首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cadmium is both readily available and highly toxic to plants and animals. Our objectives were to evaluate the effect of oyster shell as a liming material on reducing plant cadmium (Cd) uptake and to compare oyster shell and Ca(OH)2, a common liming material in Korea. Ground oyster shell and Ca(OH)2 were applied at 0, 2, 4, and 8 Mg Ca per hectare to an upland soil contaminated manually with CdSO4 (total Cd 8.96 mg kg?1). Radish (Raphanus sativa L.) was sown on the contaminated soil. Oyster shell was less effective at increasing soil pH and net negative charge than Ca(OH)2, but more effective at suppressing radish Cd uptake in both roots and shoots. The portion of Cd that is strongly bound to soil (fraction 5) increased more with oyster shell than with Ca(OH)2. Radish plant Cd concentration was positively correlated with 0.1 N HCl-extractable Cd and negatively correlated with the residual Cd fraction (F5), indicating that an increase in the strongly bound Cd fraction played an important role in reducing radish Cd uptake in soil to which oyster shell was applied. The greater potential of oyster shell to decrease Cd extractability in soil and plant Cd uptake compared to Ca(OH)2 might be attributed to the layered morphology of oyster shells. Based on these results, oyster shell could be a very good alternative liming material to reduce Cd phytoavailability in Cd-contaminated soil.  相似文献   

2.

Purpose

The extensive application of phosphate fertilizers could produce a series of environmental problems by adsorbing on the surface of soil particle and migrating into water during soil erosion. Therefore, this study is to explore the effects of phosphate on soil aggregate stability and soil erosion and to analyze the mechanisms of phosphate enhancing soil erosion from the scope of soil charge density, electric field, and particle interaction.

Materials and methods

A variable charged soil (0–20 cm) was pre-treated firstly by KCl, K2HPO4, and KH2PO4, respectively. Under the conditions of KCl, K2HPO4, and KH2PO4 solutions with concentrations of 0.0001, 0.001, 0.01, 0.1, and 1 mol L?1, (1) the amounts of soil particle transport and erosion intensities were measured using rainfall simulation with electrolyte solutions instead of rainwater; (2) the aggregate stabilities were measured by weighing the particles and micro-aggregates of <2, 5, and 10 μm after soil aggregate breakdown in electrolyte solutions; and (3) the zeta potentials of soil particles were measured in electrolyte solutions.

Results and discussion

The application of K2HPO4 and KH2PO4 in soil strongly enhanced soil aggregate breakdown and soil erosion, while in KCl application, soil aggregates were stable and erosion did not occur. Moreover, the intensities of soil aggregate breakdown and soil erosion for K2HPO4 application were much stronger than that for KH2PO4 application. Phosphate, especially K2HPO4, strongly increased surface negative charge density of soil particles and thus increased the electrostatic repulsive pressure between adjacent soil particles in aggregates, and as a result, the soil erosion intensity increased. However, the surface charge density was not increased by the increased pH, specific adsorption, and dispersion force adsorption but possibly attributed to a non-classic induction force adsorption arising from the anionic non-classic polarization in the strong electric field around soil particle surface.

Conclusions

The application of phosphate decreased aggregate stability and stimulated soil erosion through increasing charge density of particle surface by a new non-classic induction adsorption of phosphate.
  相似文献   

3.

Purpose

The combined contamination of Pb, Zn, Cu, Cd, and As in the soils near lead/zinc mine waste posed a potential threat to the surrounding environment. Mitigation methods are needed to reduce the environmental risk. The aims of this paper were to evaluate the feasibility and efficiency of different forms of phosphates in remediating combined contamination caused by multi-metals and arsenic near the lead/zinc mining tailings.

Materials and methods

The tested soil was taken from a clayey illitic thermic typic epiaquepts soil (depth of 0–20 cm) near a lead and zinc mine tailing, located in Shaoxing, Zhejiang Province, China. Four pure chemical reagents, K2HPO4, Ca(H2PO4)2.2H2O, Ca3(PO4)2, and Ca5(PO4)3OH, were added to the soil in solution form as the trace metal stabilizing additives at a P application rate equivalent to 2,283 mg P/kg-soil and P/Pb molar ratio of 1. Shifts in trace metal speciation were determined using sequential extraction procedures and relative toxicities were evaluated using the standard EPA toxicity characteristic leaching procedure (TCLP).

