首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract. Crop responses to applied potassium fertilizers are erratic in many arid and semi-arid soils. The potassium supplying potential of river-bed sediments and release of interlayer potassium from eleven alkaline soils were measured in two separate experiments. Sediments from the Chenab and Ravi Rivers in Pakistan were exhausted of potassium by successively growing wheat, maize, mungbean, and wheat in them for a total of 200 days, using Hoagland solution to supply optimum amounts of other nutrients. Cumulative plant dry matter yield was significantly greater on the Chenab sediments. The quantities of potassium supplied to plants from the sediments of the two rivers were also significantly different. Interlayer potassium was extracted for 1230 minutes from a Udic Haplustalf (Pindorian series) by twelve different solutions each with the same electrolyte content (100 cmol). The sodium adsorption ratios (SAR) of the solutions were adjusted to 5, 10, 25, and 50, each with Ca: Mg ratios of 25:75, 50: 50 or 75:25, using solutions of sodium, calcium and magnesium chloride. The potassium released from the soil was inversely related to solution SAR. Increasing proportions of magnesium relative to calcium in solution favoured the release of potassium, except in the SAR 50 solution. Significantly different quantities of potassium were extracted by various solutions. Maximum potassium (442 mg/kg) was extracted by SAR 5 solution with a Ca: Mg ratio of 25:75. Interlayer potassium subsequently removed by this solution from 11 alkaline soils ranged from 407 to 499 mg/kg. The potassium released from all but three of the soils was related to their clay content (r= 0.72; n= 8). The release of potassium from the soils followed the Elovich function. The intercept (X1) and slope (X2) estimated for the function was related to potassium released (y) by the equation: y=?1.13 + 2.74X1?0.014X2 (r= 0.998; n= 8) The results imply that river sediments treated with irrigation water containing magnesium and sodium ions can contribute substantial amounts of available potassium for plant growth.  相似文献   

2.
The volcanic soils of Kamchatka are characterized by low and very low values of their potential potassium buffer capacity. The largest amount of readily exchangeable potassium (-ΔK 0) is observed in the surface layers of the natural soils and is due to the active biogenic accumulation. The soddy horizons have a high content of strongly fixed potassium (K X ). The main factors determining the content of the labile potassium and its mobility are the contents of physical clay, humus, and exchangeable potassium. The extremely nonuniform distribution of all the potassium status parameters throughout the soil profile reflects the discrete character of the volcanic pedogenesis. The low values of the potential buffer capacity for the potassium (PBCK) at the high values of the equilibrium potassium potential (AR 0) and the medium content of the labile potassium in the light-textured synlithogenic soils simultaneously indicate both the good potassium supply of the plants and the incapability of the soils to resist potassium exhaustion under agricultural production conditions for a long time.  相似文献   

3.
A greenhouse experiment was conducted to examine whether foliarly applied potassium + phosphorus (K + P) in the form of monopotassium phosphate (KH2PO4) could mitigate the adverse effects of salt stress on sunflower plants. There were two levels of root-applied salt [0 and 150 mM of sodium chloride (NaCl)], and varying levels of KH2PO4 [(NS (no spray), WS (spray of water), 5 + 4, 10 + 8, 15 + 12, and 20 + 16 mg g?1 K + P, pH 6.5] applied foliarly to 18-day old non-stressed and salt stressed sunflower plants. Salt stress adversely affected the growth, yield, photosynthetic capacity, and accumulation of mineral nutrients in the sunflower plants. However, varying levels of foliar applied KH2PO4 proved to be effective in improving growth and yield of sunflower under salt stress. The KH2PO4 induced growth in sunflower was found to be associated with enhanced photosynthetic capacity, water use efficiency and relative water contents.  相似文献   

