首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a pot experiment, the P‐efficient wheat (Triticum aestivum L.) cultivar Goldmark was grown in ten soils from South Australia covering a wide range of pH (four acidic, two neutral, and four alkaline soils) with low to moderate P availability. Phosphorus (100 mg P kg–1) was supplied as FePO4 to acidic soils, CaHPO4 to alkaline, and 1:1 mixture of FePO4 and CaHPO4 to neutral soils. Phosphorus uptake was correlated with P availability measured by anion‐exchange resin and microbial biomass P in the rhizosphere. Growth and P uptake were best in the neutral soils, lower in the acidic, and poorest in the alkaline soils. The good growth in the neutral soils could be explained by a combination of extensive soil exploitation by the roots and high phosphatase activity in the rhizosphere, indicating microbial facilitation of organic‐P mineralization. The plant effect (soil exploitation by roots) appeared to dominate in the acidic soils. Alkaline phosphatase and diesterase activities in acidic soils were lower than in neutral soils, but strongly increased in the rhizosphere compared with the bulk soil, suggesting that microorganisms contribute to P uptake in these acidic soils. Shoot and root growth and P uptake per unit root length were lowest in the alkaline soils. Despite high alkaline phosphatase and diesterase activities in the alkaline soils, microbial biomass P was low, suggesting that the enzymes could not mineralize sufficient organic P to meet the demands of plants and microorganisms. Microbial‐community composition, assessed by fatty acid methylester (FAME) analysis, was strongly dependent on soil pH, whereas other soil properties (organic‐C or CaCO3 content) were less important or not important at all (soil texture).  相似文献   

2.
Recently, application of sewage sludge or effluents resulted in raising the concentrations of some heavy metals in some agricultural soils of Iran. Experiments were conducted to evaluate the competitive adsorption of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) on six calcareous soils. Adsorption characteristics were evaluated by equilibration of 1 g of each soil sample with 20 ml of 0, 10, 20, 30, 40, 50, 100, or 200 mg L?1 of their nitrate solutions and 0.01 M NaNO3 as background electrolyte. Furthermore, solid/liquid distribution coefficients (Kd) of studied metals, as an index of soil capacity to resist a change of the soil solution concentration, were calculated. Results indicated that amounts of adsorbed Pb, Cu, Zn, and Cd increased with increase in their concentrations in the contact solutions, but this trend was more pronounced for Pb and Cu than the others. For all studied soils and metals, Langmuir equation described the adsorption behavior fairly well. Furthermore, Langmuir and Freundlich equation parameters were positively correlated to cation exchange capacity (CEC) and smectite contents; whereas, they were negatively correlated to sand content. Considering Kd values, the selectivity sequence of the metal adsorption was Pb > Cu > Zn > Cd. Therefore, the risk of leaching and also plant uptake of Zn and Cd will be higher as compared to those of the other elements.  相似文献   

3.
Zinc sorption–desorption by sand, silt and clay fractions of six representative calcareous soils of Iran were measured. Sand, silt and clay particles were fractionated after dispersion of soils with an ultrasonic probe. Zinc sorption analysis was performed by adding eight rates of Zn from 6 to 120 μmol g?1. For the desorption experiment, samples retained after the measurement of Zn sorption were resuspended sequentially in 0.01 M NaNO3 solution and shaken for 24 h. Results indicated that Zn sorption by soil fractions increased in the order clay > silt > sand, and correlated negatively with CaCO3 content and positively with cation exchange capacity (CEC) and smectite content. Results indicated that for all fractions, the Langmuir equation described the sorption rates fairly well. In contrast to sorption, Zn desorption from soil fractions increased in the order sand > silt > clay, and correlated positively with CaCO3 content, CEC and smectite content. Results showed that parabolic diffusion and two constant equations adequately described the reaction rates of Zn desorption. In general, for all soils studied, the coarser the particle size, the less Zn sorption and more Zn desorption, and this reflects much higher risk of Zn leaching into groundwater or plant uptake in contaminated soils.  相似文献   

