共查询到20条相似文献,搜索用时 15 毫秒
1.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):3049-3061
Abstract Humic substances were extracted from raw sewage sludge samples as well as an alluvial slightly alkaline soil [Typic Xerofluvent (So)], a clay loam soil [Calcixerollic Xerochrept (M)] and the corresponding field plots amended with different rates of sewage sludge and cultivated with corn and cotton respectively, in a two‐year field experiment. These substances have been characterized by chemical and spectroscopic methods. The chemical analyses showed that humic acids (HAs) and fulvic acids (FAs), were effected by the cultivated plant. Humic substances extracted from field plots with cotton showed higher carbon, but less nitrogen (N), total acidity and carboxylic groups content, as compared with those under corn. Generally HAs and FAs extracted from the fields plots amended with sewage sludge had higher N content, lower values of total acidity, carboxylic groups and carbon contents than those from the unamended soils. The FT‐IR spectra of humic (HAs) and fulvic (FAs) acids extracted from sewage sludge indicated the presence of high percentage of aliphatic carbon, polysaccharides and proteinaceous materials. The spectra of the humic matter in the field plots showed less aliphatic but increased amide stretch in comparison with the sludge. The absorption due to C=O in carboxylic groups of the FAs was not pronounced, though the presence of polysaccharides and protein decomposition products was clearly indicated. 相似文献
2.
《Communications in Soil Science and Plant Analysis》2012,43(9-10):919-941
Abstract The purposes for this research were: to examine the long‐term residual effects of farmland applications of municipal sludges from four treatment technologies on the total and extractable Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations in Coastal Plain soils; to investigate the effects of sludge sources and rates on the effectiveness of soil extractants to remove the various metals; and to determine correlation coefficients for soil extractable versus plant accumulation in tobacco. The extractants evaluated were Mehlich 1 and 3, and DTPA‐pH 7.3. Composite Ap horizon soil samples and tobacco leaf samples were obtained in 1984 from research plots at two sites in Maryland that were established in 1972 and 1976, respectively, using sludge materials from three wastewater treatment facilities in the Washington, D.C. metropolitan region. Similar application rates were used at both sites. A wide range in soil pH values was found among treatments at each site. Significant (p ≤ 0.05) increases were observed in total Zn, Cu, Fe, Pb, Ni, and Cd for all sludge sources with increased rates; however, values for total soil Mn exhibited high variability in all cases. The rankings among the extractants varied for some elements depending on the sludge sources. For Zn, the rankings were Mehlich 1 > Mechlich 3 > DTPA‐pH 7.3 across all sources and rates. For Cu, Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was found for soils amended with Blue Plains digested (BPD) and Piscataway limeddigested (PLD) sludges but Mehlich 1 ≥ DTPA pH 7.3 > Mehlich 3 for Blue Plains limed compost (BPLC) and Annapolis Fe and heat treated (AFH) sludges. Concerning extractable Mn, Mehlich Mehlich 1 > Mechlich 3 > DTPH pH 7.3 was the order for BPLC and AFH sludges but Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was observed for BPD and PLD sludges. The rankings among extractants for Fe (Mehlich 3 > Mehlich 1 > DTPA‐pH7.3), Ni (Mehlich 3 ≥ Mehlich 1 > DTPA‐pH 7.3), Pb (Mehlich 3 > DTPA‐pH 7.3 > Mehlich 1) and Cd (Mehlich 1 > Mehlich 3 > DPTA‐pH7.3) were somewhat similar across all sludge sources. Significant correlation coefficients were obtained for all three extractants for soil extractable vs. plant Zn, Cu, Ni, and Cd at both sites; however, Mehlich 3 was not significant for Mn. Also, neither of the extractants produced significant coefficients for Fe and Pb. 相似文献
3.