4.
Salinization of soils has led to the loss of cropland and represents a major threat to food production. Hyperspectral imaging may prove to be useful for characterizing the spectral behavior of salt-affected soils but the methodology needs to be better evaluated. In this study, we characterized the spectral behaviors of four types of chloride salt crusts [calcium chloride dehydrate, magnesium chloride dehydrate, potassium chloride, and sodium chloride (CaCl2·2H2O, KCl, and NaCl)] formed in the laboratory. We found that (1) as salt concentration increased, the reflectance intensity decreased for both soil types, and the decreases were especially pronounced for the soils leached with the CaCl2·2H2O and MgCl2·2H2O solutions; (2) soil texture had little if any effect on reflectance; and (3) reflectance intensity decreased in the order CaCl2·2H2O < MgCl2·2H2O < KCl < NaCl. By clarifying the spectral behavior of chloride salt crusts on soils, our work demonstrates hyperspectral imaging may differentiate some types of salts and determine relative salt concentrations.  相似文献   

5.
The effect of varying hydrogel (0, 0.5, and 1.0% w/w) supply on some agro-physiological properties, such as dry matter, nutrient contents, chlorophyll contents, proline content, and ionic balance of bean plants in different salt sources and stress due to doses were investigated. Plants were treated with eight salt sources [sodium chloride (NaCl), sodium sulfate (Na2SO4), calcium chloride (CaCl2), calcium sulfate (CaSO4), potassium chloride (KCl), potassium sulfate (K2SO4), magnesium chloride (MgCl2), magnesium sulfate (MgSO4)] and four concentrations (0, 30, 60, and 120 mM doses) for 60 days in a growth media. Salt type, doses, and hydrogel (HG) affected the soil electrical conductivity. Soil salinity affected the parameters considered, and changed the nutrient balance of plants. High salt concentration caused substantial reduction in plant growth. Different salt concentrations negatively affected plant dry weight. The highest decrease of plant root dry weight was obtained with NaCl application followed by Na2SO4, CaCl2, CaSO4, MgCl2, MgSO4, KCl, and K2SO4, and similarly NaCl, Na2SO4, CaCl2, CaSO4, KCl, K2SO4, MgCl2, and MgSO4 in root dry weight. Total chlorophyll and nitrate contents of plants decreased with increasing salt doses, and the lowest value was obtained for NaCl application. Proline contents of plants were increased with increasing salt doses, and the highest value was obtained with the NaCl application. The effects of salt concentrations in nitrogen (N), potassium (K), and phosphorus (P) content of plants were significant. The presence of salt in the growth medium induced an important decrease the macro nutrient of the root and shoot part of plant such as N, P, K, calcium (Ca), and magnesium (Mg) content, but the N and P content of root and shoot part of the plant were increased with increasing of the HG application doses. The highest N and P increases were obtained with the 1.0 HG application for all salt types for both the root and shoots of plants. The HG added to saline soil significantly improved the variables affected by high salinity and also increased plant N and P, reduced soil electricity conductivity, nitrate, proline, and electrolyte leakage of plants, enhanced plant root and shoot dry weight by allowing nutrients and water to release to the plant as needed. The results suggested that HG has great potential for use in alleviating salinity stress on plant growth and growth parameters in saline soils of arid and semi-arid areas. This HG appears to be highly effective for use as a soil conditioner in vegetable growing, to improve crop tolerance and growth in saline conditions. It is intended to confirm the results of these studies by field trials.  相似文献   

6.
Resin capsule technology developed for nutrient analysis in agriculture soils recently has been expanded to semi-arid soils without knowledge of effectiveness. This study determined if resin nutrient adsorption is correlated to plant uptake and yield in semi-arid soils. Two soils were treated with five rates of nitrogen (N) and four rates of phosphorus (P), placed in pots with resin capsules, seeded with squirreltail grass (Elymus elymoides), and grown in a glasshouse for 120 d followed by biomass determination and nutrient analysis of capsules, soils, and tissues. Yield and total nutrient uptake were highly correlated to fertilizer application rates, resin ammonium (NH4)-N, and sodium bicarbonate (NaHCO3)–extracted P; marginally correlated to resin and potassium chloride (KCl)–extracted nitrate (NO3)-N, and unrelated to KCl-extracted NH4-N and resin P. Use of resin capsules to estimate N bioavailability is promising, but P bioavailability is not effectively estimated with resin capsules; instead traditional NaHCO3 extraction is recommended.  相似文献   