4.
Laboratory and greenhouse experiments were conducted to determine the influence of soil properties on adsorption and desorption of boron (B) as well as to estimate the degree of reversibility of adsorption reactions. The utility of Freundlich and Langmuir equations for characterizing the plant availability of applied B in soils was established using soybean [Glycine max (L.) Merr.] as a test crop. The adsorption-desorption study revealed that Fe2O3 and clay were primarily responsible for retaining added B in all the 25 different soils under investigation. Organic carbon, pH and cation exchange capacity (CEC) positively influenced the adsorption of B while free Fe2O3, organic carbon and clay retarded release of B from these soils. The degree of irreversibility (hysteresis) of B adsorption/desorption increased with increase in organic carbon and CEC of these soils. Freundlich isotherm proved more effective in describing B adsorption in soils as compared to Langmuir equation. The split Langmuir isotherm demonstrated that any of the adsorption maxima, calculated from lower, upper or entire isotherm, could be of practical use. Contrary, bonding energy coefficient, calculated either at lower or higher equilibrium concentration failed to show any practical benefit. Regression models as a function of B application rate and adsorption equation parameters to predict B uptake from applied B, demonstrated the utility of Langmuir and Freundlich equation parameters.  相似文献   

5.
Adsorption isotherm is essential for predicting its mechanisms, which are important for potassium (K) fertilizer application and to recommendation appropriate rates for acidic soils. Thus, the objective of this study was to evaluate K adsorption characteristic of the selected soils by comparing different adsorption models with soil properties of the soil in different districts (Sodo Zurie, Damot Gale, Damot Sore and Boloso Sore) in the Wolaita Zone of Southern Ethiopia. Four adsorption isotherms are: Langmuir, Freundlich, Temkin, and Van Huay were used to describe adsorption processes. Composite surface (0-20 cm) depth soil samples from four districts sites were collected. The results revealed that the K adsorption data coincide with both models with (r2 = 0.99). However, Freundlich model was better in describing K adsorption than the other model. The adsorption maxima(ad(max), distribution coefficient, buffer capacity (BC), and adsorption capacity(a(capacity) values of soils ranged from -333 to334.5,0.54 to78.7,159.9 to 389.3, and 327 to 417mg Kkg-1 respectively, these results showed that Sodo Zurie, Bolos Sore and Demote Sore were effective model parameters. Van Huay a(capacity) 417mg Kkg-1 while the bonding energy constant Langmuir is -0.075mg Kkg-1 in Bolos Sore soil compared to other soils, which were found to be more valuable in discriminating between high K adsorption soils. Correlation between some soil properties with ad(max) were positively a highly correlated with clay, pH, organic carbon (OC) and exchangeable potassium with r2 = 0.92**, 0.93**, 0.95** and 0.96 ** respectively, but negatively correlated with bonding energy with r2= -0.79, -0.80,-0.77 and -0.72 respectively, while calcium carbonate (CaCO3) was very highly correlated with ad(max) r2= 0.99***). The Freundlich constant, Temkin BC, and Van Hauy a(capacity) were correlated with CaCO3 content soils with r2=0.12,-0.01,and 0.12,respectively, while slope (1/n) was significantly negatively correlated with soil cation exchange capacity (CEC), CaCO3, clay contents and exchangeable K and Mg2+ with r2= 0.04, -0.67, -0.78, -0.69, and –0.69, respectively. These findings reveal the extent of K depletion in the soils of Wolaita providing a baseline for K rates required for crop production and validation of all models through real-time experiments in the field; this is recommended before the models are used on a large scale basis.  相似文献   

6.
ABSTRACT

We studied (i) the pH buffer capacity (pHBC) of calcareous soils varied widely in calcite and texture, (ii) the contribution of soil properties to pHBC and (iii) the significance of using a model based on calcite dissolution to estimate the pHBC of calcareous soils. The pHBC of soils was measured by adding several rates of HCl to soils (100–6500 mM H+ kg–1), in a 0.01 M CaCl2 background and an equilibration time of 24 h. The pHBC (mM H+ kg–1 pH?1) varied from 55 to 3383, with the mean of 1073. The pHBC of the soils was strongly correlated with soil CaCO3 equivalent (calcite) (r = 0.94), sand (r = ?0.72), silt (r = 0.60), EC (r = 0.63), pH (r = 0.55), and weakly (r = 0.37) but significantly with clay content. The attained pHBC values indicated that calcite was probably the main buffer system in these soils. The chemical equilibrium model successfully predicted pH titration curves based on calcite dissolution, indicating buffering of acid inputs in the calcareous soils is dominated by calcite dissolution. The model can be used to simulate acidification of calcareous soils and to provide information for making environmental management decisions.  相似文献   