《Communications in Soil Science and Plant Analysis》2012,43(3-4):393-407
Abstract A statistical comparison of data collected from two cotton production fields with a history of either commercial fertilizer or sludge amendments showed significantly different nitrate‐nitrogen (N) concentrations in time and space. The sludge‐amended field had high nitrate concentrations in the root zone (1.5 m) throughout the season. Whereas, the fertilized field showed low nitrate‐N concentrations during the same period. Both fields showed significant increases in nitrate‐N following pre‐plant irrigation events, and significant decreases of nitrate‐N in the root zone during the growing season. Following harvest, the sludge‐amended field had very large reserve of nitrate‐N in the profile. The spatial variabilities, as determined by the % coefficients of variations (CVs) of eight cores per sampling event, of nitrate‐N distributions where large in both fields, 69% and 90% for the sludge and fertilizer field, respectively. The estimated nitrate‐N leaching losses were much higher in the sludge‐amended than the fertilized field. Significant leaching losses in the sludge‐amended field were likely the result of year‐to‐year sludge residue accumulations that mineralize and release nitrate‐N in the zone of incorporation (0–30 cm). 相似文献
4.
《Communications in Soil Science and Plant Analysis》2012,43(9-10):797-812
Abstract Soil cores were collected to a depth of 14 m from a Southwest semi‐arid soil amended with either anaerobically digested sludge or inorganic fertilizer. Twenty sections partitioned from each core were characterized for their physical and chemical properties. Denitrification potential was estimated in each core section in the laboratory using the acetylene reduction method. The sludge‐amended soil had significantly higher denitrification rates within and below the root zone than the fertilizer‐amended soil. Additionally, significant correlation values were obtained in both cores between denitrification rates and particle size distribution, moisture, and total organic carbon (C). Sludge applications in semi‐desert soils may add much needed organic C in the soil profile. This additional soluble organic C may help control nitrate (NO3) ground water pollution by providing substrate C for denitrifying bacteria below the root zone. 相似文献
5.
《Communications in Soil Science and Plant Analysis》2012,43(11):1303-1316
Abstract Domestic sewage sludge applied to farm fields at a rate of 44.9 kg/ha in a mixture with lime and sawdust was found to increase the soil levels of cadmium, chromium, copper, lead, mercury, nickel and zinc. The average levels in sludge treated soil were: 0.11, 0.56, 3.59, 2.72, 0.068, 1.49 and 2.57 ppm, respectively. The increases were small and the overall loading factors were well below recommended maximums. The uptake of these heavy metals by grass and legume plants was variable with cadmium, copper and zinc levels being higher in those plants growing in the sludge treated soils but only copper was significantly higher. The heavy metal contents found were all within the levels normally found in grass and legume plants. The higher mean concentration in plants growing on the sludge treated soils were cadmium 0.495; chromium 1.22; copper 12.3; lead 1.54; mercury 0.022; nickel 4.08 and zinc 28.4 ppm. 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(1-2):23-45
Abstract Effect of two moisture levels (22.5 and 13.5%, w/w) and wetting‐drying cycles on manganese solubility was studied in NaCl‐amended soil. During 6 d incubation, higher moisture level released 40‐fold more water‐soluble Mn and 60‐fold more NH4OAc‐exchangeable‐Mn in non‐salinized soil. In NaCl‐treated soil, 50 to over 200% greater soluble and exchangeable Mn was recovered from samples incubated at 22.5% compared to 13.5% water levels. Wetting‐drying cycles significantly (P≤0.05) decreased water‐soluble Mn, which accounted for 50 to 60% increases in the exchange‐able Mn. Since other non‐oxidizing/reducing cations (Ca, Mg, Na, K) also demonstrated similar behavior, it is proposed that in addition to oxidation upon drying and reduction upon wetting, the increases in exchangeable Mn and simultaneous decreases in soluble Mn concentration are due to sorption processes. These results suggest that under field conditions, the insolubility of Mn due to continued wetting‐drying cycles may eventually lead to Mn deficiency in soils low in Mn. 相似文献
7.
