首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the seaweed Ascophyllum nodosum extracts (ANE) on nitrogen (N)–fixing nodules and growth of alfalfa plants were studied under greenhouse conditions. The treatment of alfalfa roots increased the number of total nodules per plant with ANE (69%) and organic sub-fractions methanol (20%) and chloroform (35%) at 1 g L?1 concentration. The number of functional nodules was greater per plant in ANE (36%) and its organic sub-fraction chloroform (105%). Maximum increase in shoot length was observed in ANE-treated plants (42%) and chloroform-treated plants (42%). Root length was longer in the chloroform fraction (15%), whereas the shoot dry-weight accumulation was greater in plants treated with ANE (118%), methanol (85%), and chloroform (85%) than the control. Root dry-weight accumulation increased in plants treated with ANE (118%) and chloroform (69%) compared to the control. Further studies are under way to identify the chemical components in ANE and organic fractions.  相似文献   

2.
A field trial consisting of four granule formulation doses and five liquid formulation sprays of a seaweed extract from Ascophyllum nodosum commercially known as Biovita, along with the recommended dose of nitrogen (N)–phosphorus (P)–potassium (K), was conducted during 2008 and 2009 in BHU, Varanasi, India, to evaluate its effect on wheat (var. HUW 468) under a no-tillage system. Among the granule doses, the 10 kg ha?1 basal application and the two liquid sprays of 500 cm3 ha?1 each at 25 and 50 days after sowing significantly improved the performance of wheat. On an average under these two treatments, the greatest grain and straw yields were observed were 3454.5, 3446.5 and 5187.5, 5220.0 kg ha?1, respectively. The greatest protein content was found when further high doses of extract were applied. A faster decomposition of the paddy residue was also observed as indicated by an earlier decline in carbon (C)/N ratio of the soil in the treated plots.  相似文献   

3.
4.
The purpose of the present work was to evaluate effects of zinc application on growth and uptake and distribution of mineral nutrients under salinity stress [0, 33, 66, and 99 mM sodium chloride (NaCl)] in soybean plants. Results showed that, salinity levels caused a significant decrease in shoot dry and fresh weight in non-zinc application plants. Whereas, zinc application on plants exposed to salinity stress improved the shoot dry and fresh weight. Potassium (K) concentration, K/sodium (Na) and calcium (Ca)/Na ratios significantly decreased, while sodium (Na) concentration increased in root, shoot, and seed as soil salinity increased. Phosphorus (P) concentration significantly decreased in shoot under salinity stress. Moreover, calcium (Ca) significantly decreased in root, but increased in seed with increased salinization. Iron (Fe) concentration significantly decreased in all organs of plant (root, shoot, and seed) in response to salinity levels. Zinc (Zn) concentration of plant was not significantly affected by salinity stress. Copper (Cu) concentration significantly decreased by salinity in root. Nonetheless, manganese (Mn) concentration of root, shoot, and seed was not affected by experimental treatments. Zinc application increased Ca/Na (shoot and seed) ratio and K (shoot and seed), P (shoot), Ca (root and seed), Zn (root, shoot, and seed) and Fe (root and shoot) concentration in soybean plants under salinity stress. Zinc application decreased Na concentration in shoot tissue.  相似文献   

5.
Abstract

Soybean cultivation in Ethiopia is dominated by smallholder farmers who use little or no inputs, often resulting in low yields. The use of effective rhizobia strains was considered as an ecologically and environmentally sound approach for soybean production. Field experiments were conducted during 2015/16 cropping seasons at two different agro-climatic regions in Ethiopia to investigate the effectiveness of local soybean isolates for improving nodulation, growth, yield and quality of soybean. Ten treatments comprising of seven indigenous rhizobia isolates, one exotic strain, nitrogen fertilized treatment and uninoculated control were arranged in randomized complete block design in three replications. Results of the experiment revealed that nodule number and nodule dry weight significantly increased from nil in the uninoculated control to 14–34 and 110–521?mg plant?1, respectively due to inoculation with different isolates. Furthermore, inoculation significantly increased shoot dry weight by 24–46%, shoot nitrogen concentration by 20–30%, shoot N content by 29–49%, plant height by 14–41%, pods per plant by 12–38%, seeds per pod by 7–19%, thousand seed weight by 15–24%, grain yield by 22–115% and protein content by 7–39% compared with the uninoculated control. Generally, isolates Jm-1-Bo, As-5-Aw, Bk-3-Aw, Cw-6-Aw and MAR 1495 performed better than the others in most yield parameters at both locations of which Jm-1-Bo and As-5-Aw were the local isolates performing best irrespective of location, and were superior to the effective exotic standard strain. Therefore, isolates Jm-1-Bo, As-5-Aw and Bk-3-Aw could be utilized as candidates for inoculant production at large scale in areas with similar agroecology.  相似文献   

