首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Municipal Waste Compost was added to soils in the glasshouse and field to assess its impact upon soil physical properties. Application was by mulch and incorporation, and the amelioration of temperature, soil water content, unsaturated hydraulic conductivity, and evaporation were investigated. Incorporation in the glasshouse pot experiments increased early season evaporation, while compost applied by either means raised soil temperature. In later stages of drying, the presence of compost reduced the evaporation rate. In the field, compost addition to trials of maize (Zea mays van Melody) improved retention of soil water during a normally wet summer, but not during a very dry summer. Furthermore, soil temperature tended to be reduced by mulching. It is concluded that compost application is beneficial to soil water retention and its subsequent utilization by a crop in conditions of normal rainfall under a temperate climate. Furthermore, it is concluded that the common practice of extrapolating glasshouse‐derived information to field conditions creates serious problems, at least in soil physical experimentation.  相似文献   

2.
Compost is widely used to increase soil fertility, usually practiced by incorporating the compost into the upper soil layer. This study questions the rationale behind this practice. Compost was applied as a mulch and compared with compost worked into the soil in a growth experiment with leek (Allium porrum L. Var. ‘Siegfried Frost’). The compost used was made of source separated organic waste from either gardens and parks, or households. Garden-park compost was applied in 2.5 times greater volumes than household compost to compensate for its lower content of nutrients. The soil was either sandy loam or clay loam. Each of the eight combinations of variables (application method, compost type, and soil type) was repeated three times with 20 leeks in each replicate. Significantly higher yields were obtained with compost applied as a mulch. Here, the yield averaged 78 g fresh weight per leek, compared to 59 g per leek from plots with compost incorporated. Compost mulching also resulted in a significantly higher quality leeks, including more first class leeks, longer and thicker shafts, and a generally better appearance. The advantage of placing the compost on the soil surface rather than thoroughly mixing it with the soil can be attributed to a higher availability of plant nutrients. No significant effect of compost type on leek yield was observed, indicating that the 2.5 times higher volumetric dose of garden-park compost provided the same amount of available nutrients as a single dose of household compost. The soil type did not significantly influence the yields either, which is attributable to both soils being well structured prior to compost amendment.  相似文献   

3.
为研究蒸发阶段不同覆膜开孔条件下土壤水分运动,在室内进行蒸发模拟试验的基础上,采用HYDRUS-1D模型对不同覆膜开孔率和大气蒸发能力条件下土壤剖面含水率和潜水蒸发量动态变化进行了模拟,并与实测资料进行比较。结果表明:土壤剖面含水率同时受大气蒸发能力和覆膜开孔率的共同作用,随覆膜开孔率和大气蒸发能力的增加,土壤剖面含水率减小,且上层土壤含水率差异比下层土壤明显;覆膜开孔率和大气蒸发能力一定时,土壤剖面含水率在蒸发初期有所增加,蒸发后期基本保持稳定;覆膜对潜水蒸发的阻滞作用明显,但开孔率增加到一定数值时,表层盐分的影响大于覆膜的影响,使土壤含水率增大,累积蒸发量减小。经实测数据验证,模型精度较好,表明HYDRUS-1D模型用于不同覆膜开孔率下的土壤水分运动模拟是可行的。  相似文献   

4.
Land application of municipal solid waste (MSW) compost increases soil organic matter content and influences soil physical properties. This study was conducted to measure the effect of compost on the water holding capacity of soil and water status in corn (Zea mays L.) from 1993 to 1995. The soil was a Hubbard loamy sand (sandy, mixed, Udorthentic Haploboroll) cropped to irrigated corn at the Sand Plain Research Farm at Becker, MN. Compost treatments on dry weight basis were 0 and 90 Mg ha?1 yr?1 from 1993 to 1995, and a one time application at 270 Mg ha?1 in 1993. The soil moisture retention curves were generated in 1994 and corn leaf water potential and soil bulk density were measured each growing season. Based on water retention curves, the addition of compost increased the water holding capacity of soil without significant increase in the estimated available water. This was contradicted by field measurements which showed that compared to a fertilized control one compost source at the 270 Mg ha?1 rate in the year of application increased plant water stress by 0.22 MPa, likely due to salt loading. In the year after the application of the 270 Mg ha?1, two compost sources increased soil water content and corn yield 0.14 cm3 cm?3 and 0.9 Mg ha?1 respectively. The yield increase was also associated with a reduction in plant water stress of 0.14 MPa due to one of the compost sources.  相似文献   