7.
Calcium (Ca) has an important role in plant physiology, including involvement in the responses to salt stress, and controls numerous processes. To overcome the negative impact of high salinity, the addition of supplemental Ca to the growth medium as an ameliorative agent could be necessary. Atriplex halimus subsp. schweinfurthii and Atriplex canescens subsp. linearis were grown in hydroponic conditions to investigate the effectiveness of supplementary calcium chloride (CaCl2) applied into nutrient solution on plants grown at high (400 mM) sodium chloride (NaCl) concentration. Treatments were: 1) nutrient solution alone [control (C)]; 2) nutrient solution plus 400 mM sodium chloride (NaCl); and 3) nutrient solution and 400 mM NaCl plus supplementary 40 mM CaCl2 supplied in nutrient solution (NaCl + CaCl2). The experiment was set up as a completely randomized design, consisting of two species (A. halimus and A. canescens), three treatments (control, NaCl, and NaCl + CaCl2), and five replicates. Dry weight and chlorophyll content of plants grown at high NaCl were lower than those at normal nutrient solution. Supplementary CaCl2 ameliorated the negative effects of salinity on plant growth in both species. Root hydraulic conductivity (L 0) decreased with elevated NaCl and increased with supplementary CaCl2 compared to the stressed plants. Membrane permeability increased with high NaCl application and these increases in root membrane permeability decreased with supplementary CaCl2 compared to the NaCl treatment. Sodium (Na) concentration in plant tissues increased in both species in high NaCl level. Application of supplementary CaCl2 lowered Na concentration. Concentrations of calcium (Ca) and potassium (K) were at deficient ranges in the plants grown at high NaCl levels and these deficiencies were corrected by supplementary CaCl2.  相似文献   

8.
In most phosphorus (P) sorption studies, P is added as an inorganic salt to a predefined background solution such as calcium chloride (CaCl2) or potassium chloride (KCl); however, in many regions, the application of P to agricultural fields is in the form of animal manure. The purpose of this study, therefore, was to compare the sorption behavior of dissolved reactive P (DRP) in monopotassium phosphate (KH2PO4)–amended CaCl2 and KCl solutions with sorption behavior of DRP in three different animal manure extracts. Phosphorus single‐point isotherms (PSI) were conducted on eight soils with the following solutions: KH2PO4‐amended 0.01 M CaCl2 solution, KH2PO4‐amended 0.03 M KCl solution, water‐extracted dairy manure, water‐extracted poultry litter, and swine lagoon effluent. The PSI values for the dairy manure extract were significantly lower than the CaCl2 solution for all eight soils and lower than the KCl solution for six soils. The PSI values were significantly higher, on the other hand, for poultry litter extract and swine effluent than the inorganic solutions in four and five of the soils, respectively. Our observations that the sorption of DRP in manure solutions differs significantly from that of KH2PO4‐amended CaCl2 and KCl solutions indicates that manure application rates based on sorption data collected from inorganic P salt experiments may be inaccurate.  相似文献   

