of Cd, Zn and Ni bound at high-affinity sites were strongly dependent on experimental conditions of pH, equilibrium time and surface saturation in relation to each soil clay. Hence, comparisons of affinities of trace metals for soils by reliance on measures of total sorption only, without assessing the contribution of lower-affinity forms, may prejudice conclusions and predictions arising from studies of the possible retention of metal pollutants in soils and fixation of micronutrients from fertilizers.  相似文献   

18.
Abstract

The objective of this study was to determine the effect of clearing and cultivation on the sorption of cadmium (Cd) by two acid soils from Zimbabwe with differing cultivation stories. In their original state, not cleared‐not cultivated (virgin soils), the two soils exhibited noticeable and similar capacities to sorb Cd. The Mazowe soil contains the highest level of organic matter (40 g kg‐1) and a effective cation exchange capacity (ECEC) of 144 mmolc kg‐1. Yet, Bulawayo soil (23.5 g kg‐1 organic matter and ECEC of 146 mmolc kg‐1) has higher pH and Mn and Fe oxide content and these characteristics seemed to counteract the effect of lower organic matter. After 50 years of cultivation, The Mazowe soil has lost 60% of its organic matter and ECEC, and consequently the ability of its soil matrix to bind Cd has proportionally decreased. In Bulawayo (cleared in 1983 and first ploughed in 1984), on the contrary, the organic matter and ECEC of the cultivated soil remains over 95% of the values on its virgin counterpart. In this soil, the retaining ability for Cd has not still been affected. In the two soils Cd sorption was highly pH‐dependent. The extent of sorption was minimal under acidic conditions and increased sharply as the pH was raised. The immediate reversibility of the sorption process proved to be very low. When sorption and desorption data were compared it was clear that soil characteristics like high organic matter and oxide content which showed to enhanced Cd sorption, contributed at the same time to slow down the backward reaction.  相似文献   

19.
This study investigated the effect of different farming practices over long time periods on the sorption‐desorption behavior of Cu, Cd, and Zn in soils. Various amendments in a long‐term field experiment over 44 y altered the chemical and physical properties of the soil. Adsorption isotherms obtained from batch sorption experiments with Cu, Cd, and Zn were well described by Freundlich equations for adsorption and desorption. The data showed that Cu was adsorbed in high amounts, followed by Zn and Cd. In most treatments, Cd ions were more weakly sorbed than Cu or Zn. Generally, adsorption coefficients KF increased among the investigated farming practices in the following order: sewage sludge ≤ fallow < inorganic fertilizer without N ≈ green manure < peat < Ca(NO3)2 < animal manure ≤ grassland/extensive pasture. The impact of different soil management on the sorption properties of agricultural soils for trace metals was quantified. Results demonstrated that the soil pH was the main factor controlling the behavior of heavy metals in soil altered through management. Furthermore, the constants KF and n of isotherms obtained from the experiments significantly correlated with the amount of solid and water‐soluble organic carbon (WSOC) in the soils. Higher soil pH and higher contents of soil organic carbon led to higher adsorption. Carboxyl and carbonyl groups as well as WSOC significantly influenced the sorption behavior of heavy metals in soils with similar mineral soil constituents.  相似文献   

20.
The objective of this study was to investigate sorption, desorption, and immobilization of Pb in the clay and calcareous loamy sand soils treated with inorganic ligands (NO3?, Cl? and H2PO4?). Pb sorption was also determined in the presence of oxalate and citrate. The maximum Pb sorption capacities (q) ranged from 42.2 to 47.1 mmol kg?1 for the clay soil, and from 45.2 to 47.0 mmol kg?1 for loamy sand soil. It was observed that the binding energy constant (k) for Pb sorbed onto loamy sand soil (528–1061) is higher than that for clay soil (24.38–55.29). The loamy sand soil-sorbed greater quantities of Pb compared to the clay soil when initial pH was ≥ 3. However, it had lower sorption capacity at the lowest initial pH of 2. Additionally, the greatest Pb sorption and immobilization occurred in the soil treated with H2PO4. In the clay soil, the sorption of Pb was depressed at 0.1 mol kg?1 of Cl?, as compared with other ligands. Concerning organic acids, citrate ligand showed the highest decrease in Pb sorption. It could be concluded that the nature of Pb sorption can depend on the type and quantity of ligands present, as well as the soil type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号