7.
The adsorption of copper by four alkaline soils of northwest India was investigated using 0.05m CaCI2 as supporting electrolyte. The adsorption data conformed to the competitive Langmuir adsorption equation although there was possibliity of copper hydroxide or carbonate precipitation at higher concentrations of added copper. The adsorption capacities of soils were related to CEC, clay content and CaCO3 equivalent of soil. The free energy changes for adsorption and for interaction were negative and positive respectively.  相似文献   

8.
Abstract

Zinc adsorption by 10 (pH 4.0–6.5) cultivated mineral soils from Finland was studied in batch experiments. Additions of Zn ranged up to 600 mg kg?1 of soil and the corresponding equilibrium concentrations were 0.1–13 mg 1?1. In each soil, Zn adsorption conformed to the Freundlich isotherm. Despite a relatively low initial Zn adsorption by the acidic soils, each of the soils proved to have a high potential to adsorb Zn, but the capacity was highly pH dependent. In addition to the conventional Freundlich adsorption isotherms, calculated separately for each soil, extended Freundlich-type isotherms that also incorporate soil pH and other soil characteristics were used to describe Zn adsorption of several soils simultaneously in one equation. The pH-dependent Freundlich adsorption isotherm proved to serve as a practical tool to assess Zn adsorption by soils varying in pH and other characteristics.  相似文献   

9.
Zinc (Zn) sorption curves were established for 11 cultivated sandy soils from central Vietnam. Soil samples (10 g) were equilibrated with 5 mM calcium chloride (CaCl2) solutions (50 mL) at five zinc chloride (ZnCl2) concentrations (0 to 80 mg Zn L–1). The experimental sorption data were fitted with the Freundlich equation. The amounts of Zn sorbed by soil (QZn) at different Zn concentrations in the equilibrium solution (CZn) were closely related to cation exchange capacity (CEC) and pH, that is, to the available exchange sites at given pH values. More specifically, an excellent correlation was found between Zn sorption and exchangeable calcium (Caex), which evidently also depends on CEC and pH. A unique equation was proposed to predict QZn from CZn and Caex in the range of Zn loading covered in our research, that is, from traces to QZn ≈ 60 mg Zn kg–1.  相似文献   

10.
We evaluated the effect of elemental S (S0) under three moisture (40, 60, 120% water-filled pore space; WFPS) and three temperature regimes (12, 24, 36°C) on changes in pH and available P (0.5 N NaHCO3-extractable P) concentrations in acidic (pH 4.9), neutral (pH 7.1) and alkaline (pH 10.2) soils. Repacked soil cores were incubated for 0, 14, 28 and 42 days. Application of S0 did not alter the trends of pH in acidic and neutral soils at all moisture regimes but promoted a decrease in the pH of alkaline soil under aerobic conditions (40%, 60% WFPS). Moisture and temperature had profound effects on the available P concentrations in all three soils, accumulation of available P being greatest under flooded conditions (120% WFPS) at 36°C. Application of S0 in acidic, neutral and alkaline soils resulted in the net accumulation of 16.5, 14.5 and 13 g P g–1 soil after 42 days at 60% WFPS, but had no effect under flooded conditions. The greatest available P accumulations in the respective soils were 19, 19.5 and 20 g P g–1 soil (equivalent to 38, 41, 45 kg P ha–1) with the combined effects of 36°C, 60% WFPS and applied S0. The results of our study revealed that oxidation of S0 lowered the pH of alkaline soil (r=–0.88, P<0.01), which in turn enhanced available P concentrations. Also, considering the significant relationship between the release of sulphate and accumulation of P, even in acidic soil (r=0.92, P<0.01) and neutral soil (r=0.85, P<0.01) where the decrease in pH was smaller, it is possible that the stimulatory effect of sulphate on the availability of P was due to its concurrent desorption from the colloidal surface, release from fixation sites and/or mineralization of organic P. Thus, in the humid tropics and irrigated subtropics where high moisture and temperature regimes are prevalent, the application of S0 could be beneficial not only in alleviating S deficiency in soils but also for enhancing the availability of P in arable soils, irrespective of their initial pH.  相似文献   

