首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, diagnosis of boron (B) nutritional status based on leaf B concentrations was compared for the most common leaf-sampling times for olive trees, January and July. For this purpose, field experiments were conducted over 4 years (2003–2006) in two rainfed olive groves located in Mirandela and Bragança, northeastern Portugal. Leaf samples were collected in January and July and analyzed for B by standard procedures. Fruit harvest occurred in December of each year. The crops followed typical alternate fruiting cycles. During the 4 years of the study, mean olive yields in the Bragança orchard fluctuated, yielding 3.6, 28.1, 5.5, and 22.7 kg tree?1. Yield variation per individual tree was also great. In the Bragança orchard and in the 2004 harvest, yields ranged from 1.2 to 52.7 kg tree?1. Leaf B concentrations also varied greatly between individual trees. In the Bragança orchard in the July sampling of 2004, values for individual trees varied from 12.2 and 23.7 mg B kg?1. From a total of 16 scatterplots generated from the relationship between leaf B concentrations and olive yields, 10 significant linear relationships were established; six of them were related to July sampling dates and four were related to January dates. The number of significant linear relationships established between leaf B concentration and olive yield was used as a criterion of the accuracy of the B nutritional diagnosis, because this represented the lowest experimental variability. By using this criterion, the July sampling date proved as better for B nutritional diagnosis, although the difference from January sampling date was not sufficient to disregard this. Leaf B concentrations were consistently greater in July than in January. Averaged across the 4 years of the study in both orchards, the difference was 4.3 mg B kg?1. This difference should be taken into account in the interpretation of leaf analysis results when B levels are close to the deficient critical concentration.  相似文献   

2.
Four separate experiments were carried out in greenhouse conditions from spring of 2001 to summer of 2003. The aim of this research was to study the effect of factors such as leaf age, salt type and concentration, number of foliar applications, and the nutritional status on the efficiency of foliar applications of potassium (K) in olive plants. In all experiments, mist-rooted ‘Picual’ olive plants growing in 2 L pots containing perlite were fertigated with a complete nutrient solution containing 0.05 mM or 2.5 mM potassium chloride (KCl). In one experiment, plants received two foliar applications with five concentrations of KCl (0%, 2%, 4%, 6%, or 8%) at 63 and 84 days after transplanting. Foliar KCl applications at 2% or 4% increased shoot lengths and the K content of plants fertigated with 0.05 mM KCl (poor K nourished), while foliar KCl application did not have any influence on the growth or K content of plants fertigated with 2.5 mM KCl (normal K nourished). When the number of foliar applications was increased, the results showed that two foliar applications were enough to increase leaf K concentration in olive plants above the sufficiency level. Leaf age could influence the efficiency of foliar K application. Leaf K concentration were higher in young leaves than in mature ones. All K-salts studied as foliar sprays [KCl, potassium sulfate (K2SO4), potassium nitrate (KNO3), potassium carbonate (K2CO3), and potassium phosphate (KH2PO4)] were effective in increasing leaf K concentration. The results obtained in the present study indicate that foliar applications of K effectively increase K content in K-deficient olive plants, and that foliar applications might be more effective on young leaves. Two foliar applications of 4% KCl or the equivalent for other salts are enough to increase leaf K concentration.  相似文献   

3.
Own rooted olive plants (Olea europaea L.) of the cvs. ‘Megaritiki’ (M), ‘Chondrolia Chalkidikis’ (C), ‘Amfissis’ (A), ‘Kalamon’, ‘Koroneiki’, ‘Agiou Orous’, and wild olives, as well as the scion x rootstock combinations CxC, MxC, MxM, AxM, CxM, AxA, and CxA were irrigated with a nutrient solution containing 10 mg boron (B)/L for two months. In all the own rooted plants and in the rootstock—scion combinations of the same cultivar stem growth rate was decreased due to high B. The lowest B concentration in leaves and roots was found in ‘Kalamon’ and wild olives, respectively. ‘Megaritiki’ had higher leaf B concentration when grafted on ‘Megaritiki’ or ‘Chondrolia Chalkidikis’ compared to own rooted plants. The same cultivar as own rooted plant had higher root B concentration than as rootstock of the other tested cultivars.  相似文献   