Results and discussion

The addition of K2HPO4, Ca3(PO4)2, Ca5(PO4)3OH, and Ca(H2PO4)2.2H2O in the contaminated soil at the phosphorus application rate 2,283 mg P/kg-soil reduced Pb concentrations in TCLP extraction solution from 90.47 to 56.05, 83.80, 67.78, and 86.32 mg/kg (38.0, 7.36, 25.1, and 4.59% reduction), respectively. Sequential extraction analysis showed that phosphate treatments caused the transformation of easily available trace metal species to more stable forms. However, TCLP As in the soil increased from its initial value of 0.23 to 2.1, 0.70, 0.67, and 0.77 mg/kg, respectively, for the four treatments. The TCLP leachable As concentration of the K2HPO4-treated soil was about nine times of that from the untreated soil.

Conclusions

The addition of K2HPO4, Ca3(PO4)2, Ca5(PO4)3OH, and Ca(H2PO4)2.2H2O were effective in reducing water soluble and exchangeable Pb, Zn, Cu, and Cd, and minimizing TCLP-extractable Pb, Zn, and Cu. The sequential extraction test and the TCLP indicate that Ca5(PO4)3OH treatment has a higher potential in immobilizing Pb, Zn, Cu, and Cd, though a slight enhancement of As mobility, comparing with other phosphate treatments.  相似文献   

4.
The effect of the supply of ammonium (NH4 +) and phosphorus (P) in gel on the amounts of hydrogen ion (H+) excreted from plant roots was studied with Brachiaria humidicola (a highly acid‐soil tolerant tropical grass) and B. brizantha (less acid‐soil tolerant) grown in soil in a glasshouse. The H+ production was measured over 24 h in agar gel containing full nutrient solution with a range of NH/‐N levels (0, 0.25, 0.5, and 5.0 mM NH4 +‐N). Highly soluble P, K2HPO4, or relatively insoluble P, rock P, was supplied at four concentrations (0, 11.5, 34.5, or 115 μM p) in the gel. Increasing NH4 + concentration in the gel increased H+ production for both grasses, but there was some inhibition of growth for B. brizantha at the highest N concentration. For B. humidicola, but not B. brizantha H+ production was greater with 34.5 μM K2HPO4 than 11.5 μM K2HPO4. At 34.5 μM P for both grasses there was no difference in H+ production when P was supplied as rock P or K2HPO4. With 11.5 μM P both grasses produced less acid in the gel with the rock P compared with K2HPO4. The reduced H+ production is probably due to a lower availability of P in the rock P compared with K2HPO4. This effect was greater with B. brizantha than B. humidicola, implying that 11.5 μM rock P was not able to supply sufficient P for the growth of B. brizantha. Brachiaria humidicola was able to dissolve more rock P than B. brizantha or alternatively, the growth of B. humidicola was less adversely affected by the low P supply from rock P than B. brizantha. Plant‐induced acidity does not seem to occur as a response to a lack of available P, but rather these grasses only produce acid if there are enough nutrients for growth, i.e., both NH4 + and P. If either N or P is limiting, growth is limited as is NH4 + uptake, so that H+ production is curtailed.  相似文献   

5.
Biomass ashes from energy production are a source of phosphorus (P), and their reutilization in agriculture could help to close nutrient cycles and save natural P resources. To analyze the P fertilizing effect of biomass ashes, a pot experiment with a loamy sand, originated from a long-term field experiment without any P supply, was carried out. As P source, poultry litter ash was compared with high soluble mineral P (potassium phosphate; KH2PO4). Four catch crops, in particular phacelia, buckwheat, ryegrass, and oil radish, were cultivated. The soil P-fractionation method was used to follow the transformation process of ash P in the soil. Oxalate-soluble P, iron (Fe), and aluminium (Al) were determined to assess the effect of ash on P sorption parameters. In general, a high P-fertilizing effect of biomass ashes was found. Ash application resulted in an increase of plant P uptake and the most bioavailable resin P fraction and was even comparable to a high soluble mineral P source. No enrichment of ash P in hardly plant-available P fractions could be detected. Crops mainly influenced the readily available P fractions. Buckwheat and oil radish exhausted the resin P and sodium bicarbonate (NaHCO3) P fractions most. Phacelia cultivation led to an increase of the highly available resin P content, which is probably due to mobilization processes from the hardly available residual P fraction. The obtained results indicate that ashes may have a high P availability to plants and may provide an adequate substitute for commercial P fertilizers.  相似文献   