11.
Abstract

Time dependent zinc (Zn) desorption in eight benchmark soils of India was studied in relation to various pH values and ionic strengths. Soil samples were equilibrated in solutions containing 10 μg Zn g‐1 soil at pH 5.5,6.5, and 7.5 for 48 h at 25±2°C, and adsorbed Zn extracted with calcium chloride (CaCl2) for various periods of time. Desorption of Zn decreased with increasing pH, and the desorption rate decreased abruptly at pH 7.5. In contrast, an increase in the equilibration period and ionic strength of the background electrolyte increased Zn desorption. Four rival kinetic models were fitted and evaluated for their suitability for describing the Zn desorption process. Reaction rate constant (ß) calculated from the Elovich model for the different soils ranged from 9.99 to 25 (mg Zn kg‐1)‐1. The different kinetic models tested indicated that Zn desorption in soils was a diffusion controlled process. The desorption was rapid in the first 4 h, followed by slower phase in the rest of the time at all the pH values indicating a biphasic desorption, characteristic of a diffusion controlled process. The ß value for the Elovich equation showed a strong association with soil clay content and cation exchange capacity (CEC). Further, the best prediction of Zn desorption reaction rate constant could be made using multiple‐regression equation with soil clay content and CEC as variables.  相似文献   

12.
With the large-scale cultivation of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal toxin in the world, the problem of environmental safety caused by these Bt crops has received extensive attention. The effects of soil organic matter (SOM) on the adsorption and insecticidal activity of Bt toxin in variable- and constant-charge soils (red and brown soils, respectively) were studied. Organic carbon in the soils was removed using hydrogen peroxide (H_2O_2). After H_2O_2 treatment, the SOM in the red and brown soils decreased by 71.26% and 82.82%, respectively. Mineral composition of the H_2O_2-treated soils showed no significant changes,but soil texture showed a slight change. After SOM removal, the cation exchange capacity (CEC) and pH decreased, while the specific surface area (SSA), point of zero charge (PZC), and zeta potential increased. The adsorption isotherm experiment showed that the Bt toxin adsorption on the natural and H_2O_2-treated soils fitted both the Langmuir model (R~2≥ 0.985 7) and the Freundlich model (R~2≥ 0.984 1), and the amount of toxin adsorbed on the H_2O_2-treated soils was higher than that on the natural soils. There was a high correlation between the maximum adsorption of Bt toxin and the PZC of soils (R~2= 0.935 7); thus, Bt toxin adsorption was not only influenced by SOM content, but also by soil texture, as well as the SSA, CEC, PZC, and zeta potential. The LC_(50) (lethal concentration required to kill 50% of the larvae) values for Bt toxin in the H_2O_2-treated soils were slightly lower than those in the natural soils, suggesting that the environmental risk from Bt toxin may increase if SOM decreases. As the measurement of insecticidal activity using insects is expensive and time consuming, a rapid and convenient in vitro method of enzyme-linked immunosorbent assays is recommended for evaluating Bt toxin degradation in soils in future studies.  相似文献   

13.
Abstract

The apparent recovery of applied zinc (Zn) by plants is very low in calcareous soils of Iran because most of it is retained by the soil solids. Subsamples of 24 surface soil (clay 130–530 g kg‐1; pH 7.7–8.4; electrical conductivity 0.63–3.10 dS m‐1; organic matter 6.0–22.0 g kg‐1; cation exchange capacity 8–20 cmol kg‐1; calcium carbonate (CaCO3) equivalent 180–460 g kg‐1) representing 13 soil series in three taxonomic orders were equilibrated with zinc sulphate (ZnSO4) solutions and the amount of Zn disappeared from solution after a 24‐h shaking period was taken as that adsorbed (retained) by the soil solids. The adsorption data were fitted to Freundlich (X=ACB) and Langmuir [X=(K‐bC)/(1+K#lbC)] adsorption isotherms. Backward stepwiseprocedure was used to obtain regression equations with isotherms coefficients as dependent and soil properties as independent variables. Freundlich A and Langmuir K were found to be highly significantly related to pH and clay and increasing as these soil properties increased. But Langmuir b was related only to clay and Freundlich B showed no significant relationship with any of the properties studied. The distribution coefficient (also called maximum buffering capacity), calculated as the product of Langmuir K and b, was also found to be highly significantly related to pH and clay. It is concluded that pH and clay content of calcareous soils are the most influential soil properties in retention of Zn.  相似文献   