9.
Abstract

Superoxide dismutase (SOD) pattern, catalase, Cyt c oxidase and fumarase activity were studied in leaves of Phaseolus vulgaris and Vigna unguiculata plants growth in two sodium chloride (NaCl) concentrations (35 mM and 100 mM). In bean plants growth with NaCl, leaf chloride (Cl?) contents were higher than in control plants, and the same was found for sodium (Na+) and potassium (K+) contents, although to a lesser degree. In cowpea leaves, Na+ and Cl? had a similar increase due to salt‐growth conditions. Under salinity, all changes in the antioxidant (SOD and catalase) enzymes levels were smaller in bean than in cowpea plants. In Phaseolus at 15 days growth, Cu, Zn‐SOD I showed an increase by the effect of salt treatment, but this induction did not occur at 30 days growth, and both Mn‐SOD and Cu, Zn‐SOD II did not show variations due to salt‐stress. In Vigna, Mn‐SOD was decreased by salinity but this was compensated by an increase in Cu, Zn‐SOD I activity in plants at 30 days growth, whereas in young leaves under saline conditions, both isozymes were also decreased. Likewise, there was a rise in cytochrome c oxidase and fumarase activity in leaves of NaCl‐treated plants compared to the control. The activity changes observed are discused in term of their possible relevance to plant sensitivity to saline conditions.  相似文献   

10.
Purpose

Salt marsh plants are colonising wastes from a steel plant deposited on the Coina River Banks posing a potential contamination risk to the Tagus estuary ecosystem. The objectives of this study were to assess the uptake, accumulation and translocation of hazardous elements/nutrients in three spontaneous halophytic species, to evaluate the capacity of Tamarix africana to stabilise a contaminated salt marsh soil, and to evaluate the ecotoxicity of the pore water and elutriates from phytostabilised soils.

Materials and methods

The work comprises the following: fieldwork collection of soil samples from Coina River (an affluent of Tagus River) bank landfill, estuarine water and spontaneous plants (Aster tripolium, Halimione portulacoides and Sarcocornia sp.), and greenhouse studies (microcosm assay) with T. africana growing in one landfill salt marsh soil, for 97 days, and watered with estuarine water. Soils were analysed for pH, EC, Corganic, NPK, iron and manganese oxides. Soils total (acid digestion) elemental concentrations were determined by ICP/INAA. Estuarine waters, plants roots and shoots (acid digestion), soils available fraction (diluted organic acids extraction-RHIZO or pore water), and salts collected from the T. africana leaves surface were analysed for metals/metalloids (ICP-MS). Ecotoxicity assays were performed in T. africana soil elutriates and pore waters using Artemia franciscana and Brachionus plicatillis.

Results and discussion

Soils were contaminated, containing high total concentrations of arsenic, cadmium, chromium, copper, lead and zinc. However, their concentrations in the available fraction were <4 % of the total. The estuarine waters were contaminated with cadmium, but negligible ecotoxicological effect was observed. The spontaneous plants had significant uptake of the above elements, being mostly stored in the roots. Elemental concentrations in the shoots were within the normal range for plants. These species are not hazardous elements accumulators. Tamarix africana was well adapted to the contaminated saline soils, stored the contaminants in the roots, and had small concentrations of hazardous elements in the shoots. Excretion of hazardous elements by the salt glands was also observed. Elutriates from soils with and without plant did not show ecotoxicity.

Conclusions

The salt marsh species play an important role in the stabilisation of the soils in natural conditions. Tamarix africana showed potential for phytostabilisation of saline-contaminated soils. The low translocation of the elements from roots to shoots and/or active excretion of the elements by the salt glands was a tolerance mechanism in T. africana.

  相似文献   

11.
Abstract

Large areas of salt‐affected soils exists in Syria. Besides, large quantities of phosphogypsum (PG) are stacked in areas close to the fertilizer factories (radioactivity 350 to 400 Bq kg‐1) that may pose a negative impact on the environment. Different rates of PG (0, 0.25, 2.5, 5, and 25%) were mixed with three soils characterized by different level of salinity (ECe 5.25, 9.44 and 17.66 dS m‐1) to monitor the effect of mixing PG on the physical and chemical properties of the soils, plant growth and the accumulation of radionuclides in soils and plants. The high PG application rates (2.5, 5, and 25%) were used to monitor the effects of adding the normal application rate of PG (5 T ha‐1) for 10, 20, and 100 consecutive years. Soil‐PG mixtures were put in 8.5 kg pots where trifolium (Trifolium pilulare) and barley (Hordium vulgare var. Arabi Abyad) were seeded. The results showed that mixing PG increased the saturated hydraulic conductivity, reduced Cl‐1 and increased SO2‐ 4 concentrations in the saturated extracts and increased the available phosphorus (P). Mixing PG increased plant height, shoot number and dry weigh of both plants. Barley grain weight increased by 62.0, 49.8, and 39.5% in Ramet‐Leha, Maskane, and Beni‐Taghleb soils, respectively. The radioactivity of barley grains and the vegetative parts of the two plants grown in these mixtures were below the detective level (1.1 Bq kg‐1 of dry weight).  相似文献   