T. E. Staley 《Journal of plant nutrition》2013,36(12):2577-2590
A major constraint to the renovation of forage legume‐based pastures on acidic soils of the Appalachian hill‐lands is thought to be the absence of effective rhizobia. A growth chamber experiment was done with aluminum (Al) toxic, low pH (≥ 4.2) soils from four series (Berks, Lily, Tate, and Westmoreland) that were planted with alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), white clover (Trifolium repens L.), or birdsfoot trefoil (Lotus corniculatus L.). These soils, without lime addition, were previously shown not to contain effective, naturalized populations of rhizobia for these plant species. However, a non‐toxic, pH 6.8, Watauga soil was shown to have such rhizobia but only for alfalfa. In the present study, these five soils were reexamined after liming to pH ≥ 5.5 for effective, naturalized populations of rhizobia and the efficacy of soil inoculation with commercially available rhizobia. In addition to effective, naturalized R. meliloti for alfalfa in the Watauga soil, similar populations of R. trifolii for red clover, and R. lotus for birdsfoot trefoil, were now found. Such rhizobia were also found for alfalfa in the Lily soil and for red clover in the Lily and Tate soil. Thus, liming allowed the expression of effectiveness of natural rhizobia that otherwise would not have been detected in soil pot experiments without lime. Inoculation of the toxic soils after lime addition with commercial rhizobia was effective in about half of the soil‐plant combinations that did not contain populations of effective, naturalized rhizobia. Asymbiotic shoot growth of all the plant species was significantly (P ≤ 0.05) correlated with soil pH over a range of 5.5–6.6. These results indicate that, in the absence of effective, naturalized populations of rhizobia, improvement of rhizobial inocula could increase forage production by ~34% for some species on some of the toxic soils, even after the pH of the soils is increased to ≥ 5.5. 相似文献
8.
《Communications in Soil Science and Plant Analysis》2012,43(9-10):1013-1030
Abstract Nitrate leaching losses were estimated using soil core samples from three different locations in a furrow irrigated, N fertilized and sludge amended cotton field. These losses were controlled by irrigation efficiency, as well as sources and quantities of N applied. Statistical comparisons of sample locations and N treatments revealed N treatment to be less significant than the field sampling location. However, sludge amended soils had significantly higher levels of nitrates in the root zone and consequently suffered higher nitrate leaching losses. A NO3‐N profile (30–210 cm) balance indicated that about forty percent (40%) of available NO3‐N was leached below the root zone (0–150 cm) in the upper two‐thirds of the field plots during the pre‐plant irrigation. Whereas, the lower one‐third of the field did not experience significant nitrate losses below the root zone. A one‐dimensional finite difference layered model, was used to estimate the depth of moisture penetration at the field (furrow) locations following pre‐plant irritation. It was concluded that the lower one‐third of the plots received less than 50% of mean plot application (30 cm) water during pre‐plant irrigation. 相似文献
9.
Effect of nitrogen and phosphorus on ‘delicious’ apple trees grown in caliche soil in the greenhouse
Abstract In a greenhouse study, mono‐ammonium phosphate applications to ‘Delicious’ (Oregon spur cv) apple trees, Malus domestica Borkh., improved a low‐vigor condition associated with a caliche soil. The moderate rate of mono‐ammonium phosphate (6 grams per tree) resulted in trees with greater shoot extension, leaf numbers, a higher percent leaf phosphorus, and less purple leaf margins or spots than other soil treatments or the control. By September, trees treated with the highest rate of mono‐ammonia phosphate (12 grams per tree) had the highest level of leaf phosphorus and significantly higher levels of leaf phosphorus than all forms of nitrogen‐only fertilizer (ammonium nitrate, ammonium sulfate, calcium nitrate, and urea). In most cases, applications of the nitrogen‐only fertilizers, reduced leaf phosphorus levels throughout the experiment. 相似文献
10.