6.
In a greenhouse experiment, effects of different phosphate fertilizer applications on soil Cd extracted by DTPA and NH4NO3 in relation to plant uptake of Cd were investigated. The soils used were a sand and a loam treated with lime to achieve three pHs ranging from 4.77 to 5.94 for the sandy soil and 4.97 to 6.80 for the loam soil. Oat (Avena sativa L.), ryegrass (Lolium multiflorum L.), carrot (Daucus carota L.), and spinach (Spinacia oleracea L.), were used as test species. Application of the high-Cd NPK fertilizer (adding 12.5 μg Cd kg?1 soil) significantly increased the extractable soil Cd, especially the DTPA-extractable Cd. Use of phosphate rock adding as much Cd as the high-Cd NPK fertilizer did not increase the extractable Cd in either of the soils. Both DTPA- and NH4NO3-extractable Cd decreased with the increases in soil pH. The Cd concentrations and total Cd uptake of plants were significantly correlated with the soil Cd extracted by DTPA and NH4NO3.  相似文献   

7.
This study investigated the effect of anions on the uptake of heavy metals and aluminum by Brassica rapa L. from non-contaminated, Cd-contaminated, and sewage sludge compost (SSC)-amended sandy soil. Four types of artificial precipitation were applied: deionized water (pH 5.7) as a control, and solutions of HNO3, H2SO4, and HCl prepared to pH 4.5. Precipitation was applied daily during the last 20 d of cultivation. The pH of the Cd-treated soil after harvest was not affected by any precipitation treatment. Shoot concentrations of heavy metals and Al were unaffected by any treatments on non-contaminated soil. In contrast, all acid treatments increased the Cd concentration in shoots grown on Cd-contaminated soil, but only HNO3 precipitation increased it in SSC-amended soil. These results indicate, even without large soil pH change, there is a possibility that the Cd uptake by B. rapa L. depends on anions in precipitation and chemical form of Cd in the soil under conditions of heavy metal enrichment.  相似文献   

8.
Studies were conducted to determine the efficacy of K salts in alleviating lime‐induced chlorosis. Greenhouse studies using a Gibbon silt loam [fine‐silty, mixed (calcareous), mesic Typic Haplaquoll] and a 1: 1 mixture of Gibbon soil and washed sand were conducted with KCl, KNO3, K2SO4, K2HPO4, or KHCO3 applied at rates of 0, 250, and 500 mg K/kg soil. An FeEDDHA treatment was included for comparison. Similar studies were conducted at two field sites known to produce lime‐induced chlorosis. Potassium salts were applied at 0, 20, and 40 g K/m of row. In the greenhouse, plants treated with KCl, KNO3, and K2SO4 on Gibbon soil were less chlorotic than controls or plants treated with K2HPO4, or KHCO3. No K treatment totally alleviated chlorosis except FeEDDHA. Chlorophyll correlated positively with chlorosis rating. No relationship was found between leaf Fe uptake and chlorosis. Plants grown in soil/sand exhibited no chlorosis and had lower Fe uptake than plants grown in Gibbon soil. Thus chlorosis was not due strictly to low soil‐Fe availability or inadequate Fe uptake. Bicarbonate in the soil solutions of both growth media treated with KCl was lower than controls which may explain the reduced chlorosis associated with this treatment.