12.
Effects of de-icing salts (NaCl) on the mineral status of lime-trees . The long time effect of de-icing salt on the mineral status of the roadside trees Tilia cordata and Tilia tomentosa are investigated after mild winters. Despite the low content of chloride in the soils injured trees contain high amounts of chloride and also sometimes soidum in leaves, bark and wood. There was a good correlation between the accumulation of sodium chloride or chloride alone and the degrees of visible injury of the leaves (chlorosis or necrosis), but no correlation exists for calcium, magnesium and potassium levels. However, in branches and stems increasing amounts of sodium chloride caused an decrease of potassium. An early recognition of salt injury in trees is possible by analysing the ion composition of the interior bark. Levels of more than 7.5 meq chloride or/and 5.0 meq sodium per 100 g dry bark substance are indicating salt injuries.  相似文献   

13.
The aim of this study was to evaluate the physiological responses of Leymus chinensis (Trin.) Tzvel exposed to long-term salt, salt-alkali, and alkali stress in order to elucidate how L. chinensis can survive under alkaline-sodic soils. L. chinensis (30 days after germination) were stressed with salt [SS; sodium chloride (NaCl)], mixed salt-alkali [MS; molar ratio of NaCl: sodium carbonate (Na2CO3) = 2:1] and alkali salt (AS; Na2CO3) at four different levels of sodium (Na+) concentration (0, 75, 150, and 300 mM) for 60 days. L. chinensis showed 100% survival rate at all treatments except 300 mM SS (33.3%) and AS (18.9%). The growth and physiological parameters of survival plants were measured. As anticipated, growth of L. chinensis was inhibited after stresses, which reflected in the decline of plant height, dry weight and tiller number following the increased Na+ concentration. The content of Na+, proline, and soluble sugar in L. chinensis increased with the increasing Na+ concentration, suggesting that L. chinensis need to accumulate inorganic and organic solutes for resisting osmotic stress induced by various salt stresses. These processes ensure the water balance that can provide a relative normal physiological environment for L. chinensis. Potassium (K+) content of L. chinensis kept at a relative lower level than control to ensure the normal physiological processes. Chlorophyll content of stressed plant increased slightly compared to control plants, which can produce more energy for L. chinensis resisting various stresses. The increased malondialdehyde (MDA) content of stressed plants showed the damage of various stresses. Among the three treatments (SS, MS, and AS), the injury extent for L. chinensis can be expressed by AS>SS>MS, and MS was the most complicated for the counterbalance effects of soil electrical conduction and pH.  相似文献   

14.
为比较入侵植物与本地植物对土壤微生态影响的差异, 探索外来植物入侵的土壤微生物学机制, 本研究通过同质园试验, 比较分析了2种入侵菊科植物(紫茎泽兰、黄顶菊)和2种本地植物(马唐、猪毛菜)对土壤肥力和微生物群落的影响, 并通过盆栽反馈试验验证入侵植物改变后的土壤微生物对本地植物旱稻生长的反馈作用。同质园试验结果表明: 2种入侵植物和2种本地植物分别对土壤微生态产生了不同的影响, 尤其是紫茎泽兰显著提高了土壤有效氮、有效磷和有效钾含量,紫茎泽兰根际土壤中有效氮含量为39.80 mg·kg-1,有效磷含量为48.52 mg·kg-1。磷脂脂肪酸指纹图谱结果表明, 2种入侵植物与2种本地植物相比, 较显著增加了土壤中放线菌数量, 而紫茎泽兰比其他3种植物显著增加了细菌和真菌数量。盆栽结果表明: 黄顶菊生长过的土壤灭菌后比灭菌前旱稻株高增加113%, 紫茎泽兰也使旱稻的株高增加17%。由以上结果可知, 紫茎泽兰和黄顶菊可能通过改变入侵地土壤的微环境, 形成利于其自身生长扩散的微生态环境从而实现其成功入侵。  相似文献   