《Communications in Soil Science and Plant Analysis》2012,43(11-12):2117-2132
Abstract Plant uptake of selenium (Se) on western United States mine lands is a concern in reclamation efforts due to the potential growth of vegetation that may be considered toxic to wildlife and domestic animals if consumed over time. A study was designed to determine if sewage sludge from Rock Springs and Kemmerer/Evanston, Wyoming, at rates of 25, 50, and 100 Mg/ha, would enhance or decrease Se uptake by yellow sweet clover (Melilotus officinalis) and thick spike wheatgrass (Agropyron dasystachyum) grown on mine backfill material (i.e., overburden material that has been displaced). Results indicated that increased sludge amendments significantly decreased plant Se levels. Changes in backfill chemical and physical characteristics were believed to have caused a reduction in Se bioavailability (as determined by AB‐DTPA extraction), even though total Se concentrations of the sludge‐amended backfill treatments were greater with increasing sewage sludge additions. Land application of sewage sludge is therefore recommended as a viable method for mine land reclamation efforts. 相似文献
11.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):2119-2136
Abstract In a field experiment conducted during three years in a sandy‐loam, calcareous soil, one aerobically digested sewage sludge (ASL) and another anaerobically digested sewage sludge (ANSL) were applied at rates of 400, 800, and 1,200 kg N/ha/year, and compared with mineral nitrogen fertilizer at rates of 0, 200, 400, and 600 kg N/ha/year in a cropping sequence of potato‐corn, potato‐lettuce, and potato, the first, second, and third year, respectively. Results showed that the highest values of soil extractable metals were obtained with aqua regia, whereas the lowest levels with DTPA. All metal (Zn, Cu, Cd, Ni, Pb, and Cr) gave significant correlations between metal extracted with the different extractants and metal loading applied with the sludges. The metal extractable ion increased over the control for Zn, Cu, Cd, Ni, Pb, and Cr extracted with DTPA, EDTA (pH 8.6) and 0.1 N HC1, for Zn, Cd, Ni, Pb, and Cr extracted with EDTA (pH 4.65) and AB‐DTPA, and for Zn, Cd, Ni, and Cr extracted with aqua regia. The level of metal‐DTPA extractable resulted highly correlated with that obtained by the other methods, except the Ni‐aqua regia extractable. The soil extractable elements which showed significant correlations with metals in plant were: Zn, Cu, Cd, and Ni in potato leaves, Cd, Ni, and Pb in corn grain, and Zn and Cd for lettuce wrapper leaves. In general, all the chelate based extractants (DTPA, EDTA pH 4.6, EDTA pH 8.6, AB‐DTPA) were equally useful as indicator of plant available metals in the soil amended with sludge. 相似文献
12.
《Communications in Soil Science and Plant Analysis》2012,43(2):101-113
Abstract An experiment was conducted to help understand the contributions of different soil layers to soil fertility, plant growth, and response to fertilization. Douglas‐fir (Pseudotsuga menziesii) seedlings were used in a pot bioassay to delimit the effects of volcanic ash soils, urea fertilization at 100 and 200 ppm, and the technique of using undisturbed soil as a growth medium. Volcanic ash horizons contained more available phosphorus and mineralized more nitrogen than underlying horizons. Best seedling growth occurred in ash horizons fertilized with 200 ppm of urea‐N. Fertilization decreased soil pH, mycorrhizae formation and foliar‐P levels but increased foliar‐N. The technique of using undisturbed soil had little effect on seedling growth in the weak structured ash horizons but did decrease root weights in the moderate structured sub‐ash layers. 相似文献
13.
《Communications in Soil Science and Plant Analysis》2012,43(7):661-668
Abstract Two contrasting soils were extracted with 0.05 M EDTA in 1 M CH3 COONH4 at pH 6, before and after incubation for 4 weeks at constant (10, 20 or 30°C) or fluctuating (10/30, mean 20°C) temperatures. Less copper was extracted from soils which were incubated at fluctuating temperature than from those maintained at a constant 20 C. Where incubation temperature was constant, extractable copper increased or decreased with increasing temperature depending on the soil and how it was treated. Recovery of added copper was low initially but increased during the incubation. Maximum recovery was associated with low incubation temperature in one soil, but high temperature in the other. The amounts of copper extracted were slightly increased by γ‐irradiation of the soils. Extractable copper was also increased by increasing the temperature at which the extraction was performed. 相似文献
14.