4.
Nitrogen (N) and boron (B) are mobile elements in soil. Therefore, the application of these nutrients is typically performed annually, as a single dose, or even split into several fractions in the case of N. In olive (Olea europaea L.), however, controversial literature has suggested that yearly application of N may not be required. In the case of B, some authors indicated that one single application is sufficient for 3 or 4 years. Thus, the effects of these elements on olive yield, leaf N and B concentrations, as well as soil available N and B were investigated during a field trial performed in an olive orchard located in northeast Portugal, in which N and B were not applied for four consecutive growing seasons. Fertilizer treatments consisted of the following: the control, which was a complete fertilization plan where N and B were included (N + B treatment); –N treatment, with N excluded from the fertilization plan; and –B treatment, with B excluded. Available soil N and B were estimated from a pot experiment with Italian ryegrass (Lolium multiflorum L.) and from chemical laboratory extractions. Olive yield decreased significantly in the –N treatment in comparison to the control. A slight yield reduction in the –B treatment in comparison to the control was also observed. Leaf N and B concentrations decreased significantly in the –N and –B treatments, respectively, in comparison to the N + B treatment. Soil available N and B at the end of the experiment were significantly lower in the –N and –B treatments, respectively, in comparison to the N + B control. The results showed a continuous decrease in olive yield and leaf N and B concentrations, which reflected the reduction in soil-available N and B in the treatments lacking the respective nutrient. Therefore, it seems prudent to recommend adjustments to the rates of N and B every year to prevent reduction in tree crop performance and improve nutrient-use efficiency.  相似文献   

5.
A low-input agricultural system needs a natural source of nitrogen (N). Legume species can fix great amounts of N that can be subsequently used by a nonlegume crop. In this study three legume cover crops were grown in traditional olive orchards in northeastern Portugal from October 2009 to May 2010, and the aboveground biomass was mechanically destroyed and left on the ground as a mulch. In the following growing season, from October 2010 to May 2011, two nitrophilic plant species were grown in circular microplots of 154 mm surrounded by polyvinyl chloride rings to assess the soil N availability. The N fixed by the legume cover crops, estimated by the difference technique, was shown to vary from 79.7 to 187.5 kg N ha?1. The nitrophilic plant species identified a small peak of soil available N in the autumn of 2010, probably resulting from the mineralization of the root system of the legume species. In the next spring, the increase of soil-available N in the plots where the legume cover crops had been grown, in comparison to the control plot, was residual. The great amounts of N present in the mulched materials seem to disappear without having entered the soil. Mulching with high-N content biomass may be troublesome due to the high risk of N losses probably by ammonia (NH3) volatilization.  相似文献   

6.
Leaves of olive (Olea europaea var. minor rotunda) were collected from mature non-irrigated trees in an “off” year, at monthly intervals, from May 2015 to April 2016. Leaf concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and boron (B) were determined. Seasonal fluctuation curves were developed for each nutrient, in order to use them for interpretation of leaf analysis. Concentrations of N, P, K, Ca and Mg showed significant fluctuation throughout the year, while B, Fe, Mn and Zn showed less intense changes. Nutrient accumulation varied according to tree vegetative growth and weather conditions.  相似文献   

7.
Some legume species are able to utilize phosphorus (P) from sparingly soluble P sources benefiting companion crops or those following in the rotation. Lupinus albus, Vicia villosa, and a mixture of eleven annual pasture legumes were used in olive orchards as mulched cover crops as a means of increasing the soil P availability. By soil testing and growing bioindicator P plants in the next season, it was possible to detect a slight but consistent increase in soil P availability. The results indicated that the increase in soil P availability was mainly due to the mineralization of the high P content legume residues, rather than the direct effect in the rhizosphere of the living plants. The results also suggested that the good adaptation of white lupine to low P environments might be due to a high internal P use efficiency of this species, producing high dry matter yields with low P concentration in their tissues.  相似文献   