14.
Experiments were conducted to study drainage and runoff losses of selenium (Se) from two seleniferous soils (from Simbly containing total Se 850 μg [kg soil]–1 and from Barwa containing 1310 μg [kg soil]–1) under simulated rainfall (250–260 mm in three rainstorms) conditions. Rainfall intensities ranged from 56 to 120 mm h–1 with uniformity coefficients ranging from 70.6% to 84.2%. Selenium lost through drainage (sum of drainage from initially saturated soil for 24 h and through dry and wet runs) was 0.15% and 0.11% of total Se content in the two soils. In soils having similar pH and organic‐C content, losses of Se through drainage as well as runoff were defined by total Se, water‐soluble Se, CaCO3 content, and texture of the soils. The amount of runoff water was almost two times in the soil with fine texture and less infiltration rate than in the other and that same trend was observed with respect to loss of sediment. The soil with higher CaCO3 content and water‐soluble Se lost more Se with moving water both through leaching and runoff, whereas the other soil with fine texture lost greater amount of Se with the sediment. Total Se lost through drainage as well as runoff was 0.29% of the native Se present in both the soils suggesting that significant amount of Se could be lost from seleniferous soils during irrigation and rainfall events.  相似文献   

15.
石灰化水稻土的形成   总被引:3,自引:0,他引:3       下载免费PDF全文
石灰化水稻土在我国约有400多万亩。CaCO3含量10—20%,CaCO3/MgCO3之比10—30不等。土壤板结,有石灰结核,有时形成石灰盘。土壤缺磷,少钾,有效态硼、锌、钼、锰也不足。是华南的一种中低产水稻土。石灰化水稻土中的钙主要来自年复一年的施用石灰和引灌含钙高的石灰岩溶洞水;石灰积聚的条件是土壤pH高,土壤CO2分压低和通透性不良;根据土壤中石灰含量和14C测定估算,石灰化水稻土的形成至少有360年以上的历史。石灰化水稻土施用石灰不起中和酸性的作用。所以,必须停施石灰,增施有机肥以根本上改良这种土壤,在未改良前应对症施肥以提高产量。  相似文献   

16.
锌在石灰性土壤中的吸附   总被引:7,自引:0,他引:7  
林玉锁  薛家骅 《土壤学报》1987,24(2):135-141
本文用平衡法研究石灰性土壤对锌的吸附.供试土壤为徐州丰县的黄潮土表层(0-15厘米).结果表明:吸附要用两个Laagmuir方程来描述,可以假想成两个L型表面,采用平移坐标法求出最大吸附量与实验结果基本相符.pH对锌的吸附影响很大,高pH(7.5)时,CaCO3组分对锌的吸附的贡献约占70%,低pH时,对吸附的贡献较小.  相似文献   

17.
THE HIGH- AND LOW-ENERGY PHOSPHATE ADSORBING SURFACES IN CALCAREOUS SOILS   总被引:2,自引:0,他引:2  
The two-surface Langmuir equation was used to study P adsorption by 24 calcareous soils (pH 7.2-7.6; 0.8-24.2 per cent CaCO3) from the Sherborne soil series, which are derived from Jurassic limestone. High-energy P adsorption capacities (xm) ranged from 140–345 μg P/g and were most closely correlated with dithionite-soluble Fe. Hydrous oxides therefore appear to provide the principal sites, even in calcareous soils, on which P is strongly adsorbed (xm 6–51 ml/μg P). The low-energy adsorption capacities (xm) ranged from 400–663 μg P/g and were correlated with organic matter contents and the total surface areas of CaCO3 but not with per cent CaCO3, pH, or dithionite-soluble Fe. Total surface areas of CaCO3 in the soils ranged from 4.0 to 8.5 m2/g soil. Low-energy P adsorption capacities agree reasonably with values (100 pg P/m2) for the sorption of phosphate on Jurassic limestones but phosphate was bonded much less strongly by soil carbonates (k″= 0.08–0.45 ml/μg P) than by limestones (k~10.0 ml/μg P). Low-energy P adsorption in these soils is tentatively ascribed to adsorption on sites already occupied by organic anions (and probably also by bicarbonate and silicate ions) which lessen the bonding energy of co-adsorbed P.  相似文献   