《Communications in Soil Science and Plant Analysis》2012,43(15):1747-1770
Abstract Cadmium, Zn and Mn in eleven paired soils (one which had a history of sludge application and a control from adjacent land where sludge had not been used) were partitioned into five fractions: exchangeable, adsorbed, organically bound, carbonate bound and sulfide, by the use of KNO3, H20, NaOH, EDTA and HNO3, respect‐ively. The data indicate that the major portion of the total metals was found in the carbonate, sulfide and organic fractions. Addition of CaCO3caused an increase in the exchangeable + soluble fractions of added Cd in the soils, but had little effect on native or sludge derived Cd. 相似文献
15.
《Communications in Soil Science and Plant Analysis》2012,43(7-8):769-783
Abstract Relatively high amounts of Cu are found in manure of hogs (Sus scrofa domesticus) maintained on diets containing growth‐stimulating levels of Cu. While disposal of Cu‐enriched hog manure through repeated long‐term application to agricultural land is commonly practiced, concern exists regarding Cu availability in these soils. Field studies were conducted on a Bertie fine sandy loam (Aquic Hapludults) and a Starr‐Dyke clay loam (Fluventic Dystochrepts‐Typic Rhodudults), located in the Coastal Plain and Piedmont regions of Virginia. The objective was to examine the effects of long‐term Cu application on corn (Zea mays L.) growth and to ascertain the Cu sorption capacity of these soils. Field plots were treated with Cu‐enriched hog manure or CUSO4 (on an equivalent Cu basis) annually. Manure amendments totaled about 240 t ha‐1 (dry weight) over an 11 yr period (1978 through 1989). The manure averaged 1300 mg Cu kg‐1 (dry weight) over this time period totaling 340 kg Cu ha‐1. Sorption isotherms were determined for sorption of Cu by the Bertie and Starr‐Dyke soils. In comparison with unamended control plots, studies conducted in 1989 showed an early season stunting effect for corn grown on the CUSO4 treated Bertie soil. No differences in plant heights were observed for corn grown in CuSO4 treated Starr‐Dyke soil or control plots. Plant growth rates were increased on plots amended with Cu‐enriched hog manure. Copper sorption capacity of Bertie and Starr‐Dyke soils increased following several annual applications of manure. 相似文献
16.
The effects of sulfur (S) nutrition at 0.1 or 1 mM S on cadmium (Cd) toxicity measured by photosynthesis in barley (Hordeum vulgare L. cv. UC 476) seedlings were studied. Eight‐day‐old seedlings were treated with 25 μM Cd by adding cadmium chloride (CdCl2) to the nutrient solution. Then photosynthetic carboxylation efficiency (ACi curve) and stomatal conductance of the primary and second leaves were measured at four and eight days after Cd treatment. Fluorescence parameters were measured every 24 h for eight days after two days of Cd treatment. At 20 days, plant growth parameters were measured and dry biomass determined. The results showed that ACi was significantly reduced by Cd, but more in the low (0.1 mM) S than in the high (1 mM) S‐treated plants. Stomatal conductance of plants was also decreased by Cd, but more in the low S‐treated plants. Low S‐treated plants exposed to Cd showed an increase in Fo and Fq, and a decrease in Fv/Fm and T1/2, indicating photoinhibitory damage to PSII. Analysis of the growth parameters showed that Cd decreased plant size and biomass, but the reduction was more severe in the low S‐treated plants. These results support the hypothesis that S is a critical nutritional factor in plants which is important for the reduction of Cd toxicity. 相似文献
17.
《Communications in Soil Science and Plant Analysis》2012,43(9-10):2265-2278
Abstract The effect of pH on the saturated hydraulic conductivity (K) of repacked columns of two non‐sodic soils (Healaugh and Fagaga soils) was examined. The K value was greater for the Fagaga soil than for the Healaugh soil which is attributed to the difference in the amount of free iron oxides between the soils. The K values reached a maximum when the pH was close to the point of zero net charge (PZNC) (3.7 and 4.8 for the Healaugh and the Fagaga soil, respectively) and decreased on either side of these pH values. The effect of pH on K was related to its effect on surface charge. As the pH of variable‐charge soils approaches the PZNC, the net surface charge decreases resulting in flocculation and maintenance of a high K. Conversely, as the pH deviates from the PZNC, the net surface charge increases, resulting in dispersion and a decrease in K. There was a negative relationship between the amount of dispersed clay and the K values, suggesting that clay dispersion and the resulting clogging of pores decreases K in these soils. 相似文献
18.