8.
In acid soils, when no-tillage farmers intend to apply lime, the question arises as to whether it should be incorporated into the soil or whether it can be left on the soil surface. In this study, two types of limestone, calcitic (Lcal) and dolomitic (Lmag), were tested in two olive groves of cv. Cobrançosa, with an initial pH of 4.9 (S. Pedro) and 5.5 (Raparigas). In S. Pedro, limestone was incorporated into the soil (Lburied) and in Raparigas, it was left on the floor (Lfloor). The use of limestone significantly increased soil pH in the 0–0.10 m layer in both experiments. In the 0.10–0.20 m soil layer, only Lmag increased significantly the soil pH in comparison with the control. Lmag was more effective than Lcal in increasing cation exchange capacity (CEC) and reducing exchangeable acidity (EA) and aluminium (Al3+) in the Lfloor experiment. Both limes increased leaf calcium (Ca) concentration, and Lmag increased the leaf levels of magnesium (Mg). In Lfloor experiment (higher soil pH), soil microbial carbon (C) decreased, and microbial nitrogen (N) increased with liming, which may indicate an increase in bacteria in the soil and a decrease in fungi. In Lburied experiment (initial pH of 4.9), liming significantly increased accumulated (2018–2021) olive yield (56 and more than 67 kg tree−1, respectively, in the control and liming treatments). In Lfloor experiment (initial pH of 5.5), the accumulated olive yields did not differ significantly between treatments (average values between 105 and 115 kg tree−1). The results of this study provide evidence that liming may increase olive yield in very acid soils and that dolomitic limestone should preferably be used by no-tillage farmers, due its higher solubility and faster effect on soil and trees.  相似文献   

9.
Abstract

To study the response of inorganic and organic nitrogen (N) sources both alone and in conjunction and their influence on soil quality, a field experiment was conducted during kharif and rabi seasons using sunflower (MSFH‐8) as test crop. The experimental site soil was Typic Haplustalf situated at Hayatnagar Research Farm of Central Research Institute of Dryland Agriculture, Hyderabad, India, at 17° 18′ N latitude, 78° 36′ E longitude. The experiment design was a simple randomized block design with 11 treatments replicated four times. Among all the treatments, vermicompost (VC)+Fert at 25+25 kg N ha?1 recorded the highest grain yields of 1878 and 2160 kg ha?1 during both kharif and rabi seasons, respectively, which were 43.9 and 85.1% higher than their respective control plots. Apparent N recovery varied from as little as 38.30% (FYM at 50 kg N ha?1) to 62.16 (25 kg N ha?1) during kharif and 49.65 (75 kg ha?1) to 83.28% (VC+Fert at 25+25 kg N ha?1) during rabi season. Conjunctive nutrient treatments proved quite superior to other set of treatments in improving the uptake of N, phosphorus (P), potassium (K), sulfur (S), and micronutrients in sunflower and their buildup in the soil. Highest relative soil quality indexes (RSQI) were observed under VC+Fert at 25+25 kg N ha?1 (1.00) followed by VC+Gly at 25+25 kg N ha?1 (0.87). Considering the yield and relative soil quality indices (RSQI), conjunctive applications of VC with either inorganic fertilizer, FYM, or Gly at 25+25 kg N ha?1 could be a successful and sustainable soil nutrient management practice in semi‐arid tropical Alfisols. Besides this, the fertilizer N demand could be reduced up to 50%.  相似文献   

