首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

An established stand of alfalfa was fertilized with different combinations of N, P and K. The rate used per nutrient was constant for all combinations. The study was conducted to evaluate the effect of fertilizer application, diurnal change and period to period fluctuation on the mineral composition of alfalfa. Two experiments were conducted at different stages of morphological maturity. Experiment one (E‐1) was initiated when regrowth after an initial hay harvest was in the late‐vegetative to early‐bud stage. The second experiment (E‐2) was initiated when regrowth from E‐1 was approximately 20 cm tall.

Phosphorus application significantly increased the P concentrations in alfalfa, but decreased the Cu levels in both experiments. Potassium applications significantly decreased the levels of Ca, Mg, Na, Cu, Zn, Mo and Co.

Levels of all minerals analyzed in E‐1 were significantly different from period to period while only seven of the sixteen were significantly changed in E‐2. Period to period differences were partially explained by rainfall pattern.

Significant diurnal variations were found for K, Ca, Mn, B, Sr, and Zn in E‐1 and for Ca, SiO2, and Sr in E‐2.

The N, P, and K applied and the P and K available in the soil were correlated with cation levels in alfalfa and the interrelationships were discussed.  相似文献   

2.
Abstract

Manganese (Mn) deficiency often occurs in crops grown on well‐limed sandy soils of the Atlantic Coastal Plain region of the United States. This study was conducted to compare the responses of established alfalfa (Medicago sativa S.) to various application methods of manganese sulfate (MnSO4) fertilizer. Experiments conducted in farmers’ fields at three New Jersey locations determined the effects of applied Mn on forage yield, tissue Mn concentration, and leaf chlorophyll meter readings. An untreated control was compared to the following treatments: foliar Mn applied once before each harvest, foliar Mn applied twice before each harvest, and a one‐time broadcast Mn application in April Or May at 22.4 kg Mn/ha to the soil surface. The rate of foliar Mn used in 1990 was 1.12 kg Mn/ha and in 1991 was 0.56 kg Mn/ha at each treatment time. Forage yield increases were greater with foliar than soil‐applied Mn but there were no differences between foliar‐applied Mn treatments. Total seasonal forage yields were increased (P<0.05) at all three locations with foliar‐applied Mn but at only one location with soil‐applied Mn. When averaged across all locations, forage yields were 6.4% higher than the control for the foliar‐applied Mn treatments compared to 2.9% higher for the soil‐applied Mn treatment. A Mn concentration of 21 mg/kg was determined as the critical level in the upper 15 cm of alfalfa tissue at the early bloom growth stage. Foliar Mn applied twice between harvests most effectively increased tissue Mn concentrations. Soil‐applied Mn initially increased tissue Mn concentration, but there was little long‐term benefit from this treatment. Applied Mn was observed to improve leaf color and chlorophyll meter readings of Mn‐deficient alfalfa. Results indicate that foliar Mn applied before each harvest was a more effective treatment for correction of Mn deficiency of alfalfa than a one‐time soil application of Mn.  相似文献   

3.
Abstract

There is interest in intercropping perennial legumes with com (Zea mays L.) under no‐tillage soil management. Evaluation of N availability by measuring plant N uptake in field research trials with such systems is often complicated by competition for water. We monitored soil inorganic N (ammonium and nitrate) levels at 14‐day intervals for 42 days at 0–10 cm and 10–20 cm soil depths after an alfalfa (Medicago sativa L.) sod was subjected to four different suppression treatments: a) cut and remove, b) cut and return, c) above‐ground kill with paraquat, and d) complete kill with glyphosate. The initial (14 day) release of N was similar in all treatments where residues were left or returned, but alfalfa regrowth immobilized much of the N mineralized in all treatments, except where alfalfa was killed. The greatest quantity of soil inorganic N was found on day 28 where alfalfa was killed, equal to nearly 72% of the N contained in the alfalfa topgrowth. Soil nitrate N concentrations, averaged to a depth of 20 cm and over the 28 and 42 day sampling times, were 6, 9, 13, and 28 mg N/kg for cut and remove, cut and return, paraquat and glyphosate treatments, respectively. Only where alfalfa was killed did soil nitrate concentrations reach the levels established in recently published work as indicative of no further need for fertilizer N (21–25 mg N/kg). These results suggest that a perennial alfalfa intercrop will compete with corn for available soil N. Measures of inorganic soil N might now permit the evaluation of N adequacy for com in various intercrop systems.  相似文献   