15.
A greenhouse experiment was conducted to investigate the impact of water and salt stress in Quinoa plants (Chenopodium quinoa Willd.). Irrigation treatments using saline solutions of 0 (control), 50(T1), 200(T2), 400(T3), 600(T4), and 800(T5) mM sodium chloride (NaCl) were adopted. The results indicated that quinoa plants can tolerate water stress (50%FC) when irrigated with moderately saline water (T1 and T2, respectively). Salinity stress increases quinoa drought tolerance in terms of biomass production. Neither osmotic stress nor ions deficiency/toxicity seems to be determinant under T1 and 100%FC. Salinity induced a significant increase of sodium (Na+) and chloride (Cl?), while reduced magnesium (Mg2+) and calcium (Ca2+) in stems, leaves, seed’s coating, and seeds. The potassium (K+)/Na+ ratio never fell below 1 with T1; yet, fell to 0.78 and 0.89 with T2 for 100% and 50%FC, respectively. The seed coat limited the passage of possibly toxic concentrations of Na+ and Cl? to seed interior, as high Na+ and Cl? was found in the seed coat.  相似文献   

16.
Lygeum spartum L. has been recently introduced in areas where salinity is high in soils. However, there are no studies about the physiological response of these plants to salt excess. The effect of sodium chloride (NaCl) on plant growth and water status was studied. Also, the effect of calcium (Ca) addition to salinity conditions was analyzed because of the coexistence of salinity and calcareous soils. Dry weight (DW), transpiration, and osmotic potential (Ψπ) decreased with elevated NaCl and were restored with Ca2+, whereas moderate salinity had no effect. Fresh weight (FW), water potential (Ψω), and root hydraulic conductance (L 0) decreased with salinity; Ca2+ supply had an ameliorative effect at moderate salinity. Sodium (Na+) increased in leaf sap at high levels of NaCl and was decreased by Ca2+. Lygeum spartum showed a resistance to moderate salinity, but the effect of Ca2+ depends on salinity intensity. Thus, the role of Ca2+ in the tolerance to salinity was emphasized.  相似文献   

17.
Fertilization management is an important technique to alleviate the adverse effects of salinity stress on plants. A pot experiment was conducted to evaluate the ameliorative role of inorganic phosphorus (P) and organic P sources on wheat grown under salt stress in three soil types deficient in available P. Wheat (Triticum asetivum L. cv. Shakha 93) was grown on alluvial, sandy, and calcareous soils under salinity levels of 4, 8, and 12 dS m?1 of saturated paste extract (ECe) and supplied with constant rate of 30 mg P2O5 kg soil?1 as superphosphate (SP), cattle manure (CM), and 1:1 mixture of SP and CM. The results revealed that plants grown on the sandy soil were more susceptible to the adverse effects of salinity compared with those planted on the alluvial one, especially at zero P. Plants grown on the calcareous soil were moderately affected. Varying soil type caused significant differences in the aboveground biomass and uptake of nitrogen (N), potassium (K), P, and zinc (Zn). It was obvious that P ameliorated wheat growth under salt stress, and this role was greater under moderate and high salinity. The increases in N, P, K, and Zn uptake appeared driven by P application were more conspicuous in the sandy and calcareous soils. Results also indicated that combined application of inorganic and organic P sources surpassed both when applied solely under all soil types and salinity levels.  相似文献   