An increase in the concentration of HCO‐ 3 ions in liquid media surrounding the root system significantly affected the biomass production of tomato seedlings in early stages of growth. This effect depended upon HCO‐ 3 concentration. The cultivation of seedlings during a period of 24 days (from 21–45 days after sowing) on a medium enriched to 5.68 mM HCO3 (0.025% CO2 after the computed dissociation) increased the production of dry matter (DW) plant"1 to about 179% as compared with the respective control. Various tomato organs showed different values of DW increase, the greatest one being noted in leaf blades. This result was correlated with an increase in leaf blade area to about 176% in relation to the control. With an increase in the concentration to 22.72 mM HCO‐ 3 (0.1% CO2 after the computed dissociation) a general tendency of changes was maintained, however, the absolute values of growth were diminished. In media of an enriched HCO3 content the length of shoots, and roots, was not significantly modified. The values of other growth parameters computed for the respective three experimental series with HCO3 concentration of 0.0, 5.68, and 22.72 mM, respectively, in the medium also showed correlations with the biomass production in tomato organs. The enrichment of liquid media with HCO3 affected the processes of absorption, distribution, and accumulation of such elements as nitrogen, potassium, and calcium. No statistically significant differences in the content of phosphorus were obtained. The data presented here are the continuation of the study whose results were published in 1992 (J. Plant Nutr. 15: 293–312). 相似文献
19.
《Communications in Soil Science and Plant Analysis》2012,43(3-4):305-319
Abstract The uptake and distribution of manganese (Mn) in field‐grown maize (Zea mays L.) was studied in a long‐term sewage sludge field trial on an acid sandy soil at Bordeaux. Since 1974, sewage sludge had been applied at levels of 101 dry matter (DM) ha‐1 year‐1 (SS 10) and 1001 DM ha‐1 per 2 years (SS 100) on annually cropped maize plots. Treatment with farmyard manure (FYM) at a rate of 10 t DM ha‐1 year‐1 served as unpolluted control. Five replicate plants per treatment were examined at six different growth stages. At each stage, the whole plant was separated into its different organs and the Mn distribution was determined in at least 12 different plant parts. Manganese concentrations were always higher in SS 100 plants compared to FYM and SS 10 treated plants. Significant treatment‐dependent differences occurred almost all in the roots and in the different leaf levels while we found similar Mn concentrations in the stalk and in the reproductive organs. In the different stalk levels and in the ear composites we determined low Mn concentrations with critical deficiency values in FYM and SS 10 plants while Mn concentrations in SS 100 plants were in the normal range. Soil treatment also significantly influenced the initial absorption by the roots. Despite low absolute Mn concentrations in the roots of FYM plants, the Mn transfer coefficient (plant Mn concentration/soil Mn concentration) was highest in FYM plants and lowest in SS 100 plants indicating a relatively low Mn plant availability in the sludge‐treated plots. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(17-18):2705-2711
Abstract No‐tillage induces the stratification of soil nutrients because of the return of crop residues to soil surface, fertilization and the lack of soil mixing. In this research we have attempted to develop a phosphorus (P) balance on soybean, to study the relative importance of the causes of P stratification. An experiment was performed on a Typic Hapludoll located in mid Buenos Aires province, Argentina. The treatments were fertilized and unfertilized. Soybean biomass and P concentration in grains, stubble and roots were determined. In both treatments the P stratification was produced by the enrichment of the surface layer and the impoverishment of the deeper layers. In the non‐fertilized plots the soil lost P (7.5 kg P ha1) meanwhile in the fertilized plots (20 kg P ha‐1added) the soil gained P (6.6 kg P ha‐1). The accumulation of plant residues alone is enough to redistribute P in soils, but fertilization was the main factor in P stratification. 相似文献