4.
Abstract

Large amounts of flue gas desulfurization (FGD) and fluidized bed combustion (FBC) by‐products from burning coal, consisting primarily of gypsum, are available for potential use as a soil amendment. However, information is limited on longer‐term changes in chemical and physical properties induced over time and over small depth increments of the upper soil profile after applying these amendments. This study examined longer‐term effects in an abandoned Appalachian pasture soil amended with various liming materials and coal combustion by‐products (CCBPs). Soil chemical and physical properties were investigated over time and depths. The results indicated limited dissolution and movement of the calcium (Ca) and magnesium (Mg) applied with the chemical amendments, except for Ca and Mg associated with sulfate. However, sufficient dissolution occurred to cause significant increases in exchangeable Ca and Mg and decreases in exchangeable Al that were reflected in corresponding increases in soil pH. These beneficial effects persisted over time and were confined to the upper 0‐ to 15‐cm depth of the profile. The greatest benefits appeared to be in the upper 0‐ to 5‐cm surface layer. Both Ca and Mg applied as calcitic dolomitic limestone tended to be immobilized in the upper 0‐ to 5‐cm layer of the soil profile; Ca more so than Mg. The presence of S applied in the FGD and FBC amendments appeared to enhance the mobility of Ca and Mg. The ratio of Ca/Mg in HCI extracts from the calcitic dolomitic treatment was close to that of applied calcitic dolomite, implying that the inactive component in soil might be the original calcitic dolomite particles. Soil physical properties measured over small depth increments showed that application of the amendments improved the saturated hydraulic conductivity only in the upper 0‐ to 5‐cm depth and had little or no significant effect on the dry bulk density and plant‐available water.  相似文献   

5.
Abstract

Environmental stresses adversely affect alfalfa (Medicago sativa L.) forage quality through altered plant development; however, the effects of soil nutrient stress on forage quality are not well known. The objective of this study was to determine what effect low soil phosphorus (P) had on alfalfa forage quality. Three preplant incorporated rates of P (0, 29, or 59 kg/ha) followed by five topdressed (during each production year) rates of P (0, 7, 15, 29, or 59 kg/ha)were applied to alfalfa established in two experiments in fall of 1988 and 1989. At each harvest in 1989 and 1990, mean stage by weight (MSW) was determined and forage samples were taken for neutral detergent fiber (NDF) and in vitro true digestibility (IVTD) analysis. In the 0‐ to 15‐cm soil layer, soil P concentrations averaged 6, 11, and 22 mg/kg of dry soil with 0, 29, and 59 kg P, respectively, incorporated. Soil P was not changed in the 15‐ to 30‐cm soil layer. Alfalfa herbage increased in P concentration with increasing P fertility level at some, but not all, harvests analyzed. Alfalfa maturity at harvest and NDF concentration increased with increasing P fertilizer rate, whereas IVTD decreased. Differences among treatments in NDF and IVTD probably were due to differences in plant maturity.  相似文献   

6.
Abstract

The purpose of this study was to determine the amount of Cl in plants and soil following topdressing of alfalfa with increasing amounts of KCl (0–0–60). The study was conducted with Ranger alfalfa on a low K Piano silt loam soil that had been topdressed twice during three years with a total of zero, 203, 406, 1220, and 2034 kg/ha of Cl as KCl (0, 224, 448, 1334, and 2240 kg/ha of K). Herbage was harvested annually three times at first flower plus an early October cut (4 cuts). The 3‐year average herbage yields were highest with 1220 kg/ha of topdressed Cl. Herbage yields decreased with 2034 kg/ha of Cl, but not significantly below that at 1220 kg/ha. Weakened and yellowed plants were noted in the spring of the second harvest year after 2034 kg/ha of Cl had been applied, and the first‐flower herbage contained 1.90% Cl. It was concluded that the weakened condition of the alfalfa was due to excess Cl.