6.
Abstract

Magnesium (Mg) deficiency is one of the major nutritional problems in tropic and subtropic areas, where the most soils are acidic. In this study, the effects of Mg application and Bradyrhizobium inoculation on growth, nodulation, symbiotic nitrogen (N) fixation as well as N nutrition status in soybean (Glycine max L.) were investigated in hydroponics under greenhouse conditions. With the increase of Mg up to 0.75?mM at low N and up to 0.5?mM at high N solutions, the dry weights of shoots, roots, and pod grain yield in soybean were increased, while further increase in Mg supply inhibited soybean growth. The availability of Mg was found to entail an improved uptake of N by plants and nodulation process in the root by Bradyrhizobium. Inoculation with rhizobial inoculants not only formed many nodules, but also increased soybean shoot, root biomass and yield, as well as plant N nutrient status.  相似文献   

7.
为了探究玉米-大豆间作对大豆生长策略、光合荧光特性及产量的影响,以大豆品种中黄39为试材,采用玉米-大豆带状间作和大豆净作2种不同的种植模式,研究间作下大豆的形态、物质分配及光合荧光参数的变化规律。结果表明,间作大豆植株的株高在四节期(V4期)、始荚期(R3期)和鼓粒期(R6期)分别比净作增加22.47%、47.33%和32.72%。在V4期,间作大豆除株高显著高于净作外,大豆茎粗、主茎节数、茎叶柄生物量和叶绿素含量在净作和间作下均差异不显著。在R3和R6期,间作大豆植株的茎、柄生物量显著增加,但叶生物量、叶绿素a含量、叶绿素总含量及净光合速率(Pn)显著低于净作大豆。对于叶绿素荧光参数,间作大豆叶片非光化学淬灭系数(NPQ)在V4、R3和R6期分别显著高出净作大豆12.2%、5.04%和7.2%,而间作大豆叶片的PSII实际的光化学量子效率(F'q/F'm)、光化学淬灭系数(q P)和PSII反应中心潜在的激发能捕获效率(F_v/F_m)与净作大豆相比差异不显著。在产量构成因素中,间作大豆的单株荚数、单株粒数、百粒重及单株产量均显著低于净作,分别降低27.78%、12.33%、20.72%。间作下玉米对大豆生育后期的生长、光合特性的影响直接导致大豆产量及构成因素的下降。因此,在玉米-大豆带状间作种植模式下,要提高间作大豆产量,需降低大豆生育后期玉米荫蔽程度。本研究结果为间作大豆栽培及高产提供了一定的依据。  相似文献   

8.
Out of 851 soybean accessions from Vietnam, China and Japan analyzed for 7S β-subunit variants, a new β-reduced subunit line with normal growth was collected from the Mekong Delta, Vietnam. Protein of the `β-reduced' line is composed of β-reduced and extremely low-β types. (α-null + β-reduced) type and β-null (or extremely low-β) type were screened in the progeny seeds of the Japanese mutant `(α + β) null' line. Therefore, recombination between α- and β-subunits was identified. By comparing the nucleotide sequence of the partial β-subunit gene of Enrei (standard), Mo-shi-dou Gong 503 (α + β low), β-533 seed (β-reduced), β-57 seed (extremely low-β), and (α + β)-null16((α + β) null) seed, we found that the base `T' at 166 bp, in Enrei changed to `G' in Mo-shi-dou Gong 503, β-533 and β-57. Using the (α + β)-null16 individual as template, a distinct 305 bp β-subunit gene fragment was identified, instead of a 285 bp fragment.  相似文献   