18.
The adsorption isotherms indicated that the adsorption of boron (B) increased with its increasing concentration in the equilibrium solution. The Langmuir adsorption isotherm was curvilinear and it was significant when the curves were resolved into two linear parts. The maximum value of adsorption maxima (b1) was observed to be 7.968 mg B kg?1 in Garhi baghi soil and the bonding energy (k) constant was maximum at 0.509 L mg?1 in Jodhpur ramana soil. The Langmuir isotherm best explains the adsorption phenomenon at low concentrations of the adsorbent, which of course was different for different soils. There was significant correlation between b1 and clay (r = 0.905**), organic matter contents (r = 0.734*), and cation exchange capacity (CEC; r = 0.995**) of soils. A linear relationship was observed in all the soils at all concentration ranges between 0 and 100 mg B L?1, indicating that boron adsorption data conform to the Freundlich equation. Soils that have a higher affinity for boron adsorption, like Garhi baghi, tended to desorb less amount of boron, that is, 43.54%, whereas Ballowal saunkhari desorbed 48.00%, Jodhpur ramana 48.42%, and Naura soil 58.88% of the adsorbed boron. Boron desorption by these soils is positively and significantly correlated with the sand content (r = 0.714**) and negatively with clay content (r = ?0.502*) and CEC (r = ?0.623**). The maximum value of 37.59 mg kg?1 for desorption maxima (Dm) was observed in Garhi baghi soil and also a constant related to B mobility (Kd) was found to be maximum in Garhi baghi (0.222 L kg?1) soil Note: *P<0.05; **P<0.01.  相似文献   

19.
Mean NH3 losses after nine days incubation at 18°C and 60% FC were 3.1±2.9% and 7.6±6.0% of applied urea-N from the pasture and tillage counterparts of 10 soil series. These losses were highly correlated with buffered CEC and maximal pH values (pHm) generated three days after urea application. NH3 volatilization was apparently controlled by buffered CEC and initial pH (R2= 72–87%) and was related to variations in soil organic matter and texture (R2= 77–81%). Losses in the acid pasture soils were attributed largely to initial pH differences, and in the tillage soils to buffered CEC only. Evolution was greater from the tillage than from the pasture equivalent in eight series. This was attributed to differences in CEC, including buffered CEC and pH-dependent charge, caused by differences in OM content primarily but also in texture between the two soil groups. Differences in NH3 evolution from urea in pasture and tillage soils, in general, are not related to pH differences.  相似文献   

20.
Abstract

Zinc (Zn) deficiency is a widespread micronutrient disorder in crops grown in calcareous soils; therefore, we conducted a nutrient indexing of farmer‐grown rainfed wheat (Triticum aestivum, cv. Pak‐81) in 1.82 Mha Potohar plateau of Pakistan by sampling up to 30 cm tall whole shoots and associated soils. The crop was Zn deficient in more than 80% of the sampled fields, and a good agreement existed between plant Zn concentration and surface soil AB‐DTPA Zn content (r=0.52; p≤0.01). Contour maps of the sampled areas, prepared by geostatistical analysis techniques and computer graphics, delineated areas of Zn deficiency and, thus, would help focus future research and development. In two field experiments on rainfed wheat grown in alkaline Zn‐deficient Typic Haplustalfs (AB‐DTPA Zn, 0.49–0.52 mg kg?1), soil‐applied Zn increased grain yield up to 12% over control. Fertilizer requirement for near‐maximum wheat grain yield was 2.0 kg Zn ha?1, with a VCR of 4∶1. Zinc content in mature grain was a good indicator of soil Zn availability status, and plant tissue critical Zn concentration ranges appear to be 16–20 mg kg?1 in young whole shoots, 12–16 mg kg?1 in flag leaves, and 20–24 mg Zn kg?1 in mature grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号