首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
ABSTRACT

The entry of Cd, Pb and Ni into the environment is a cause of concern due to potential toxicity of these metals to plants, animals, and humans. The present study evaluated the availability of Cd, Pb, and Ni to plants through soils. We examined three soil types (Typic Quartzipsamment (TQ), Xantic Hapludox (XH) and Rhodic Hapludox (RH)) with addition four rates of heavy metals: Cd (0, 2, 4 and 12 mg), Pb (0, 45, 90 and 270 mg) and Ni (0, 20, 40, 120 mg) per kg soil with reference to the corresponding rates defined in soil investigation values of the Brazilian environmental legislation. The availability of Cd, Pb and Ni was higher in the TQ than in XH and RH, and the roots and shoots of corn plants grown in TQ yielded the highest concentrations of toxic metals. Soil extraction with diethylene-triaminepentaacetic acid (DTPA) effectively assessed the bioavailability of Cd and Pb, while soil extractions with Mehlich-1 and aqua regia effectivety evaluated the bioavailability of Ni. The levels at which Cd, Pb, and Ni became toxic for plants were determined via extractioned by Mehlich-1, DTPA, Mehlich-3, and aqua regia. Plant growth was shown to influence heavy metal toxicity, with higher growth rates lowering the toxic effect of the metal. Cd, Ni, and Pb exhibited higher availiability in soils with low clay concentrations and were more easily absorbed by plants in those soils.  相似文献   

2.
土法炼锌区大气沉降Pb、Zn、Cd及其对土壤质量的影响   总被引:6,自引:0,他引:6  
Dust emissions from smelters, as a major contributor to heavy metal contamination in soils, could severely influence soil quality. Downwind surface soils within 1.5 km of a zinc smelter, which was active for 10 years but ceased in 2000, in Magu Town, Guizhou Province, China were selected to examine Pb, Zn, and Cd concentrations and their fractionation along a distance gradient from a zinc smelter, and to study the possible effects of Pb, Zn, and Cd accumulation on soil microorganisms by comparing with a reference soil located at a downwind distance of 10 km from the zinc smelter. Soils within 1.5 km of the zinc smelter accumulated high levels of heavy metals Zn (508 mg kg-1), Pb (95.6 mg kg-1), and Cd (5.98 mg kg-1) with low ratios of Zn/Cd (59.1--115) and Pb/Cd (12.4--23.4). Composite pollution indices (CPIs) of surface soils (2.52--15.2) were 3 to 13 times higher than the reference soils. In metal accumulated soils, exchangeable plus carbonate-bound fractions accounted for more than 10% of the total Zn, Pb, and Cd. The saturation degree of metals (SDM) in soils within 1.5 km of the smelter (averaging 1.25) was six times higher than that of the reference soils (0.209). A smaller soil microbial biomass was found more frequently in metal accumulated soils (85.1--438 μg C g-1) than in reference soils (497 μg C g-1), and a negative correlation (P < 0.01) of soil microbial biomass carbon to organic carbon ratio (Cmic/Corg) with SDM was observed. Microbial consumption of carbon sources was more rapid in contaminated soils than in reference soils, and a shift in the substrate utilization pattern was apparent and was negatively correlated with SDM (R = -0.773, P < 0.01). Consequently, dust deposited Pb, Zn, and Cd in soils from zinc smelting were readily mobilized, and weredetrimental to soil quality mainly in respect of microbial biomass.  相似文献   

3.
Abstract

The Cushman and Barber mechanistic model was used to help elucidate the mechanisms that govern the uptake of sulfur (S) by plants. Sulfur uptake predicted by the model was compared to measured S uptake by cotton, (Gossypium hirsutum [L]) grown on Mhoon silty clay loam (Typic Fluvaquent) and a Norwood silt loam (Typic Udifluvent) under glasshouse conditions. Predicted S uptake was significantly correlated with observed uptake r2=0.71. However, the model overpredicted S uptake by a factor of 3.5. The assumption that the maximun ion Influx rate (I max) for roots growing in soils is the same as the Imax measured in solution cultures experiments may not be appropriate. Better agreement between observed and predicted S uptake values was achieved by using an estimated Imax obtained from soil studies (Is) with the method of Warncke and Barber. Using I, predicted vs observed S uptake had a slope of 1.00 and r2=0.93. The model predicted that S concentration in soil solution (Clo) at the root surface (ro) increased with time for soils with initial S concentration in solution of lmM or higher. This high Clo, will trigger a higher Is of about 4 nmol/m2sec, while plants grown on soils with low S content will show a lower Is, suggesting that S uptake by cotton plants is biphasic and depends on Clo at ro.  相似文献   