One field site showed positive effects of K treatments on chlorosis rating, chlorophyll concentration, and seed yield. No treatment was as effective as FeEDDHA in influencing plant growth or yield. Total leaf Fe concentration was unrelated to leaf chlorophyll concentration. Inorganic cation/anion ratios in the plant were from 4.4–8.4 which could cause net H+ efflux by the plant and alkalinization of plant tissues. One possibility is that H+ efflux solubilizes P in the rhizosphere, which after uptake could immobilize Fe in the plant. Application of KCl, KNO3, and K2SO4 generally lowered HCO3 content of the upper 15 cm of both soils. High bicarbonate could increase rhizosphere P availability and increase immobilization of Fe in the plant.  相似文献   

9.
本工作研究了阴离子吸附和PH对恒电荷土壤(黄棕壤和黑土)和可变电荷土壤(砖红壤)动电性质的影响。结果表明,砖红壤吸附不同阴离子后的ζ电位随PH升高由正电位移至负电位,在ζ电位-PH曲线上均有一个等电点(IEP)在PH3.5~8之间,相同PH升高由正电红壤的ζ电位随吸附阴离子的负移顺序是HPO4^2-〉F^-〉SO4^2-〉Cl^-〉NO3^-。作为恒电荷土壤的黄棕壤和黑土,在不同电解发质溶液中的ε  相似文献   

10.
Adsorption of Cd by two soils and its uptake by perennial ryegrass (Lolium perenne) and winter rape (Brassica napus) as a function of pH (pH 4 to 7) and the amount of Cd added to the soil (0 to 5 mg kg?1 soil) were studied in a 2-yr pot experiment. In the soils, the more soluble fractions of Cd increased as the pH was lowered. Increasing the pH from 5 to 7 by adding CaO invariably reduced the Cd-content of ryegrass plants, but this decrease was less consistent where the pH had only been increased to 6. In some cases, acidifying the soil with S to reach a pH of 4 also led to a decrease in plant Cd-content. The Cd-content of rapeseed plants was markedly higher at pH 4 than at pH 5. Plant damage at low pH was observed in this crop. Water-leachable and CaCl2-extractable soil Cd levels as well as plant uptake were higher in the sand soil than in the clay soil, whereas 1M NH4AcO (buffered at pH 4.8 and 7) extracted roughly equal amounts from both soils. Adding more Cd to the soil did not change the relation between Cd levels in soil and those in plants; instead the amounts of Cd in both increased in direct proportion to the amounts added. Fixation of added Cd apparently did not occur continuously at any pH or Cd-level during the 2-yr period, but seasonal variations in solubility and uptake were observed.  相似文献   

11.
ABSTRACT

In arid/semi-arid regions, soil salinization, sodification and contamination by heavy metals (HMs) are the main constrains to plant growth, crop production and human health. Biochar can affect soil behaviors, e.g. adsorption of HMs that is one of the most effective techniques for reducing their bioavailability. Effect of three levels (0%, 2% and 4% wt) of sugarcane bagasse-derived biochar and two cadmium (Cd) levels (0 and 50 mg Cd kg?1 soil as Cd(NO3)2) on Cd adsorption of saline, sodic, saline-sodic and normal soils were evaluated through studying adsorption isotherms. Six isotherm models were fitted to the data and the best model were chosen. The maximum Cd adsorption (694 mg kg?1) obtained in sodic soils without biochar treatment. Cadmium removal decreased when dosage of the applied biochar increased. The minimum Cd removal obtained as 17%, 21%, and 23% in control, 2% and 4% biochar-treated saline soils, respectively. Biochar increased Cd adsorption in salt-affected soils. Increasing pH in soil solution after biochar addition resulted in an increase in net negative surface charge and the affinity of soil particles for Cd adsorption. Consequently, 2% biochar could ameliorate Cd contamination. However, Cd adsorption decreased when dosage of the applied biochar increased from 2% to 4%.  相似文献   