5.
Abstract

Soil temperature is an important factor influencing crop growth. Within limits, a higher soil temperature will promote crop growth, particularly in cool climates. The application of compost increases the soil temperature, probably by drying the soil surface, but the relationship between soil temperature and soil water remains unclear. We conducted pot and field experiments on a bare Andosol in a cool climate region. The pot experiment examined the effects of compost application on soil temperature and evaporation, and the field experiment examined the effects of the properties and amount of compost on soil temperature. Pots with compost had a higher soil temperature and less evaporation than pots without compost. The decrease in evaporation and the increase in soil temperature by compost application were significantly correlated. The field experiment included 15 treatments: 12 compost treatments (four types of compost?×?three levels) and three chemical fertilizer treatments (one type of fertilizer?×?three levels). There was a significant correlation between soil temperature and the dry weight of the applied compost. We conclude that compost application increases soil temperature by decreasing evaporation from the soil surface. In addition, soil temperature increases with increasing dry weight of the compost applied, regardless of the chemical properties.  相似文献   

6.
初始湿度对覆膜开孔蒸发水盐运移的影响   总被引:1,自引:0,他引:1  
为了解初始含水率(湿度)变化对覆膜开孔蒸发的盐分与蒸发量的定量关系,通过不同湿度土壤的室内蒸发实验,研究了覆膜开孔率影响下土壤水分和盐分的运动特征.结果表明,初始含水率越大,不同覆膜条件下累积蒸发量越大,单位膜孔面积累积蒸发量(E_R)随开孔率增大而急剧减小.不同初始湿度的ER与覆膜开孔率的关系可用乘幂表示;表土返盐量随覆膜开孔率的增大而逐渐增加;不同含水率土壤的盐分浓度削面分布趋势一致,含水率越大,表层盐分浓度越大,含水率较小的土壤.盐分浓度在表层最大.在盐分含量最低点附近达到最小值,表层以下4-13cm的盐分浓度均小于初始值;不同覆膜开孔率条件下不同含水率土体剖面盐分浓度与垂直位置之间可用幂函数表示.研究表明,初始湿度对土壤水盐运动的影响存在定性特征,而覆膜开孔率对水盐运动的影响有定量关系可循.  相似文献   

7.
为明确不同砂土混合物覆盖对土壤蒸发过程的影响,基于土壤蒸发分阶段理论及微型蒸渗仪田间试验,深入探析了6种砂土混合覆盖模式(1.0,0.8,0.6,0.4,0.2,0,分别为M1~M6)下的土壤蒸发动态变化及其作用机制。结果表明:土壤蒸发分阶段理论能够真实刻画砂土混合覆盖下的土壤水分蒸发状况,其累计蒸发量可用砂土混合比与蒸发时间进行定量表征。当砂土混合比≥0.8时,土壤蒸发过程仅存在2个明显阶段,抑蒸效果显著;当砂土混合比<0.5时,M3~M6处理的土壤蒸发稳定高峰期明显,且集中于前2.53~2.66天,水分主要散失历时则分别较M1增加6.49,6.49,6.49,7.09天;而当砂土混合比介于0.5~0.8时,覆盖层易诱发且能够更早地形成结构致密的覆盖干层,整体保墒效果反而凸显。受土壤蒸发阶段特性及覆盖模式的影响,蒸发第1阶段主要受下垫面净辐射通量供应的限制;而在蒸发第2,3阶段,砂层结构的作用凸显,土壤水力特性调控效应逐渐占优。总之,砂层结构恶化将加快土壤失水过程,增加农田水分的无效损失,当砂土混合比<0.5时,其抑蒸保墒功效将逐渐丧失,这对西北旱区砂田退化机理的揭示及压...  相似文献   

8.
Abstract. Composted domestic waste was applied either as a mulch or was incorporated into the topsoil. Mulching reduced the seasonal midday soil temperature ranges from between 14 °C and 27.5 °C to between 14 °C and 26 °C, averaging a 0.6 °C fall. However, at sub-optimal temperatures for maize production under the temperate conditions of South East England, the difference may be critical. Compost mulch also improved soil-water conservation in an average year, but not in a very dry year. Compost application increased soil-available N, but increased K uptake was considered to be more important for crop yield than either N additions or the effect on retained soil water. Overall, compost applied as a surface mulch, or incorporated into medium-textured soils in the south and east of England increased crop yield.  相似文献   