4.
Abstract

The benchmark soils collection of Pernambuco state contain 13 of the 14 soil orders of the Brazilian System of Soil Classification. Thus, information on zinc (Zn) and copper (Cu) status in such soils is useful as a reference of micronutrient distribution and availability in a representative set of Brazilian soils. The present work was performed to assess Zn and Cu distribution into operationally defined fractions of benchmark soils of Pernambuco state. In addition, chemical extractants, with contrasting chemical properties, were used to assess the availability of these micronutrients to relate such values with fertility guidelines concentrations and with the fractions defined by the sequential extraction. The results demonstrated that the organic matter was the most important fraction retaining Zn and Cu in the studied soils, as indicated by the sequential extraction. The Zn availability in the majority of the soils (90% of the samples) is sufficient to meet the requirement of the major field crops, although the available Cu concentrations are below the critical levels for plant growth in 46% of the analyzed samples. Mehlich‐1 extractant appeared to be the most efficient in predicting the availability of Zn in the soils because of its better correlation with exchangeable and organic fractions. DTPA and Mehlich‐3 were the most efficient extractants for the evaluation of Cu availability, as suggested by the better correlation with organic matter, which is the main pool of available Cu in the soils.  相似文献   

5.
Structure and self-similarity in silty and sandy soils: the fractal approach   总被引:18,自引:0,他引:18  
Soil structure was studied using the concept of fractals and related to soil texture and aggregate properties such as surface charges and aggregate stability. The mass and porosity fractal dimensions (Dm and Dp) of silty and sandy soils were determined on in situ soils using a variety of soil sections (thin, very-thin and ultra-thin), by image analysis on a continuous scale from m to 10?9 to 10?1m. Surface fractal dimensions (Ds) of these soils were determined on < 2 mm air-dried samples using mercury porosimetry and the fractal cube generator model. The results suggest that soils are not pore fractals but mass and surface fractals with Dm= 1.1 Ds when the dimension of the embedding Euclidean space d is 3. The soil structures could possibly be described by fractal diffusion-limited aggregation with complex interconnected aggregates or by fractal cluster–cluster aggregation models. As a preliminary conclusion, the fractal approach appears to be a potentially useful tool for understanding the underlying mechanisms in the creation or destruction of soil structure.  相似文献   

6.
Abstract

The objective of this study was to determine the effects of pH and ionic strength on the distribution and speciation of zinc (Zn), copper (Cu), and cadmium (Cd) in surface soil samples from two Brazilian Oxisols amended with biosolids. Soils and biosolids were equilibrated in an experimental dual‐chamber diffusion apparatus that permits the soils and biosolids to react through a solution phase via diffusion across a membrane. After equilibrium was reached, soil and biosolids samples were sequentially fractionated to identify various solid forms of Zn, Cu, and Cd. Metal concentrations in the solution phase were determined and mass balance calculated. Equilibrating pH had no major effect on Cu solubility from biosolids and, at pH range from 4 to 7, most Cu remained in the biosolids. Soluble Zn and Cd concentration increased with decreasing pH because of the increased solubility of the biosolids. Copper and Zn were primarily associated with the residual fraction and Fe oxides in one soil, but were primarily associated with chemically unstable fractions, or adsorbed to the surface of oxides, in the other soil. In both soils, Cd was primarily associated with readily bioavailable fractions. The effect of pH on the metal distribution was more evident than the ionic strength effect. Free ions were the predominant metal species in solution, especially at lower pH values.  相似文献   

7.
ABSTRACT

In

-situ sorbent amendment is a relatively low-cost, low-impact approach for remediation of soil contaminated with heavy metals (HMs), and thus is considered a way to be favored in developing countries. In this study, materials of non-hazardous, alkaline agronomic and industrial by-products were used as sorbents to explore their capacity of in situ immobilization of multiple HMs in mining-impacted arable soil. These sorbents included fly ash (FA), biochar (BC) and apatite (AP) and they were implemented with varying ratios of combinations. Results of soil microcosm tests showed that after incubation for 90 days, concentrations of Pb, Zn, and Cd in their exchangeable forms determined by a sequential extraction method significantly decreased in amended soils, as opposed to the unamended control. Of the five sets of amendments, the composite of FA, BC, and AP resulted in the maximum reduction (up to 80%) in the mobility of Pb, Zn, and Cd in soils. The mechanisms underlying the immobilization of HMs in amended soils might involve processes of surface precipitation, ion exchange and complexation, in which the physicochemical properties of sorbent materials played an important role. The immobilization efficacy of sorbent amendments on HMs in soil was further supported by pot experiments in which significant inhibition of HM accumulation in the belowground and aboveground tissues of maize was observed after 50-day cultivation in amended soils as compared with control soil. Together, these results suggest that the application of cost-saving and environmentally friendly materials derived from wastes as sorbents to remediate soils contaminated with multiple HMs is promising for developing countries like Vietnam.  相似文献   