10.
11.
The effect of soil potassium (K) supplies on the yield and nutritional status of maize and on interactions between the nutrients was examined in a long-term mineral fertilization experiment on maize. The experiment was set up in 1989 in Hungarian Great Plain, Szarvas on chernozem meadow soil calcareous in the deeper layers, with four levels each of nitrogen (N), phosphorus (P) and potassium (K) supplies. The present paper describes the results of K fertilization in the 7–19th years of the experiment, from 1996 to 2008. The ammonium (NH4)-lactate (AL) potassium oxide (K2O) content of the ploughed layer ranged from 200 to 550 mg kg–1 depending on the K fertilization level. No significant yield surpluses were recorded in any of the 13 years in response to the better K supplies ensured by K fertilizer. The results of leaf analysis indicated that the K concentrations representing satisfactory K supplies at a grain yield level of 10–14 t ha–1 were 2.3–4.3% at the 5–6-leaf stage and 1.5–2.6% at the beginning of tasselling. When the AL-K2O content of the soil was above 200–320 mg kg–1, K– calcium (Ca), K–magnesium (Mg) and K–copper (Cu) antagonism was observed in the nutrient concentrations of the maize leaves in most years. The limit values of satisfactory nutrient supplies for maize in the 5–6-leaf stage and at the beginning of tasselling were 0.25–0.60% for Ca, 0.15–0.40% for Mg, and 7–11 mg kg–1 and 2–11 mg kg–1, respectively, for Cu. In dry years the iron (Fe) and zinc (Zn) concentrations of maize leaves declined at higher soil K supply levels.  相似文献   

12.
连作对荞麦产量、土壤养分及酶活性的影响   总被引:1,自引:0,他引:1  
高扬  高小丽  张东旗  赵涛  高金锋  杨璞  冯佰利 《土壤》2014,46(6):1091-1096
在连续4年不施肥的定位试验基础上,采样分析了不同荞麦连作年限(2年、3年和4年)对土壤养分、酶活性和荞麦产量的影响。结果表明,随连作年限的增加,荞麦产量下降,且显著低于与豆科作物轮作下的荞麦产量;土壤氮、磷、钾含量均降低,磷和钾含量降低更明显,土壤p H提高;土壤碱性磷酸酶、过氧化氢酶活性下降,脲酶活性先降后升,蔗糖酶活性总体上呈降低趋势。因此,为维持地力,提高荞麦产量,一要实行荞麦与芸豆等豆科作物轮作倒茬,二要施用一定的肥料。  相似文献   

13.
以纽荷尔脐橙为试材,于2002年测定了湖北省秭归县柑橘良种示范场、兴山县高阳镇宝坪村、巴东县东瀼口镇雷家坪村、长阳县渔峡口镇岩松坪村、公安县卷桥水库白云山园艺场、阳新县王英镇石港村、通城县园艺场、丹江口市蔡家渡果园场的纽荷尔脐橙园0~40cm土层的营养状况,分析了相应果园2003年纽荷尔脐橙果实的主要品质。结果表明:供试果园土壤pH值适宜柑橘的生长发育和品质表现,但碱解N普遍缺乏,而其他土壤养分指标差异明显,有机质含量除了秭归县和丹江口市处于低量水平、通城县处于偏低水平外,其他均属适宜范围;有效P含量除了兴山县、长阳县和通城县属于适宜范围外,其他均属缺乏范围;速效K含量表现极不平衡,秭归县处于极缺范围,丹江口市和通城县处于缺乏范围,巴东县处于适宜范围,而兴山县、长阳县、阳新县和公安县处于高量范围。在这种土壤背景下生产出的纽荷尔脐橙果实的主要品质产生很大差异。多元线性逐步回归分析结果表明,土壤养分对纽荷尔脐橙果实品质有很大影响。在一定范围内,可溶性固形物含量与有效P和速效K含量存在显著的线性相关关系,可滴定酸含量和果皮亮度值与土壤pH值、碱解N和速效K含量呈显著的线性负相关。  相似文献   

14.
Effects of seed priming with zinc (Zn) plus manganese (Mn), boron (B), and phosphate (P) on growth and nutritional status of maize were studied. Nutrient seed priming significantly increased seed contents of primed nutrients. In nutrient solution (NS) lacking Zn and Mn, growth of maize plants primed with Zn?+?Mn increased by more than 50% and 100%, respectively, as compared to control treatment. The primed nutrients were efficiently translocated to the growing shoot and could maintain Zn and Mn supply for at least three weeks of the culture period. In soil culture, plants suffered from P and Zn deficiency, which was mitigated to some extent by P and Zn?+?Mn priming. Particularly, translocation of Zn seed reserves to the shoot tissue was negatively affected by the highly calcareous soil. In the field experiment, Zn?+?Mn seed priming increased grain yield by 15%, demonstrating the potential for long-lasting effects of nutrient seed priming.  相似文献   