18.
Adequate regulation of mineral nutrients plays a fundamental role in sustaining crop productivity and quality under salt stress. We investigated the ameliorative role of potassium (K as K2SO4) in overcoming the detrimental effects of sodium chloride (NaCl) on sugarcane genotypes differing in salt tolerance. Four levels of NaCl (0, 100, 130 and 160 mM) were imposed in triplicate on plants grown in gravel by supplying 0 and 3 mM K. The results revealed that application of NaCl significantly (p ≤ 0.05) increased sodium (Na+) but decreased K+ concentrations in shoots and roots of both genotypes with a resultant decrease in K+/Na+ ratios. Physical growth parameters and juice quality were also markedly reduced with increasing NaCl concentrations compared with controls. However, addition of K alleviated the deleterious effects of NaCl and improved plant growth under salt stress. Cane yield and yield attributes of both genotypes were significantly (p ≤ 0.05) higher where K was added. Juice quality was also significantly (p ≤ 0.05) improved with the application of K at various NaCl levels. The results suggested that added K interfered with Na+, reduced its uptake and accumulation in plant tissues and consequently improved plant growth and juice quality in sugarcane.  相似文献   

19.
Dryland ecosystems have long been considered to have a highly heterogeneous distribution of nutrients and soil biota, with greater concentrations of both in soils under plants relative to interspace soils. We examined the distribution of soil resources in two plant communities (dominated by either the shrub Coleogyne ramosissima or the grass Stipa hymenoides) at two locations. Interspace soils were covered either by early successional biological soil crusts (BSCs) or by later successional BSCs (dominated by nitrogen (N)-fixing cyanobacteria and lichens). For each of the 8 plant type×crust type×locations, we sampled the stem, dripline, and 3 interspace distances around each of 3 plants. Soil analyses revealed that only available potassium (Kav) and ammonium concentrations were consistently greater under plants (7 of 8 sites and 6 of 8 sites, respectively). Nitrate and iron (Fe) were greater under plants at 4 sites, while all other nutrients were greater under plants at less than 50% of the sites. In contrast, calcium, copper, clay, phosphorus (P), and zinc were often greater in the interspace than under the plants. Soil microbial biomass was always greater under the plant compared to the interspace. The community composition of N-fixing bacteria was highly variable, with no distinguishable patterns among microsites. Bacterivorous nematodes and rotifers were consistently more abundant under plants (8 and 7 sites, respectively), and fungivorous and omnivorous nematodes were greater under plants at 5 of the 8 sites. Abundance of other soil biota was greater under plants at less than 50% of the sites, but highly correlated with the availability of N, P, Kav, and Fe. Unlike other ecosystems, the soil biota was only infrequently correlated with organic matter. Lack of plant-driven heterogeneity in soils of this ecosystem is likely due to (1) interspace soils covered with BSCs, (2) little incorporation of above-ground plant litter into soils, and/or (3) root deployment patterns.  相似文献   

20.
Winter varieties of canola (Brassica napus L.) are susceptible to winterkill. Measurements of photosynthetic efficiency and survival of field-grown canola were used to evaluate the effect of chloride (Cl), potassium (K), and phosphorus (P) nutrition on winter field survival in northwestern USA. In a growth chamber experiment, effects of calcium chloride (CaCl2), potassium chloride (KCl), ammonium chloride (NH4Cl), or sodium chloride (NaCl) on the ability to tolerate subfreezing temperatures were evaluated. In the field, overwinter survival was higher, and greater photosynthetic activity continued later into the autumn in plants with increased sap Cl concentrations. In the greenhouse experiment, significantly greater survival occurred in plants with higher sap Cl concentrations, but only in plants that had not been cold acclimated. These results suggested that a greater concentration of chloride ion in the sap of canola plants is related to an increased ability to tolerate subfreezing temperatures, but other processes resulting from cold acclimation may largely obscure this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号