Movement of Cl through the silt loam soil was rapid. The largest concentrations of Cl in the soil two years after the last KCl application were at the 76 to 91‐cm soil depth, the deepest soil sample tested.  相似文献   

7.
Abstract

This study was to determine the effect of soil amendments on the fractionation of selenium (Se) using incubation experiments under simulated upland and flooded conditions. The treatments were as follows: 1) control [soil + sodium selenite (Na2SeO3) (1 mg Se kg‐1)]; 2) control + calcium carbonate (CaCO3) (5 g kg‐1); 3) control + alfalfa (40 g kg‐1); and 4) control + CaCO3 (5 g kg‐1) + alfalfa (40 g kg‐1). After a 90‐day incubation, soil was sampled and fractionated into five fractions: 1) potassium sulfate (K2SO4)‐soluble fraction (available to plants); 2) potassium dihydrogen phosphate (KH2PO4)‐exchangeable fraction (potentially available); 3) ammonium hydroxide (NH3H2O)‐soluble fraction (potentially available); 4) hydrochloric acid (HCl)‐extractable fraction (unavailable); and 5) residual fraction (unavailable). Compared with the control, CaCO3 increased the K2SO4 fraction at the expense of the NH3H2O fraction. Alfalfa increased both the K2SO4 and residual fractions but reduced the KH2PO4 and NH3H2O fractions. The CaCO3‐alfalfa treatment had a similar effect to the alfalfa treatment alone. The comparison between the upland and flooded conditions showed that the flooded condition generally increased the residual fraction and decreased the potentially‐available fractions. In general, CaCO3 was a better amendment because it not only increased the available fraction but also maintained the potentially available fractions at a high level. The application of Na2SeO3 and use of appropriate soil amendments can improve Se availability in soil.  相似文献   

8.
Grassland‐livestock farming is the main agricultural activity in the Inner Mongolia steppe of China. It has been estimated that more than 80% of the grasslands suffer from sulfur (S) deficiency in this region. In an incubation study and a greenhouse experiment with alfalfa, the influence of soil moisture (40% and 70% water‐holding capacity, WHC), nitrogen (0 and 200 mg N (kg soil)–1 as NH4NO3), and elemental sulfur (eS; 0 and 300 mg S (kg soil)–1) amendments on the apparent eS oxidation, eS‐oxidation rate, net S‐mineralization rate, and S uptake of alfalfa were studied. After 28 d of incubation, the eS‐oxidation rate was four times higher at 70% than at 40% WHC if no N was applied. With N application, soil moisture had only minor effects on eS oxidation during the whole incubation period. In the greenhouse experiment, lower values for eS‐oxidation rate and net S‐mineralization rate were found if no N was applied. Application of N and eS significantly increased alfalfa growth and S uptake. The results of both experiments suggest that combined N and eS applications are the best way to alleviate S deficiency on these calcareous soils.  相似文献   

9.
Abstract

This study evaluated the application of high levels of log yard fines (LYF), produced by the screening of log yard residues, as a soil amendment/additive. In both pot and field studies, plant growth decreased as LYF application rate increased. LYF immobilized nitrogen (N) and reduced its availability to plants. In the pot study, both alfalfa (Medicago sativa) and orchard grass (Dactylis glomerota L.) had low yields at the first harvest but much higher yields at the second harvest, indicating that N immobilization decreased with time. Alfalfa growth was superior to orchard grass in the LYF‐amended pot soil due to its ability to fix N. LYF provided mineral nutrients and organic matter, lowered soil density, and also improved soil moisture retention properties. This study suggested that LYF could be used as a N‐immobilizing mulch or as a soil amendment/additive for marginal farmland when fertilized adequately and allowed to stabilize in the soil.  相似文献   

10.
为明确国产化盐碱地改良剂在重度盐碱地的施用效果,采用田间试验和室内分析相结合的方法,以牧草和绿肥兼用型紫花苜蓿为供试作物,研究重度盐碱地施用国产1号(2 250 kg·hm-2)、国产2号(7 960kg·hm-2)和脱硫石膏(22 500 kg·hm-2)3种改良剂对土壤理化性质、紫花苜蓿(Medicago sativa L.)出苗率和鲜草产量的影响,以及施用脱硫石膏对土壤(0~20 cm)和紫花苜蓿茎、叶中重金属含量的影响。结果表明,与对照(不施改良剂)相比,施用改良剂处理的紫花苜蓿出苗率提高18.4%~31.7%,3茬鲜草总产量提高18.9%~43.5%;土壤pH下降0.11~1.46,容重降低0.01~0.06 g·cm-3、孔隙率提高1.15%~10.15%,土壤理化性状得到改善;施用脱硫石膏和含有脱硫石膏的国产2号使土壤和紫花苜蓿中汞、铅和铬含量有显著提高,但土壤重金属含量未超过国家《农业土壤环境质量标准》GB15618—2001规定的二级土壤使用标准,紫花苜蓿中汞、镉、铅和铬的含量检测符合国家饲料卫生指标(GB13078—2001)的规定。本研究表明,3种盐碱地改良剂以国产2号的施用效果最好,可在同类型盐碱地大力推广应用。  相似文献   