8.
Abstract

Heavy‐metal inhibition of nitrification in soils treated with reformulated nitrapyrin was investigated. Clarion and Okoboji soils were treated with ammonium sulfate [(NH4)2SO4] and a nitrification inhibitor. Copper(II) (Cu), Zinc(II) (Zn), Cadmium(II) (Cd), or Lead(II) (Pb) were added to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and the termination period of nitrification (t s). In the Clarion soil, the K max decreased from 12 mg kg?1 d?1 without the nitrification inhibitor to 4, 0.25, 0.86, and 0.27 mg kg?1 d?1, respectively, when the inhibitor and Cu, Zn, Pb, or Cd were applied. In the Okoboji soil, K max decreased from 22 mg kg?1 d?1 with no inhibitor to 6, 3, 4, and 2 mg kg?1 d?1, respectively, when an inhibitor and Cu, Zn, Pb, or Cd were added. The t′ varied from 8 to 25 d in the Clarion soil and from 5 to 25 d in the Okoboji soil, due to addition of Cu, Zn, Pb, or Cd and the inhibitor.  相似文献   

9.
Abstract

To clarify the effect of soil type on changes in sugar beet (Beta vulgaris L.) productivity since 1980 in Tokachi District (Hokkaido, Japan), we analyzed yield data from 121 settlements from 1980 to 2002 using maps of parent materials and surface organic matter contents in a geographical information system. The soil types were Brown Lowland soils, Andosols with an alluvial subsoil, Wet Andosols and Andosols. The sugar beet yields were highest in the Andosols and moderate in Andosols with an alluvial subsoil. Yields in Brown Lowland soils in the 1980s were similar to those in Andosols, but decreased below the yields in the Andosols by the 1990s. The yields in Wet Andosols were the lowest in the 1980s, but have been similar to those in Andosols with an alluvial subsoil since 1990. Thus, productivity appears to have varied over time in Brown Lowland soils and Wet Andosols. The correlation coefficients between yields and cumulative daily mean temperature from late April to mid-July since 1990 were highest in the Andosols (r = 0.67), lowest in the Brown Lowland soils (r = 0.50) and intermediate in the other soil types (r = 0.54–0.60). However, the magnitude of the correlation between the yield and the cumulative precipitation since 1990 was lowest in the Andosols (r = –0.22), highest in the Brown Lowland soils (r = –0.58) and intermediate in the other soil types (r = –0.44 to –0.45). These results suggest that the present soil water environment in the Andosols is superior to that in the other soil types.  相似文献   

10.
Dielectric properties of soils are widely used to estimate their water content. Andisols are unique soils in terms of aggregate structure and show dielectric properties different from other mineral soils. To understand the relationship between the dielectric properties and soil physical properties, multi‐phase dielectric mixing models are often used. However, solid phase permittivity (?s) for Andisols, which is required for calculating the model output, has not been directly measured yet. Therefore, the objectives for this study were to measure ?s for Andisols in Japan. In addition, the measured ?s values were compared with those calculated from the traditional method, which applies two‐phase mixing models to estimate ?s values based on effective permittivities of repacked soil samples. The applicability of the traditional method to estimate such values for Andisols is also discussed. The effects of bound water and aggregate structure on measured ?s values were evaluated prior to their measurements. We found that the aggregate structural effects were negligible. However, the amount of bound water caused overestimates of ?s. Four Andisols from the A and B horizons of soils in Memuro Hokkaido (northern part of Japan), from the A horizon of a soil in Tsukuba Ibaraki (central part of Japan), and from the A horizon of a soil in Koshi Kumamoto (southern part of Japan) were used in this study. The ?s values obtained fall between 5.6 and 6.1, and deviated from the estimated ?s values derived from the traditional method. Therefore, the traditional method is probably unsuitable to estimate ?s values for Andisols.  相似文献   