12.
Phosphorus uptake is often enhanced by ammonium compared to nitrate nitrogen nutrition of plants. A decrease of pH at the soil-root interface is generally assumed as the cause. However, an alteration of root growth and the mobilization of P by processes other than net release of protons induced by the source of nitrogen may also be considered. To study these alternatives a pot experiment was conducted with maize using a fossil Oxisol high in Fe/Al-P with low soil solution P concentration. Three levels of phosphate (0, 50, 200 mg P kg?1) in combination with either ammonium or nitrate nitrogen (100 mg N kg?1) were applied. Plants were harvested 7 and 21 d after sowing, P uptake measured and root and shoot growth determined. To assess the importance of factors involved in the P transfer from soil into plants, calculations were made using a model of Barber and Claassen. In the treatments with no and low P supply NH4-N compared to NO3-N nutrition increased the growth of the plants by 25 % and their shoot P content by 38 % while their root growth increased by 6 % only. The rhizosphere pH decreased in the NH4-N treatments by 0.1 to 0.6 units as compared to the bulk soil while in the NO3-N treatments it increased by 0.1 to 0.5 units. These pH changes had a minor influence on P uptake only, as was demonstrated by artificially altering the soil pH to 4.7 and 6.3 respectively. At the same rhizosphere pH, however, P influx was doubled by the application of NH4-compared to NO3-N. It is concluded that in this soil the enhancement of P uptake of maize plants after ammonium application cannot be attributed to the acidification of the rhizosphere but to effects mobilizing soil phosphate or increasing P uptake efficiency of roots. Model calculation showed that these effects accounted for 53 % of the P influx per unit root length in the NO3-N and 72 % in the NH4-N supplied plants if no P was applied. With high P application the respective figures were only 18 and 19%.  相似文献   

13.
Cadmium (Cd) is a non‐essential toxic element, which is highly accumulated by tobacco leaves and is transferred to tobacco smoke thus contributing substantially to the permitted level of Cd intake by humans. Therefore, measures to reduce Cd accumulation by tobacco are of significant importance. The purpose of the present study was to investigate the influence of soil liming on Cd uptake by tobacco plants in high Cd exposure. A pot experiment was conducted with Nicotiana tabacum L. Samsun 53 on an acid Typic Haploxeralf amended with refuse sugarbeet lime to obtain a pH range from 5.3 to 7.0 and contaminated with 20 mg kg‐1 Cd applied as CdCl2. Tobacco was grown in pots for three months under natural conditions, harvested in four cuts and Cd uptake by leaves was estimated. In soil samples selected, pH, Cd extracted by DTPA method, and Cd fractions such as exchangeable, organically bound, carbonate and residual were determined. The results showed that Cd uptake influenced negatively tobacco yield. Soil liming decreased Cd uptake by tobacco plants. The DTPA method was not a good indicator for Cd availability in tobacco. A very strong relationship was recorded between exchangeable Cd and total Cd uptake showing that this Cd fraction is available to tobacco plants. Soil pH was correlated strongly in a negative way with this Cd fraction suggesting that this soil factor is very important in controlling Cd accumulation by tobacco.  相似文献   

14.
本工作是研究在CaCO3体系和石灰性土壤体系中NH3的挥发与磷的吸附之间相互作用的化学变化,结果表明:在NH4Cl—CaCO3体系中,通气的pH值比不通气的低,但溶液中Ca2+浓度正好相反。在K2HPO4-CaCO3体系中,在24小时内,通气与不通气的,CaCO3吸附磷没有差异。在24小时反应期间,在DAP-CaCO3体系中,因溶液pH值不断增高,NH3的挥发对CaCO3吸附磷的影响也就逐渐降低。在石灰性土壤体系中,施用尿素加过磷酸钙或单施尿素时,几乎没有发现NH3的挥发,而施DAP时,在6天后,NH3的挥发损失占加入的56%,且DAP处理的土壤,其水溶性磷未通气比通气的高。尿素加过磷酸钙处理的,其水溶性磷通气与未通气的没有差异。另外,尿素加过磷酸钙或过磷酸钙单独处理的土壤,水溶性磷含量均相同。所有这些均表明,在石灰质体系中,NH3的挥发(如果发生的话)能够加强CaCO3对磷的吸附,而磷的吸附又能加强NH3的挥发,两者是相互影响和相互促进的过程。  相似文献   