9.
Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha?1 yr?1 (7.5 ton ha?1 yr?1). The soils were characterized for chemical and physical properties. Tomato was planted in a greenhouse using soil samples from the field and vegetative and yield parameters (plant height, stem diameter, leaf number, and fruit yield), water productivity, and harvest index were evaluated. All compost types significantly increased soil total carbon, total nitrogen, pH, electrical conductivity and significantly decreased bulk density, with no effect on plant available water compared to the control. Fresh and dry fruit weights were significantly increased after compost addition. Plant height, leaf number, stem diameter, and total biomass did not significantly improve after compost addition. Spent mushroom compost had greater effect in improving tomato productivity. A decade-long application of composts on loamy sand improved basic chemical and physical properties which were reflected in increased fruit yield in tomato. Since no negative effect of compost was observed, we suggest that sandy soils may serve as a safe end use option for these composts and potentially support crop growth.  相似文献   

10.
Four cultural amendments; spent mushroom compost, straw mulch, both compost and straw mulch, or neither, were applied to soils that were either fumigated or not fumigated in a field of potatoes subject to early dying and Colorado potato beetle defoliation. Two plant samples were harvested at two week intervals to measure shoot and tuber growth and mineral nutrition, and two rows were harvested for yield at maturity. Amending the soil with compost increased vegetative growth and shoot weight more than final yield of tubers. Compost amendment delayed tuber filling by several days. Fumigation partly controlled the loss of leaf area due to early dying, but it did not increase tuber yields, and in 1994 fumigation reduced tuber yield in compost amended soils. The effects of compost and straw mulch on tuber yield were related to the concentrations of N and P in leaves. The potato crop did not benefit from compost amendment combined with fumigation, because in fumigated soil there was no improvement in plant nutrition due to compost.  相似文献   

11.
Pulp and paper sludge is a by-product of paper production and may be suitable in agricultural applications as a soil amendment or mulch. The objective of this study was to evaluate raw and composted pulp and paper sludge as soil additives or mulches for cottonwood plants. Primary sludge, a combination of by-products from bleached kraft and neutral sulfite semichemical paper, was mixed with tailings, slaughterhouse paunch, and 10 percent wood ash (by volume), and used raw or composted and cured in the field for 39 weeks. Cuttings of two cottonwood (Populus deltoides Bartr. ex Marsh) clones were planted in a field soil (Quincy loamy fine sand) that was mixed (incorporated) or mulched (placed on top the soil) with raw or composted sludge mixtures at application rates of 0,45,90, 135 and 180 Mg/ha. The plants were grown in a plastic house for nine weeks. Electrical conductivity (EC), cation exchange capacity (CEC), soluble Cl and extractable Na in soil amended with 180 Mg/ha of compost were 37, 22, 197 and 138 percent higher, respectively, than those of soil amended with the raw sludge mixture at the same rate. Bulk density of amended soil decreased, whereas soil aeration and water-holding capacity increased as sludge application rate increased. After nine weeks, raw or composted sludge applied at a rate of 135 Mg/ha, whether used as a mulch or incorporated, improved cottonwood plant height by 40 percent and stem diameter by 20 percent compared to plants grown in nonamended, nonmulched (control) soil. These results indicate that the pulp and paper sludge mixtures, whether raw or composted, improved soil characteristics and aided establishment of cottonwood cuttings.  相似文献   

12.
The rising cost of peat and pine bark has boosted the demand for alternative organic materials for container growing media. Here, composts of invasive acacia (Acacia longifolia and Acacia melanoxylon) residues were evaluated as alternative organic materials for horticultural substrates. Compost bulk density was less than 0.4 g cm?3 and total pore space was more than 85 percent of the total volume, as established for an ideal substrate. The matured acacia compost air capacity, easily available water, buffering capacity, and total water-holding capacity were also within acceptable recommended values. With increased composting time the physical characteristics of the composts were improved, but the same was not true for chemical characteristics such as pH and electrical conductivity. The replacement of pine bark compost by acacia compost in a commercial substrate did not negatively affect either lettuce emergence or lettuce growth, suggesting that acacia compost can be successfully used as an alternative component for horticultural substrates.  相似文献   

13.
土壤特性对保水剂持水性能的影响   总被引:2,自引:0,他引:2  
为研究土壤特性对保水剂持水性能的影响,测试了4种保水剂分别与砂壤土、壤砂土、砂粘壤土1和砂粘壤土2共4种土壤混合后的保水率,混合时土壤为风干土,保水剂与土壤混合的质量百分比为0.5%。结果表明:与单纯保水剂或者保水剂与砂子混合相比,保水剂与土壤混合后可明显降低保水剂的释水速度,提高保水剂的持水能力。土壤特性对保水剂释水速度有明显影响,土壤粘粒含量高,保水剂的释水速度慢,反之,则快。土壤粘粒含量高,土壤含水量高,保水剂表面水势梯度变低,使释水速度变慢;粘粒含量低,水势梯度变大,保水剂释水速率加快。经过7 h的恒温蒸发后,4种保水剂在粘粒含量较高的砂粘壤土(粘粒含量25%)中的保水率比在粘粒含量低的壤砂土(12.5%)中的保水率高43.7%~71.3%,且具有明显的差异。  相似文献   