11.
Abstract

Speciation of cadmium (Cd) was studied in four spiked agricultural soils at moisture content corresponding to 1.2 times field moisture capacity (FMC) and in the range from 1.2 FMC to soil–water 1∶10. Cadmium desorption isotherms were nonlinear in all soils, resulting in the decrease in Cd partition coefficient with loading. The Windermere Humic Aqueous Model (WHAM VI) was applied to predict Cd concentration in the solutions, and predicted values were compared with the measured ones. Based on total Cd content in soils, with concentrations of dissolved organic carbon (DOC), calcium (Ca), magnesium (Mg), and sodium (Na) and soil solution pH as the input variables, WHAM VI predicted Cd concentration in soil solutions with the root‐mean‐square error (RMSE) of log[Cd] RMSElog[Cd]=0.54 (n=37). Using total Cd content in soils, average concentrations of Ca and DOC in soil solutions, and soil pH instead of soil solution pH enabled prediction of Cd concentration in soil solution with RMSElog[Cd]=0.56. Calculation of Cd concentration as a function of moisture content resulted in RMSElog[Cd]=0.25 (n=20).  相似文献   

12.
Purpose

Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in Havana were quantified and analyzed in relation to possible emission sources to assess metropolitan soil contaminations in a highly dynamic, urban environment. The results of this study will serve Cuban legislators as a basis to develop environmental quality standards for organic pollutants in soils.

Materials and methods

Possible emission sources as, e.g., the vicinity to roads or industrial plants and the influence of the land use were related to the organic contaminants concentrations. Therefore, 28 topsoils in the Havana urban and semi-urban area were sampled at agricultural (n?=?12), organoponic (urban gardens in the capital, n?=?8), public park (n?=?7), and remediation (on-site bioremediation of an oil refinery, n?=?1) sites. Their PAH and PCB concentrations were measured with gas chromatography mass spectroscopy and the total organic carbon (TOC) and black carbon (BC) concentrations with the chemo-thermal oxidation.

Results and discussion

The sum of the 16 PAH concentrations ranged from 0.04 mg/kg in agricultural and organoponic soils to up to 72 mg/kg in a public park at about 1.5 km distance from an oil refinery. The lowest sum of the seven PCB congener concentrations was also measured in organoponic soils (0.002 mg/kg) and the highest in an arable patch of land between the rail roads and a main road (0.1 mg/kg). Both, PAH as well as PCB soil concentrations in Havana were almost up to two orders of magnitudes higher compared to a soil monitoring in the neighboring province of Mayabeque, but overall in the typical range of urban soils reported by other studies. The pollutants showed no relationship between TOC and BC except for PAHs with BC. For PAHs, combustion was the main source.

Conclusions

A comparison of the pollutant concentrations with regulatory guidance values (RGV) of other countries revealed PCB concentrations in Havana soils far below these RGV. In contrast, some concentrations of benzo[a]pyrene, the most carcinogenic PAH, in agricultural and park soils in Havana exceeded some RGV. Thus, some public parks pose a risk according to the Canadian quality guidelines when people have direct contact with these soils but not if they were consuming products thereof.

  相似文献   

13.
Abstract

Quantity‐intensity (Q‐I) relation studies were often used to supplement information obtained from conventional soil tests for the estimation of potassium (K) needs of crops. With a view to ascertaining the reliability of the Q‐I relation parameters for comprehensive characterization of K dynamics in typical Nigerian soils, K values derived from Q‐I isotherms were related to neutral normal ammonium acetate (1 N NH4OAc, pH 7.0) (exchangeable) K, other soil K forms [non‐exchangeable (Kne), exchange (Ke), mineral K (K m ), and solution K (Ks)] and the K uptake by Guinea‐corn (Sorghum bicolor, var. LS 187) subjected to weekly cuts in Neubauer cultivation vessels. Most of the soil K (about 98%) was in the form of soil minerals while less than 1% was plant available whereas about 1% was trapped within the interlattice layers of the clay minerals (as fixed K or Kne). Mineral K (Km) content was closely related to total K (Kt), but not to the other forms, Kne, Ke, and Ks. A close relationship was noted between the two components of labile K (Ke and Ks). Except for % K saturation, the relationships between the K measurements with plant response were poor. The results of these investigations clearly demonstrate that the Q‐I relation could not adequately characterize the K dynamics of these tropical soils.  相似文献   