15.
Sustainable soil management of orchards can have positive effects on both soils and crop yields due to increases in microbial biomass, activity and complexity. The aim of this study was to investigate medium‐term effects (12 yr) of two different management practices termed ‘sustainable’ (ST) and ‘conventional’ (CT) on soil microbial composition and metabolic diversity of a rainfed mature olive orchard in Southern Italy. ST included no‐till, self‐seeding weeds (mainly graminaceous and leguminosae), and mulch derived from olive tree prunings, whilst CT was managed by frequent tillage and included severe pruning with residues removed from the orchard. Microbial analyses were carried out by culture‐dependent methods (microbial cultures and Biolog®). Molecular methods were used to confirm the identification by light microscopy of the isolates of fungi and Streptomyces. Significantly more culturable fungi and bacteria were found in ST than in CT. The number of fungal groups in ST was also significantly greater than in CT. Overall and substrate‐specific Biolog® metabolic diversity indices of microbial communities and soil enzyme activities were greater in ST. The results demonstrate that soil micro‐organisms respond positively to sustainable orchard management characterized by periodic applications of locally derived organic matter. This study confirms the need to encourage farmers with orchards in the Mediterranean basin to practise soil management based on organic matter inputs associated with zero tillage to improve soil functionality.  相似文献   

16.
The effect of salinity (NaCl) on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young Iranian commercial olive cultivars (‘Zard’ and ‘Roghani’) was studied. One-year-old trees of these cultivars were planted in 10-L plastic pots containing equal ratio of sand-perlite mixture (1:1). Sodium chloride at concentrations of 0, 40, 80, 120, or 160 mM plus Hoagland's solution were applied to these pots for 150 days. The results showed that chlorophylls (a), (b), and (a+b) reduced with increasing of salinity up to 40 mM. There was no difference between cultivars for chlorophylls (b) and (a+b) while ‘Roghani’ showed more decreased in content of chlorophyll (a) than did ‘Zard’. Total soluble sugars in leaves increased with an increase in salinity up to 80 mM but decreased with additional increase in salinity. Salinity stress reduced water potential equally in both cultivars. The concentrations of sodium (Na) and chloride (Cl) and Na/potassium (K) ratio were increased and K decreased with increasing of salinity up to 80 mM in leaves and roots. Concentrations of K, magnesium (Mg), calcium (Ca), phosphorus (P), and nitrogen (N) reduced significantly in leaves, shoots and roots with increasing salinity.  相似文献   

17.
Glyphosate is a widely used nonselective herbicide for the control of agricultural weeds. It is being increasingly used in glyphosate resistant genetically modified plants. However, there are few studies on its effects on the nutritional status of soybean, particularly on the uptake of zinc (Zn). Two experiments were conducted under field conditions in a Typic Quartzipsamment and an Orthic Ferralsol to investigate the effect of glyphosate application × Zn interaction on soil fertility, yield components, seed yield (SY), shoot dry weight (SDW) yield, and nutritional status of soybean. The five Zn rates 0, 3, 6, 9, and 12 kg ha?1 were used in two soybean varieties [BRS 133 (conventional—NGM) and its essentially derived transgenic line BRS 245RR (GM), which was divided into: with (+Gly) and without (–Gly) glyphosate application. Only the P (phosphorus) and Zn available concentrations in the soil were impacted by Zn rates. However, the available P concentration only decreased in the soil planted with GM soybean. Mehlich 1 and diethylenetriaminepenta acetic acid–triethanolamine (DTPA–TEA), 7.3 extractants were effective to determine the available Zn. In the two crop sites, the number of pods per plant (NPP) and the SDW yield were affected by the interaction varieties × Zn. SY was influenced by the application of the herbicide, reducing a potential phytotoxic effect with the use of high rates. Regarding the nutrients, only the foliar calcium (Ca), boron (B), iron (Fe), and manganese (Mn) concentrations were negatively affected by glyphosate, and in the case of Zn, the difference occurred only between the varieties BRS 133 and BRS 245RR.  相似文献   