11.
Abstract

This study was conducted to ascertain the percent of available K, Cl, and SO4‐S recovered by alfalfa (Medicago sativa L. cv. ‘Vernal') herbage when various rates of K as KCl and K2SO4 were topdressed and also to determine where residual K, Cl, and SO4‐S accumulated in the soil profile. An established stand of alfalfa growing on low fertility silt loam soil was topdressed in the spring of each of two harvest years with 0, 448, 896, 1344, and 1792 kg/ha of K as KCl or K2SO4. Four harvests were taken during each harvest year (1972 and 1973). Soil samples were taken during the autumn of 1973 to a depth of 91.4 cm in KCl‐fertilized plots, and to a depth of 76.2 cm in K2SO4‐fertilized and control plots.

Potassium recovery by alfalfa during two harvest years where K as KCl was applied at 448, 896, 1344, and 1792 kg/ha/yr was 56, 33, 20, and 17%, respectively. Recovery of available Cl from those same treatments was 30, 17, 12, and 10%, respectively. Where K as K2SO4 was applied at 448, 896, 1344, and 1792 kg/ha/yr, 55, 35, 27, and 22%, respectively, of available K was recovered. Recovery of available SO4‐S from those same treatments was 16, 9, 7, and 5%, respectively. At the end of two years, a majority of the residual K was in the top 15.2 cm of soil. Residual Cl and SO4‐S were concentrated at a depth of 30.5 to 76.2 cm in the soil profile.  相似文献   

12.
Abstract

Yields were evaluated three years after applied treatments to determine if responses that were not evident during earlier years eventually occurred. Potassium sulfate was applied to established, non‐irrigated, K deficient trees on fine textured soil by banding, placing in augered holes, adding to the backfilled trenches, and by injecting into the soil. Trenches were dug in the fall beside trees to break roots and ammended during backfilling with K2SO4, dolomite lime or combinations of the two. Additional trees received a heavy compost mulch in the early fall. Trenching treatments were generally detrimental. Trenching alone reduced yield and leaf Ca but increased fruit soluble solids content. Trenching plus K2SO4, trenching and lime, all soil amendments, and mushroom compost elevated leaf K from deficient or below normal to the normal range, but decreased leaf Mg. Most K application techniques eventually increased yield, but simple surface applications of K2SO4 in a narrow band were as effective as other more costly procedures. Mulching treatments appear to be as effective as K additions and produce quicker yield responses. Mushroom composts and alfalfa increased leaf N and yield in two years. Mushroom compost doubled yield even three years after a single application.  相似文献   

13.
Abstract

In the search for an approach which could be used to predict available nitrogen (N) in organic amendments, biological and chemical methods were investigated in laboratory and growth chamber studies. Two biological methods [maize plants (Zea mays L.) grown in pots, and soil‐amendment mixtures incubated aerobically at 2, 4, 6, 8, 12, and 16 weeks], and four chemical methods [autoclave, 0.5M potassium permanganate (KMnO4), pepsin, and 6M hydrochloric acid (HCl)] were compared to determine N availability in 36 organic amendments applied to soil. Total N mineralized in a soil amended with different organic amendments ranged from‐12 to 428 mg N/kg soil. The highest value was obtained from sludge number 11 and the lowest from cow manure 2, urban refuse, and grape‐marc. In general, the aerobically‐treated sewage sludges gave higher N‐mineralization rates than other amendments. The 6M HCl and autoclave methods were more suitable for predicting N availability in these organic amendments than either the pepsin or KMnO4 methods. Prediction of N availability in the growth chamber experiments improved if several chemical and biological methods were combined in a multiple regression analysis.  相似文献   

14.
Abstract

Toxic levels of aluminum can cause severe yield reduction in alfalfa (Medicago sativa L.), especially in the presence of drought stress. Reactions to Al stress of alfalfa cultivars and germplasms, representing a broad genetic base and the entire range of dormancy types, were evaluated in a Monmouth soil study [26.2% Al saturation (pH 4.8) vs 2.8% Al saturation (pH 5.7)] and in two nutrient solution experiments (0 vs 111 μmol Al; pH 4.5). The soil study, Experiment 1, and Experiment 2 were harvested 28, 40, and 25 d after seeding, respectively.