9.
The seedlings of the soybean ( Glycine max. (L.) Merr.) cv. Polan were investigated by subjecting them to water culture for a period of 14 d. To the Knop nutrient solution, lead was added as PbCl2 at four concentrations: 0, 10, 20 and 40 mg dm−3. Observations of soybean leaf tissues were carried out by light microscopy, transmission electron microscopy and scanning electron microscopy. The Pb levels used in the present study reduced the area of cotyledons and leaf blades of the soybean plants. Pb-induced changes in the leaf epidermis structure involved a reduction in the cell size, more abundant wax coating, and an increase in the number of stomata and trichomes per unit area with simultaneous reduction in the size of the guard cells. The lead treatment resulted in the reduction in the thickness of the leaf blades, reduction in the area of xylem and phloem in the vascular bundles and in the diameter of the xylem vessels. Under Pb stress, the leaf mesophyll cells were characterized by the presence of altered chloroplasts with a reduced lamellar system and multidirectional pattern of the thylakoid system. Burst stroma of the thylakoid system and cracked chloroplast envelopes were also observed. The importance of the increase in the number of stomata and trichomes for plants under the metal stress was examined.  相似文献   

10.
The influence of Hg on soybean plants under different pH conditions and Hg concentrations was studied. Growth inhibition by Hg was higher in roots than the upper part of the plant, but was highly dependant on pH condition. Growth inhibition of roots was observed when Hg concentration was higher than 1 mg Hg L−1 for pH 4.0 and 5 mg Hg L−1 for pH 6.0. Using 203Hg as a radioactive tracer, the amount of Hg (1 mg Hg L−1) uptake in root was found to be about 1.5 times higher at pH 4.0 than that at pH 6.0; suggesting that Hg when highly accumulated at the lower pH induced inhibition of root growth. Decreased amounts of Hg due to evaporation during the plant growth were very low, but were higher at pH 6.0 than that at pH 4.0. There was hardly any translocation of Hg from roots to the upper parts through the stem within 24 h.  相似文献   

11.
Soybean (Glycine max L.), being a leguminous oilseed crop, requires relatively higher amount of sulfur (S) and boron (B) for optimum yield and quality. A field experiment was conducted to evaluate the effect of S and B application on growth, yield, and quality of soybean, and to find out their optimum doses for the best crop performance in acidic soils of northeast India. The treatments comprised four levels of S (0, 20, 40, and 60 kg/ha) and four levels of B (0, 0.5, 1.0, and 1.5 kg/ha) in factorial combination. In general, application of S and B, either alone or in combination, significantly increased the growth, yield, and quality of soybean. When applied alone, S resulted in best yield (1767 kg/ha) at S40, which was 21.2% higher than the yield at control (1458 kg/ha), while B produced maximum yield (1578 kg/ha) at B1.5 (8.23% higher than control). Interestingly, 57.4% yield improvement over control was recorded with combined application of S40 and B1.5, which shows their synergistic effect on crop performance. Similarly, with concurrent application of S40 and B1.5, a 28% increase in protein and 33% increase in oil content of soybean were recorded relative to control. In general, S40 + B1.5 also resulted in the highest nutrient nitrogen, phosphorus, potassium sulfur, and boron (NPKSB) uptake by soybean. Based on these results, we recommend the conjunctive use of 40 kg S and 1.5 kg B/ha for the best yield and quality of soybean on acidic soils of northeast India and other regions with similar soils.  相似文献   

12.
AFLP technique was used to assess genetic diversity in 72 soybean varieties under cultivation in India. Selected 12 AFLP primer pairs produced 1319 products of which 1257 were polymorphic (95%). Wide variations were observed for the number of amplification products, percent polymorphism and average polymorphism information content (PIC). The Jaccard's similarity indices (J) based on the AFLP profiles of the 72 soybean varieties were subjected to UPGMA cluster analysis. The dendrogram generated revealed four major clusters, which were strongly supported by the high bootstrap values obtained from analyses of 1000 bootstrap samples. In addition, the Mantel's test for cophenetic correlation with r = 0.955 indicated very good fit of the varieties to a group in the cluster analysis. Some correspondence between the clustering pattern and the pedigree, place of release or target area of the variety was observed. Overall moderately high genetic diversity was observed which appears to be due to the higher genetic diversity prevalent in 12 of the varieties included in three diverse clusters and was indicative of the need to include more diverse germplasm in the soybean improvement programs.  相似文献   