14.
Abstract

This study was undertaken to assess the mineralization of sulfur (S) in laboratory conditions of three rice soils (Joydebpur, Faridpur, and Thakurgaon), receiving the following treatments: 1) control, 2) rice straw (Oryza sativa L.), and 3) pea vine (Pisum sativum L.). The organic residue (25 mg g‐1) was added and mixed with soil and glass beads (1:1, soil to bead ratio) and placed into a Pyrex leaching tube. The soils were flooded and incubated at 35°C, after which they were leached with deionized water at 1, 2,4, 8, and 12 weeks for analysis of SO4 and other chemical properties in the leachates. Potentially mineralizable S (So) and C (Co) pools and first‐order rate constants (Ks for S and Kc for C) in soils amended with rice straw and pea vine under flooded conditions were estimated using an exponential equation. The So and Ks varied considerably among the soils and types of added organic residues, and their values in rice straw and pea vine ranged from 8.70 to 29.55 and 0.124 to 0.732 mg S kg‐1 wk‐1, respectively. Except for the Thakurgaon soil, the So and Ks values in Joydebpur and Faridpur soils were higher in the unamended treatments. Higher So values in the unamended soils were probably due to less microbial activity to mineralize organic S from organic residues. The results indicate that the amount of SO4 in flooded soils amended with organic residues are dependent on soil type, nature of organic residues, and time of incubation. The Co and Kc values under flooded incubation were higher in residue amended soils than in unamended soils. Pea vine treated soils had higher Co and Kc values than the soils treated with rice straw.  相似文献   

15.
There are few readily available standard reference soils for which 0.01 M calcium chloride (CaCl2) soil extraction available metals data are available. This study assessed the ease with which new available metals data could be generated for reference soils. Data on 0.01 M CaCl2 available elements for four reference soils from the Wageningen Evaluating Programs for Analytical Laboratories and three reference soils from the Australasian Soil and Plant Analysis Council proficiency testing program are presented. It is difficult to generate new 0.01 M CaCl2 available metal values for standard reference soils, because trace element concentrations are low and measurements have relatively high variability. We suggest that laboratories can use reference soils as quality control samples in the analysis of 0.01 M CaCl2 available metals by reporting recoveries for major elements (e.g., potassium [K], magnesium [Mg], and sodium [Na], for which reference values are of high reliability) to provide assurance of acceptable extraction efficiency.  相似文献   

16.
Abstract

Soil tests with extractions are commonly used for risk assessments of phosphorus (P) leaching. Procedures for routine analysis of crop-available soil P by extraction with acid ammonium lactate (P-AL) have been used for nearly 50 years in Sweden, Norway and several East European countries. Aluminium and iron (Al-AL and Fe-AL) were determined in the same extract for 40 well known clayey, loamy or sandy soils from the Swedish long-term studies. Average outcome was 16.8 and 6.0% for the two elements related to extraction with chelating ammonium oxalate (Al-AO and Fe-AO) and concentrations had a correlation coefficient of 0.947 and 0.891, respectively, when the two extraction agents were compared. On average, P-AL determination using inductive coupled plasma (ICP) resulted in 19% higher soil P concentrations compared to analysis using a colorimetric method based on non-calcareous and calcareous soils from the southern counties in the Swedish soil survey, represented mainly by sandy loam soils. Degree of P saturation on a molar basis in the AL extract (DPS-AL) was determined for 22 Nordic observation fields with drained clayey, loamy and sandy soils. Results were used together with long-term flow-weighed concentration of dissolved reactive P (DRP) concentration in drainage water. These parameters were correlated (r=0.918, p=0.000) and could be fitted to a linear regression model (R2=84.3). In addition, two fields with unusually high DPS-AL values could clearly be identified as those with lowest P sorption index and highest DRP concentrations in drainage water. This demonstrates DPS-AL to have the potential as an environmental risk indicator for Swedish acid soils. A set of 230 non-calcareous soils in the southern counties of Sweden from the Swedish soil survey indicated that 3% of the soils had a high DPS-AL in the topsoil or subsoil, from which high DPS leaching probably occurs.  相似文献   