In all studies, entries differed significantly in vigor and yields were reduced significantly by Al stress. In the soil study, only ‘Lahontan’ was not affected significantly by Al stress, although Lahontan, ‘Atlantic’, ‘B13‐A14’ (tolerant check), ‘Ladak 65’, and ‘Mesa‐Slrsa’ had comparable relative weights (dry weight stressed/dry weight unstressed). There were no statistically significant differential responses to Al stress in Experiment 1, however the relative weight of B13‐A13 (tolerant check) was considerably larger that those of the other entries. Many entries were not affected significantly by Al stress in Experiment 2; B13‐A14, ‘Moapa 69’, ‘Saranac’, and ‘Teton’ had the largest relative weights. Relative weights for Experiment 1 and Experiment 2 were significantly correlated (r=0.46?) as was mean dry matter production in the soil study and Experiment 2 (r=0.73??).  相似文献   

15.
Abstract

Most agricultural soils in the Indian River area, South Florida, are sandy with minimal holding capacity for moisture and nutrients. Phosphorus (P) leaching from these soils has been suspected of contributing to the eutrophication of surface waters in this region. Dolomite phosphate rock (DPR) and N‐viro soil are promising amendments to increase crop production and reduce P loss from sandy soils. Soil incubation and greenhouse pot experiments were conducted to examine the effects of Florida DPR–N‐viro soil mixtures on the growth of a horticultural crop in an acidic sandy soil and to generate information for developing a desired formula of soil amendments. Dolomite phosphate rock and N–viro soil application increased soil pH, electrical conductivity (EC), extractable P, calcium (Ca), and magnesium (Mg). N–viro soil had greater effect on soil pH, organic matter content, and microbial biomass than the DPR. Comparatively higher nitrification rates were found in the N–viro soil treatment than the DPR treatment. A systematic decrease in soil‐extractable P was found with increasing proportions of N‐viro soil from the combined amendments. Greenhouse study demonstrated that the application of DPR and N‐viro soil significantly improved dry‐matter yield and increased plant P, Ca, and Mg concentrations of radish (Raphanus sativus L.). Based on dry‐matter yield and plant N uptake, the combined amendments that contained 30% or 20% of DPR materials appear to be optimal but remain to be confirmed by field trials.  相似文献   

16.
Abstract

Peppermint (Mentha piperita var.) is a perennial field crop that is commonly irrigated following harvest to promote fall regrowth. A field study was conducted to measure the consumptive use of peppermint in the postharvest period and to develop crop coefficients used to predict evapotranspiration rates. The soil water balance was measured on two fields with a neutron probe during an 80 day period from July 29, 1997 to October 17, 1997. Over the 49 days following harvest, a total consumptive use of 96 mm was measured. Average basal crop coefficients increased from approximately zero to 0.36 within 35 days following harvest.  相似文献   

17.
Abstract

This study was conducted to ascertain further the need for P and K fertilizers to obtain maximum herbage yields from alfalfa (Medicago sativa L.). Vernal alfalfa was established on a low K Piano silt loam (Typic Argiudoll) soil and topdressed with zero, 22.4, and 44.8 kg/ha of P in autumn of seeding year and with zero, 224, and 672 kg/ha of K as KC1 each autumn. The harvest schedule was three cuts annually at first flower; a schedule widely recommended in the North Lake states. No statistical significance was found for P levels nor for the P x K interaction; significance was found only for K levels. Maximum herbage yield was obtained with 224 kg/ha of K in the first harvest year, but with the 672 kg/ha of K rate in the second harvest year. Herbage K and Cl percentages and amounts removed from the soil increased significantly each year with each increase in K applied. Herbage P and N percentages were decreased significantly with the first increment of K. Residual herbage yields showed dramatically the influence of K fertilization on winter survival. All alfalfa stands with no K fertilization were killed completely. Residual yields and stands increased with each increase in K applied. Yield increase over the control was significant only with the second increment of K, while stands increased significantly with each increase in K applied. These data continue to confirm that high levels of soil K are needed for stand survival as well as for high herbage yields.  相似文献   