18.
This research was conducted to determine the effectiveness of various treatments in correction of single deficiency of iron (Fe) and multiple deficiencies of Fe, zinc (Zn), and boron (B) in an olive cultivar (Gemlik) in the southeastern Marmara region of Turkey. This study was consisted of four field experiments, which included control, soil and foliar applications of Fe alone, and combinations with Zn and B. Soil applications of the compounds were only performed in the first year of the experiments to estimate residual effect of soil applications in the following year. Foliar applications were sprayed onto leaves two and four times at two doses in consecutive years. Soil application of iron sulfate did not increase Fe concentrations in the both leaves and fruits. Foliar applications of iron sulfate considerably elevated leaf total and active Fe concentrations, but the effect of the foliar applications on fruit Fe concentrations was small. Two foliar applications of iron in each season seemed to be appropriate treatment in the all experiments, as well. To maintain sufficient Fe concentrations, especially in the newly developing tissues of olive trees, foliar application of Fe should be conducted at least four times at the lowest dose as performed in the experiments. Foliar applications of double and triple combinations of iron sulfate with zinc sulfate and borax increased significantly B and Zn concentrations in the trees, as well.  相似文献   

19.
Abstract

The olive tree (Olea europaea L.) is adapted to tolerate severe drought and high irradiance levels. Relative electron transport rate (J), photosynthetic efficiency (in terms of F v /F m and ΦPSII), photochemical (qP) and non-photochemical quenching (NPQ) were determined in 2-year old olive plants (cultivars ‘Coratina’ and ‘Biancolilla’) grown under two different light levels (exposed plants, EP, and shaded plants, SP) during a 21-day controlled water deficit. After reaching pre-dawn leaf water potentials of about -6.5 MPa, plants were rewatered for 23 days. During the experimental period, measurements of gas exchange and chlorophyll fluorescence were carried out to study the photosynthetic performance of olive plants. The effect of drought stress and high irradiance levels caused a reduction of gas exchange, J, ΦPSII and F v/F m and this decrease was more marked in EP. Under drought stress, EP showed a higher degree of photoinhibition, a higher NPQ and a lower qP if compared to SP. Coratina was more sensitive to high light and drought stress and had a slower recovery during rewatering. The results confirm that photoprotection is an important factor that affects photosynthetic productivity in olive, and that the degree of this process varies between the cultivars. This information could give a more complete picture of the response of olive trees grown under stressful conditions of semi-arid environments, and could be important for the selection of drought-tolerant cultivars with a high productivity.  相似文献   

20.
环渤海湾地区主要梨园土壤养分状况及养分投入研究   总被引:2,自引:0,他引:2  
对环渤海湾地区三省204个主要梨园养分投入和土壤养分含量状况进行了研究,结果表明:(1)该区域主要梨园土壤有机质平均含量为17.1 g kg-1,其中,辽宁省主要梨园土壤有机质平均含量为22.9 g kg-1,山东和河北省主要梨园土壤有机质平均含量<20 g kg-1,<10 g kg-1的梨园分别占13%和25%。该地区梨园土壤碱解氮、速效磷和速效钾平均含量为70.0 mg kg-1、63.1 mg kg-1和175.9 mg kg-1,速效磷含量普遍较高,存在不同程度积累现象。梨园土壤酸化现象明显,50%以上的梨园土壤pH<6.0,以辽宁省梨园土壤pH平均值最低。(2)土壤养分质量综合评价结果表明,环渤海湾地区的辽宁省梨园土壤养分水平最高,河北省最低。土壤有机质、碱解氮和pH值是该地区主要梨园土壤养分质量的限制因子。(3)山东省主要梨园氮、磷(P2O5)、钾(K2O)养分总投入量分别为968 kg hm-2、441 kg hm-2和523 kg hm-2,且以化肥养分投入为主。河北省养分投入状况与山东省相似。山东和辽宁省梨园化肥施用以三元复合肥为主,分别占94%和66%,河北省施用的尿素占化肥总量的77%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号