14.
覆盖免耕土壤棵间蒸发的研究   总被引:22,自引:0,他引:22  
本文以翻耕、铁茬等常规耕作为对照,采用Micro-1ysimeter对覆盖免耕夏玉米田的土壤棵间蒸发进行了较为系统地研究。同翻耕、铁茬等相比,免耕有效地减少土壤棵间蒸发,免耕土壤日蒸发量最低,铁茬其次,翻耕最高;从阶段土壤棵间蒸发量变化看,翻耕的蒸发量较高,前期与免耕和铁茬差异较大,后期差异减小,免耕最低;从蒸发占蒸散的比例看,翻耕蒸发比例高,免耕比例最低。免耕可以有效地减少土壤蒸发量,增加作物蒸腾耗水。  相似文献   

15.
Abstract. The effects of deep tillage, straw mulching and farmyard manure on maize growth in loamy sand and sandy loam soils were studied in experiments lasting three years. Treatments included all combinations of conventional tillage (10 cm deep) and deep tillage (35–40 cm deep), two farmyard manure rates (0 and 15 t/ha) and two mulch rates (0 and 6 t/ha), replicated three times in a randomixed block design.
Deep tillage decreased soil strength and caused deeper and denser rooting. Mulching decreased maximum soil temperature and kept the surface layers wetter resulting in better root growth. Farmyard manure also improved root growth, and the crop then extracted soil water more efficiently. All three treatments increased grain yield in the loamy sand, but in the sandy loam only tillage and farmyard manure increased yields significantly. Deep tillage and straw mulch effects varied with soil type and amount of rainfall in the growing season. In the loamy sand the mean responses to deep tillage and mulching were largest in a dry year. A tillage-mulch interaction was significant in the loamy sand.  相似文献   

16.
It is well known that compost amendment can improve soil phosphorus (P) availability, but there are few studies comparing the effect of one compost type on soil P pools of soils which differ in properties. The aim of this glasshouse experiment was to determine the effect of compost (derived from garden waste) application on P pools in soils with different properties planted with wheat. Four soils from two sites were used, with a heavier and a lighter textured soil from each site. The compost was applied as a 2.5 cm thick layer on the soil surface and wheat plants were grown for 63 days. The treatments also included soil without compost and plants. All pots were regularly watered. The soils were sampled on day 0 in the unamended soils and on day 63 in soil without compost and with compost, and plants after removal of the compost layer. Without and with compost the concentrations of most P pools were higher in the two heavier textured soils (16% and 35% clay) than in the two lighter textured soils (8% and 13% clay). Principal component analysis (PCA) showed that the concentrations of most P pools were positively correlated with organic matter, clay, and silt content of the soils. Only the concentration of water-soluble P was positively correlated with sand content. Compost addition increased the concentration of microbial P, sodium bicarbonate (NaHCO3)-Pi, sodium hydroxide (NaOH)-Pi, hydrochloric acid (HCl)-P, and residual P in all soils, whereas the concentration of NaHCO3-Po was reduced and the concentration of NaOH-Po little affected by compost addition indicating that P was transferred from the compost layer with watering. Compared with the unamended soil on day 0, the concentrations of microbial P, NaHCO3-Pi, NaOH-Pi, HCl-P, and residual P on day 63 were higher, whereas the concentrations of the two organic pools (NaHCO3-Po and NaOH-Po) were lower. This suggests mineralization of organic P pools and formation of inorganic P as well as microbial P uptake. These changes occurred in the unamended and compost-amended soils with greater increases over time in the compost-amended soils. It can be concluded that the size of the P pools is predominately affected by soil texture. Compost amendment increases P availability and microbial P uptake but also leads to the formation of less labile P pools such as HCl-P and residual P which could serve as plant P sources in the long term.  相似文献   