13.
The influence of Hg on soybean plants under different pH conditions and Hg concentrations was studied. Growth inhibition by Hg was higher in roots than the upper part of the plant, but was highly dependant on pH condition. Growth inhibition of roots was observed when Hg concentration was higher than 1 mg Hg L?1 for pH 4.0 and 5 mg Hg L?1 for pH 6.0. Using 203Hg as a radioactive tracer, the amount of Hg (1 mg Hg L?1) uptake in root was found to be about 1.5 times higher at pH 4.0 than that at pH 6.0; suggesting that Hg when highly accumulated at the lower pH induced inhibition of root growth. Decreased amounts of Hg due to evaporation during the plant growth were very low, but were higher at pH 6.0 than that at pH 4.0. There was hardly any translocation of Hg from roots to the upper parts through the stem within 24 h.  相似文献   

14.
植物生长调节剂对干旱胁迫下大豆幼苗生长的影响   总被引:1,自引:0,他引:1  
采用盆栽试验,研究了在模拟干旱胁迫下喷施植物生长调节剂对大豆幼苗生长发育和生理生化指标的影响。结果表明,植物生长调节剂可促进大豆幼苗茎叶生长和主根伸长,增加侧根数,加大根冠比,提高叶绿素含量、脯氨酸含量和过氧化物酶(POD)活性,从而增强了植株的抗旱能力。喷施宝、云大120、地中宝、福施壮4种植物生长调节剂对不同大豆品种幼苗生长的影响基本一致,以喷施宝的效果最好,其次为云大120。  相似文献   

15.
A major constraint for crop production on disturbed soils is phosphorus (P). A 2-year field study was conducted on a disturbed soil to evaluate broiler litter ash (BLA) as an inexpensive phosphorus fertilizer for soybean. BLA or super phosphate (SP) was applied at four rates and planted with soybean followed by wheat. At soybean growth stage R3, two plants from each plot were removed for tissue analysis. Soybean tissue P concentration distributions were in the order pods?>?leaves?>?stems?>?roots. At maturity, soybean grain and wheat tissue yields were not significantly affected by P source. Except for the high superphosphate rate for the second crop, P concentrations of soybean grain and wheat tissue were not significant between P source. In this study, BLA was as effective as SP for growth of soybean grain and wheat tissue, suggesting that BLA can be used as an inexpensive P fertilizer on low P disturbed soils.  相似文献   

16.
为探明缺磷胁迫下草甘膦对抗草甘膦大豆(RR1)幼苗叶片光合作用和叶绿素荧光参数的影响,采用溶液培养方法,在大豆长出真叶时进行缺磷胁迫,第二复叶完全展开时进行草甘膦处理,5d后测定各生理指标。结果表明, 相对于正常供磷条件的清水处理,缺磷胁迫下4.98 mL/L草甘膦处理的大豆叶片净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、最大荧光(Fm)、PSⅡ最大光化学效率(Fv/Fm)、PSⅡ的有效量子产量[Y(Ⅱ)]、PSⅡ非调节性能量耗散的量子产量[Y(NO)]、最大电子传递速率(ETRmax)和半饱和光强(Ik)均呈下降趋势。而气孔限制值(Ls)、叶绿素a(Chl a)、叶绿素b(Chl b)、叶绿素a/b(Chl a/b)、类胡萝卜素(Car)、总叶绿素(Chl)含量和PSⅡ调节性能量耗散的量子产量[Y(NPQ)]均呈升高趋势。说明缺磷胁迫条件下喷施草甘膦显著降低了抗草甘膦大豆的光合速率。缺磷引起的气孔因素可能是导致RR大豆光合速率下降的主要原因,而光合速率的下降导致其PSⅡ反应中心的开放程度降低,活性减弱,参与CO2固定的电子较少,光化学效率较低。  相似文献   