15.
Potassium (K) is one of the major essential nutrient elements whose application of organic or nano-chelate-fertilizers has received increased attention recently. Cadmium (Cd) contamination in agricultural soils and environment is increasing due to the over-application of Cd-containing phosphate fertilizers. But few studies have been carried out on the environmental influences of K-nano-chelate fertilizers especially on Cd-polluted soils. Therefore, the effects of K-fertilizer application in different rates (0, 100 and 200 mg kg?1 soil) and forms (KCl, K2SO4 and K-nano-chelate) on Cd content and partitioning in Ocimum basilicum grown on an artificially Cd-contaminated calcareous soil (with 40 mg Cd kg?1 soil) were studied under greenhouse conditions. Cadmium decreased shoot dry weight (SDW), but did not affect root dry weight (RDW) and no consistent trend was observed with applied K. Cadmium increased shoot and root Cd concentration or uptake. KCl and K2SO4 increased shoot Cd concentration compared to that of control, whereas K-nano-chelate did not affect it. In Cd-treated soils the mean value of Cd translocation factor (ratio of Cd concentration in shoots to that of roots) decreased by 60% as compared to that of the control. Application of 100 mg K-K2SO4 and 100 and 200 mg K-nano-chelate increased the Cd translocation factor by 49, 59 and 112% in Cd-treated soils, respectively. In Cd-treated soils, greater amounts of Cd accumulated in roots. K-nano-chelate could mitigate the adverse effect of Cd on SDW and Cd accumulation in plants grown on Cd-polluted soils, so the risk of Cd entrance to the food chain is reduced (however, in Cd-untreated soils, K-nano-chelate increased the Cd translocation factor higher than other K sources). In Cd-polluted soils KCl was the most inappropriate fertilizer that may intensify Cd accumulation in plants. However, it may be useful in the phytoremediation of Cd-polluted soils.  相似文献   

16.
不同钾肥对再生水灌溉条件下土壤-作物系统Cd的影响   总被引:3,自引:0,他引:3  
为了探明再生水灌溉条件下不同施钾肥处理对土壤-作物系统Cd的影响及差异性,通过田间微区试验研究了不同施钾肥处理对再生水灌溉番茄植株、果实以及根际土与非根际土Cd含量的影响。结果表明:再生水灌溉条件下,施钾肥处理可提高番茄果实产量,施加KCl较K2SO4增产效果明显,分别较不施肥处理可增产6.10%~24.00%和1.36%~13.16%;不施钾肥较不施肥处理番茄果实Cd含量降低,但降低幅度小于施加钾肥处理,施加KCl较K2SO4处理番茄果实Cd含量较低,Cd含量分别较不施钾肥处理分别减少58.33%和8.33%,且各处理均未超0.05mg/kg的限值标准;不施钾肥处理较不施肥处理土壤pH、Cd含量有所降低,降低幅度小于施钾肥处理,有效态Cd有所增加,施加KCl和K2SO4较不施肥处理有效态Cd降低,施加KCl和K2SO4较不施钾肥处理根际土和非根际土pH、Cd含量和有效态Cd含量均有所降低,其中施加KCl根际土和非根际土Cd含量分别降低2.96%~3.11%和5.75%~14.22%,施加K2SO4分别降低4.14%~5.90%和8.10%~8.29%;施加KCl根际土和非根际土有效态Cd含量分别降低10.75%~16.19%和13.98%~28.74%,施加K2SO4分别降低15.97%~20.55%和19.91%~24.70%。因此,再生水灌溉条件下,可通过选择施加适宜的钾肥种类,调控重金属Cd在土壤-作物系统的分布及其生物有效性,施加K2SO4较KCl相比,可一定程度降低土壤Cd全量及有效态Cd含量。  相似文献   

17.
A pot experiment was conducted to investigate the influence of phosphate (P) application on diethylene triamine pentaacetic acid (DTPA)–extractable cadmium (Cd) in soil and on growth and uptake of Cd by spinach (Spinacia oleracea L.). Two soils varying in texture were contaminated by application of five levels of Cd (NO3)2 (0, 20, 30, 40, and 60 mg Cd kg–1). Three levels of KH2PO4 (0, 12, and 24 mg P kg–1) were applied to determine immobilization of Cd by P. Spinach was grown for 60 d after seeding. Progressive contamination of soils through application of Cd affected dry‐matter yield (DMY) of spinach shoot differently in the two soils, with 67% reduction of DMY in the sandy soil and 34% in the silty‐loam soil. The application of P increased DMY of spinach from 4.53 to 6.06 g pot–1 (34%) in silty‐loam soil and from 3.54 to 5.12 g pot–1 (45%) in sandy soil. The contamination of soils increased Cd concentration in spinach shoots by 34 times in the sandy soil and 18 times in the silty‐loam soil. The application of P decreased Cd concentration in shoot. The decrease of Cd concentration was higher in the sandy soil in comparison to the silty‐loam soil. Phosphorus application enhanced DMY of spinach by decreasing Cd concentration in soil as well as in plants. The results indicate that Cd toxicity in soil can be alleviated by P application.  相似文献   