17.
不同覆砂厚度对土壤水盐运移影响的实验研究   总被引:2,自引:1,他引:2  
采用室内土柱模拟试验,研究了不同覆砂厚度条件下土壤潜水蒸发及蒸发后盐分(EC)分布特征,并就覆砂厚度对土壤水盐运移的影响进行了分析。结果表明:覆砂厚度对潜水蒸发的抑制率有显著效果,且抑制率随覆砂厚度的增加而升高,如当覆砂厚度1.7 cm时抑制率达到83%,当覆砂增加到3.6 cm和5.7 cm时,抑制率分别为95%和97%;土壤表层覆砂具有显著的抑盐效应,通过覆砂明显的减轻了土壤盐分向上运移和表聚,如当覆砂厚度1.7 cm时,表层盐分抑制率达到83%,当覆砂厚度为3.6 cm与5.7 cm时,盐分抑制率则分别上升到96%和97%。本试验表明,土壤表层覆砂是一种防止土壤水分蒸发,提高土壤保水能力和抑制土壤盐分表聚的有效方法,覆砂厚度达到3.6 cm是一种在新疆北疆绿洲合理覆砂厚度。  相似文献   

18.

Cultivation systems with mulching have been successfully tested in spring cereals for several years in Sweden. The water conserving effect of the mulch was considered to be important in these field experiments. Three experiments with lysimeters were conducted in this study to investigate the effect on evaporation of a) different amounts of mulch, b) different types of mulch and c) different frequencies of rain in combination with mulching. The lysimeters contained undisturbed soil cores from a heavy clay soil. The protection against evaporation was largest at the beginning of soil drying. It increased with increasing amounts of mulch, but there were no differences in protection between the various kinds of mulch tested. Accumulated evaporation was 12, 14 and 30% lower in the mulched compared to bare soil after 28 days with no rain, infrequent rain and frequent rain respectively. The implications for designing a cultivation system with mulching are discussed as well as its potential in different weathers.  相似文献   

19.
Today, environmental protection and safe crop production are very important. The management of soil elements by compost is considered as important for sustainable agriculture. The mode of action of the composts is very different between various plant species. To evaluate the effects of different composts on soil structural and chemical properties and on morphological traits of two dry rangeland species (atriplex; Atriplex lentiformis and mesquite; Prosopos juliflora), a study was conducted in Fars Province of Iran during the year 2010. The study was a factorial experiment based on a randomized complete block design with three replications. Treatments included compost types: solid (SC) and liquid compost or compost tea (LC), solid-liquid mixture (XSL) and control (Con; non used compost) as the first factor, and two pasture plant species as the second factor. The results showed that the compost application had significant and positive effects on morphological traits such as plant height, stem diameter, plant volume, crown length, width, and area, and caused 15, 51.18, 70.67, 34.18, 18.35, and 64.94% increase on these morphological traits, respectively. Although soil acidity was not significantly affected by compost and species, the effects of compost were significant on organic matter percentage, soil phosphorous, and potassium contents. Soil nitrogen percentage was affected by both species and compost. Compost application caused a decrease in the amount of sodium compared with the control. Overall, the results of this study suggested that within the compost types, liquid compost was an advisable biofertilizer in a similar climate. Furthermore, the LC and the XSL are recommended for improving the morphological traits and the soil characteristics, respectively.  相似文献   

20.
Urban land disturbance degrades physical, chemical, and biological soil properties by removing topsoil and compacting the remaining subsoil. Such practices create a soil environment that is unfavorable for vegetation establishment. A 3-year field study was conducted to compare the effects of various one-time compost application treatments on soil properties and re-vegetation of a disturbed soil. A disturbed urban soil received the following treatments: (1) inorganic fertilizer; (2) 2.5-cm-depth surface-applied compost; (3) 2.5-cm-depth incorporated compost; (4) 5.0-cm-depth incorporated compost; (5) inorganic fertilizer plus 0.6-cm compost blanket; and (6) inorganic fertilizer plus straw mat cover. The plots were seeded with a mixture of tall fescue Festuca arundinacea Shreb.: ‘Magellan,’ ‘Coronado Gold,’ ‘Regiment,’ and ‘Tomcat,’ perennial ryegrass Lolium perenne L. ‘Linn’, and Kentucky bluegrass Poa pratenis L. ‘Baron.’ Soil chemical and physical attributes and plant growth and quality parameters were measured during 840 days following study establishment. Soil C, N, P, K, Ca, and Mg, and turfgrass growth and quality were increased and soil bulk density was reduced by amending with composts. Incorporation of compost into soil improved soil and plant attributes more than unincorporated surface application, but the differences diminished with time. Compost benefits increased with time. One-time applications of compost can provide immediate and long-term benefits to soil and plant attributes, but there may be no need to incorporate the compost into soil, particularly if the soil has recently been loosened by tillage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号