17.
Abstract

To evaluate arsenic (As) levels in agricultural soils of the Red River Delta in northern Vietnam, surface (0–5 cm) and subsurface (20–25 cm) soil samples were collected from 18 paddy and six upland fields on both sides of the river. As a reference, forest soils were also sampled at two sites of the upper river basin. The total As contents of approximately 80% of the surface paddy and upland soils exceeded the maximum allowable limit for Vietnamese agricultural soils (12 mg kg?1). Arsenic contents higher than 35 mg kg?1 were found in soils from the Hungyen and Hanam provinces, where high As levels in the groundwater have also been reported. Sequential fractionation of As in these soils indicated that the amounts of As in the phosphate-extractable and residual fractions were higher than those in the forest soils. Elevated total As contents were also detected in the surface soil of a paddy field near a fertilizer factory in Hanoi (site P10). The amount of HCl-extractable As in the surface soil at P10 corresponded to 84% of the total As, while the proportion never exceeded 40% at other locations. In the surface soil at P10, most of the As was part of the phosphate-extractable fraction. Significant correlations between the total As contents of the upland soils and their non-crystalline Fe oxide contents (r = 0.652, P ≤ 0.05) and between As levels of paddy soils and their crystalline Fe oxide contents (r = 0.544, P ≤ 0.01) were observed. Overall, the present study indicated that although serious As pollution was not found in the studied area, there were some point pollutions caused by industrial activities, in addition to some non-point pollutions resulting from high As concentrations in the groundwater. In addition, Fe oxides in the soils are important factors affecting the As contents of agricultural soils in the Red River Delta.  相似文献   

18.
Abstract: By using the indirect 15nitrogen (N) method, the application effects of sewage sludge (SS) on growth indices, yield, and nutrient uptake in Komatsuna (Brassica campestris var. perviridis) grown in a low fertility soil were investigated and compared with those of chemical fertilizer (CF) and no‐fertilizer (NF) treatments. The N‐use efficiencies of CF and SS were 19.7% and 12.1%, respectively, of the applied N. Therefore, the relative efficiency of the sewage sludge to chemical fertilizer was 61.5%. In comparison to NF and CF, the application of SS apparently increased the soil microbial activity, which was evaluated by measuring hydrolysis of fluorescein diacetate. After cultivation, the electrical conductivity (EC) of CF soil (0.175 dS m?1) was significantly higher than those of NF (0.067 dS m?1) and SS soils (0.057 dS m?1). The concentrations of phosphorus (P), calcium (Ca), and magnesium (Mg) in SS leaves were significantly higher than those in CF leaves; however, the concentration of potassium (K) was significantly lower in SS than in CF.  相似文献   

19.
Abstract

The Cushman and Barber mechanistic model was used to help elucidate the mechanisms that govern the uptake of sulfur (S) by plants. Sulfur uptake predicted by the model was compared to measured S uptake by wheat (Triticum aestivum [L]) grown on Gallion very fine sandy loam (Typic Hapludalf), Mhoon silty clay loam (Typic Fluvaquenf), and a Norwood silt loam (Typic Udifluvent) under glasshouse conditions. Predicted S uptake was significantly correlated with observed uptake r2=0.85. However, the model over predicted S uptake by a factor of 10.4. The assumption that the maximum ion Influx rate (Imax ) for roots growing in soils is the same as the Imax measured in solution cultures experiments may not be appropriate. Better agreement between observed and predicted S uptake values was achieved by using an estimated Imax obtained from soil studies (Is ). Using Is , predicted vs observed S uptake had a slope of 1.5 and r2=0.93. The model predicted that when S concentration in soil solution (Clo ) at the root surface (ro ) was about 2mM or higher, this high Clo will trigger a higher ion Influx rate of about 2.6 nmol/m2sec. Plants grown on soils with Clo less than 1 mM at ro will show a lower ion Influx rate of about 0.8 nmol/m2sec, suggesting that S uptake by wheat plants is biphasic and depends on Clo at ro .  相似文献   

20.
Abstract

The concentrations and forms of soil cadmium (Cd) in 12 different New Zealand topsoils were investigated using a sequential fractionation procedure. Total soil Cd concentrations were low and ranged between 0.03 μg g‐1 to 1.34 μg g‐1 and were highly correlated with total soil phosphorus (r2=0.85, P<0.01). Results indicated that there was a wide range in the concentrations of Cd associated with individual soil fractions and large variations between soils. On average for all soils, the smallest proportion of Cd was in exchangeable forms, i.e., 3%, with 12% in the crystalline oxide fraction, 13% in the amorphous oxide fraction and the greatest proportion of Cd associated with the organic 34% and residual 38% fractions. There was evidence to show that a soil extractant which is commonly used to predict plant uptake of Cd from soils, i.e., 0.04 M ethylene diamine terra acetic acid (EDTA), extracts Cd from both exchangeable and organic forms of soil Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号