18.
为揭示煤矿复垦区土壤氮素内循环中的矿化及硝化特征,探索不同复垦模式与不同复垦年限下复垦土壤的氮素转化效率,采集山西安太堡露天煤矿中复垦3年、9年、21年苜蓿地及3年荞麦地表层(0~20 cm)土壤,并以3年自然恢复和未复垦新排土为对照,采用间歇淋洗好气培养法与恒温培养法研究各采样地土壤矿化与硝化过程,利用一级反应动力学模型与Logistic方程对有机氮素的矿化与硝化数据进行拟合。结果表明,3年苜蓿地的矿化速率最高,21年苜蓿地的矿化速率最低,且土壤氮素快速矿化主要在培养前7 d,之后逐渐平缓,并在28 d趋于稳定。经一级动力学方程拟合可知,氮矿化势(No)的变化范围为89.28~124.51 mg·kg-1,21年苜蓿地 > 3年自然恢复地 > 3年苜蓿地 > 3年荞麦地 > 未复垦新排土 > 9年苜蓿地;矿化速率常数(k)的变化范围为0.022 6~0.051 9,3年苜蓿地 > 9年苜蓿地 > 未复垦新排土 > 3年自然恢复地 > 3年荞麦地 > 21年苜蓿地。氮矿化势与土壤有机质含量显著正相关(r=0.91)。复垦区各土壤随培养时间的延长硝态氮含量大致为"S"型曲线且可分为3个阶段:前期阶段(0~5 d)-上升阶段(5~14 d)-稳定阶段(14~28 d);Logistic方程拟合结果显示:复垦年限显著影响硝化高峰出现的时间(不同复垦年限苜蓿地最大相差6.85 d),21年苜蓿地硝化过程剧烈而短促,3年自然恢复地的硝化过程缓慢而漫长;耕地较草地有更大的硝化速率与更长的硝化时间。长期的种植苜蓿复垦显著提高了土壤的氮库容量,矿化过程更为平稳。  相似文献   

19.
Abstract

The effect of organic amendment with sewage sludge composts of varying heavy metal content on the organic matter content and enzymatic activity of an agricultural soil supporting barley (Hordeum vulgare L.) or lettuce (Lactuca sativa L.) crops was studied. The organic amendments did not improved lettuce growth, the contaminated composts having a negative effect on yield. However, all organic amendments improved barley straw yields although they did not affect grain yields. The addition of the organic materials increased the total carbohydrate content of the soil although this content decreased with cultivation. There was a clearly observed effect of crop type and the degree of heavy metal contamination of the amendment on the most labile carbon (C) fractions (water‐soluble C, carbohydrates, and polyphenolics). In general, soil enzymatic activities were stimulated by addition of sewage sludge compost with low heavy metal content. The compost containing high level of cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) inhibited protease‐BAA activity with respect to the other composts. After cultivation, urease activity increased in soil amended with the high dose of composts, regardless their degree of metallic contamination. Both crop type and metallic contamination contained in the organic materials added influenced phosphatase and ß‐glucosidase activity.  相似文献   

20.
A growth chamber experiment was initiated with two field moist, marginal and acidic (pH 5.1–5.2) soils of the Lily series (Typic Hapludults) in order to determine the need for improved legume‐rhizobia symbioses for forage species of current, or potential, use in the renovation of Appalachian hill‐land pastures. One soil was from an abandoned pasture having broomsedge (Andropogon virginicus L.) as the predominant vegetation, whereas the other was from a minimally‐managed pasture dominated by orchardgrass (Dactylis glomerata L.). Treatments included inoculation (or no inoculation) and the addition of aluminum, nil, or lime to provide a range of soil acidities. Both soils contained effective populations of naturalized rhizobia for white clover (Trifolium repens L.) and red clover (Trifolium pratense L.), but low and/or ineffective naturalized populations of rhizobia for alfalfa (Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.), bigflower vetch (Vicia grandiflora Scop.), and flatpea (Lathyrus sylvestris L.). Seed inoculation, by lime‐pelleting, was highly beneficial in establishing effective symbioses for all these latter species. The addition of low levels of aluminum or lime (1.5 and 2.0 cmol/kg soil, respectively) had little effect on any of the symbioses, with the exception of those for alfalfa. Thus, an improved legume rhizobia symbiosis would not seem to be a prerequisite for renovating pastures established on chemically similar ultisols with the forage legume species examined in this study, especially if the pasture has at least some history of management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号