17.
Maize crop is grown mostly in tropical/subtropical environments where drought adversely affects its production. A field experiment was conducted on sandy loam soil for four years (1999 – 2002) to study the effect of wheat straw mulch (0 and 6 t ha?1) and planting methods (flat and channel) on maize sown on different dates. Maximum soil temperature without mulch ranged from 32.2 – 44.4°C in channel and 31.6 – 46.4°C in flat planting method. Mulching, however, lowered soil temperature by 0.8 – 7.0°C in channel and 0 – 9.8°C in flat planting. Mulching, on an average, improved leaf area index by 0.42, plant height by 14 cm, grain yield by 0.24 t ha?1 and biomass by 1.57 t ha?1, respectively. Mulching improved grain yield only in flat sowing. Interaction between sowing date and planting method was significant. Seasonal variation in biomass were significantly correlated (p = 0.05) with mean air temperature during 0 – 45 days after planting (DAP) (r = ?0.95), pan evaporation during 0 – 15 DAP (r = 0.79) and negative correlation with rainfall in entire cropping season (r = ?0.89), whereas biomass increase with mulch in different cropping seasons had negative relation (r = ?0.74) with amount of rain during 0 – 15 DAP.  相似文献   

18.
ABSTRACT

Soybean yields in Ghana are low and stagnant in spite of the trio of recommendations: (1) improved seed, (2) rhizobium inoculant and (3) phosphorous fertilizer application being promoted by government to boost productivity. This study evaluates the response of soybean to Pro-soil biostimulant, triple super phosphate (TSP), and rhizobium inoculant in the interior savanna of Ghana. A treatment structure comprising two mainplot factors (biostimulant and conventional), and four subplots factors; TSP, inoculant, TSP+Inoculant and unamended control arranged in a split-plot design was used for this study. Apart from dry matter which increased by 42%, Pro-soil biostimulant as a stand-alone management practice did not significantly increase agronomic parameters measured in this study. Biostimulant did not have a significant effect on grain yield, nodule weight, nodule number, canopy diameter, and plant height. Application of TSP alone, and in combination with inoculant, significantly increased yield, plant dry matter, nodule weight, nodule number, and dry pod weight. Highest soybean yield was obtained from TSP + Inoculant treatment, averaging 3.6 t ha?1 compared to 1.8 t ha?1 for control. Biostimulant, TSP+Inoculant combination resulted in yields as high as 4 t ha?1. Overall, the results indicate that neither PS-Foundation biostimulant nor rhizobia inoculation can be used as stand-alone management practices to increase soybean yield. However, an integrated application of PS-Foundation biostimulant, TSP, and inoculant could double current soybean yields in Ghana.  相似文献   

19.
为提高单作大豆产量,本研究以大豆品种南豆12为材料,分别探究了不同浓度的3种植物生长调节剂拌种对大豆田间出苗的影响,及叶面喷施对大豆生长发育、产量及品质的影响.结果表明,不同浓度的褐藻胶寡糖、壳寡糖、冠菌素拌种均能提高大豆的田间出苗率,而叶面喷施均能提高大豆的株高与茎粗,褐藻胶寡糖和冠菌素拌种可增加大豆分枝数,壳寡糖拌...  相似文献   

20.
To study the effects of organic and inorganic nitrogen (N) on yield and nodulation of chickpea (Cicer arietinum L.) cv. ILC 482, a spilt-plot experiment based on randomized complete block design with four replications was conducted in 2008 at the experimental farm of the Agriculture Faculty, University of Mohaghegh, Ardabili. Experimental factors were inorganic N fertilizer at four levels (0, 50, 75, and 100 kg ha?1) in the main plots that applied in the urea form, and two levels of inoculation with Rhizobium bacteria (with and without inoculation) as subplots. Nitrogen application and Rh. inoculation continued to have positive effects on yield and its attributes. The greatest plant height, number of primary and secondary branches, number of pods per plant, number of filled and unfilled pods per plant, number of grains per plant, grain yield, and biological yield were obtained from the greatest level of N fertilizer (100 kg urea ha?1) and Rh. inoculation. Application of 75 and 100 kg ha?1 urea showed no significant difference in these traits. Furthermore, the greatest rate of N usage (100 kg urea ha?1) adversely inhibited nodulation of chickpea. Number and dry weight of nodules per plant decreased significantly with increasing N application rate. The lowest values of these traits recorded in application of 100 kg ha?1 urea. Results indicated that application of suitable amounts of N fertilizer (i.e., between 50 and 75 kg urea ha?1) as starter can be beneficial to improve nodulation, growth, and final yield of inoculated chickpea plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号