18.
A pot experiment was conducted to determine the effects of chickpea/wheat intercropping and two phosphorus (P) sources on soil acidification and to explore a new way of ameliorating soil acidification. Wheat and chickpea roots were grown in compartments separated either by a solid barrier to prevent any root interactions or by a nylon mesh (30 μm) to permit partial root interactions, or with no separation between the compartments. Two P sources were applied at 60 mg P kg?1 soil either as sodium phytate or ferrous phosphate (FePO4). The decline of soil pH after growing plants for 42 days was alleviated by supplying organic P or intercropping while receiving organic P. The ameliorating of soil acidification resulted mainly from a decrease in excess cations over anion uptake of both wheat and chickpea under phytate supply, compared to FePO4 supply. The excess cation uptake of chickpea was reduced by root interactions.  相似文献   

19.
由于红壤类土壤的化学性质和粘土矿物组成的特点,使这类土壤具有明显的两性性质。红壤的两性性质首先表现在它的电荷特征上,即同时带有负电荷和正电荷,在一定条件下可显现出等电点(张效年等,1964;蒋剑敏等,1962)。因此红壤对离子的吸附特点也表现出两性性质。红壤的电荷性质和离子吸附特点,与红壤的一系列化学和物理性质有密切关系,是剖析土壤肥力的重要方面,而且也对合理施肥等技术措施有参考意义。本文是从离子的种类、浓度和介质的pH等方面,探索红壤对阳离子和阴离子的吸附特点及其与红壤的电荷性质的关系。  相似文献   

20.
A greenhouse experiment was conducted to investigate the immediate effect of application of mono‐ammonium phosphate (MAP), single superphosphate (SSP), and triple superphosphate (TSP) fertilizers containing varying concentrations of Cd on (1) chemical speciation of Cd and Zn in soil solution by chemical‐equilibrium calculations (MINEQL+4.6 model), (2) growth of barley plants, (3) concentrations of Cd, P, and Zn in soil solution and plant tissue, as well as total plant accumulation of Cd, P, and Zn, and (4) monitoring pH and element changes during incubation periods following phosphate application. Results show that, in general, the pH of soil solution increased during the first 40 d of incubation, then declined. Also, at the end of incubation period, pH of soil solution was affected by fertilization source and fertilization rate. The concentration of Cd in soil solution changed with time. Phosphate fertilization (p < 0.05) or fertilizer source (p < 0.05) showed consistent effects. Also, the application of phosphate fertilizers with three rates significantly increased Zn concentrations in soil solution during the first half (0–30 d) of incubation period and then decreased but still more than in the control. In general, application of different sources of phosphate at 100 g kg–1 did not change the dominant forms of Cd in soil solution during all incubation time intervals. Speciation of Zn in the control after 30 d of incubation had changed, in comparison to 10 d of incubation, and the dominant forms were Zn2+, ZnOH+, ZnHCO3, ZnCO3(aq), and Zn(OH)2(aq). Adding phosphate fertilizer significantly increased both shoot and root dry weight compared to control, indicating P was a growth‐limiting factor in the control plants. The Zn concentrations in shoot and root were lower in the TSP‐ and SSP‐fertilizers treatment than those in the MAP and fertilizer treatments at all rates of fertilization. Adding phosphate increased the Cd : Zn and P : Zn ratios in the shoot and root tissue, with the effect being greater with increasing fertilization rate. Phosphate fertilization greatly increased the total accumulation of Cd of barley compared with the control plants (p < 0.001), with the effect being greater with increasing fertilization rate. Source and rate of fertilizers, and their interactions had significant effect (p < 0.05) on Cd accumulation in the whole plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号