首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Floor litter from laying hens (1‐year old) and from broiler chickens (8‐week old) were incorporated into soil and compared with ammonium sulfate [(NH4)2SO4] and an unfertilized control treatment as sources of nitrogen (N) for ‘Douglas’ strawberry grown in a tunnel production system. Layer litter had 5.6% moisture, 3.9% N and 1.7% P, while broiler litter had 7.7% moisture, 4.9% N and 1.6% P; they were applied at a rate of 12.8 and 10.8 t/ha on wet basis, respectively, in August 1991. Ammonium sulfate was applied at 100 kg N/ha in three split applications during the growing season. ‘Douglas’ strawberry plants were transplanted on 15 November 1991 and fruits were harvested from 1 April to 10 June 1992. Nitrate‐nitrogen (NO3‐N) concentrations at last harvest were comparable in the soil and leaf tissue among all treatments (P>0.05); leaf NO3‐N, early in the harvest period, was highest (P<0.05) in the broiler treatment (8.55%) and lowest in the control (5.15%). Yields were increased (P<0.05) by the manure, with the broiler treatment yielding the highest and the control yielding the least.  相似文献   

2.
Abstract

Floor litter from one‐year‐old laying hens (LHM) and from eight‐week‐old broiler chickens (BCM) were incorporated in the soil of two fields and evaluated as nitrogen (N) sources for cabbage production on a non nutrient‐depleted soil. LHM had 3.4% moisture, 3.84% N and 3.41% phosphorus (P). BCM had 2.3% moisture, 4.46% N and 2.19% P. Field 1 recieved 2.4 t/ha BCM, 3.0 t/ha LHM, whereas Field 2 recieved 4.8 t/ha BCM and 6.1 t/ha LHM. Also, each field received ammonium sulfate [(NH4)2SO4] at a N rate of 100 kg/ha and an unfertilized control treatment. The manure was applied one week before cabbage transplanting on 18 May 1992. Ammonium sulfate was applied in two equal split applications during the growing season. Leaf nitrate‐nitrogen (NO3‐N) was higher at harvest in plants receiving the higher manure rate than in other treatments (P<0.05). Leaf phosphate (PO4‐P) was higher in early season in plants receiving LHM at both Tates than in other treatments. Soil BD, EC, NO3‐N, and P at harvest were not affected by the treatments (P>0.05). Soil pH was reduced by the LHM in comparison to other treatments (P<0.05). Yield was comparable among all treatments (P>0.05) . It may be concluded that low application rates of LHM and BCM are equally effective in supplying the N requirements of cabbage, with BCM recommended when only N is limiting, and LHM when P is limiting.  相似文献   

3.
This experiment tested whether it was possible to incorporate broiler litter (BL) or cattle farmyard manure (FYM) into a 7‐yr arable rotation on a sandy soil without causing an increase in nitrate‐nitrogen (NO3‐N) leaching. Four manure treatments (with adjusted fertilizer inputs), varying in frequency and timing of application, were imposed on the rotation and compared with a control that received inorganic fertilizer according to recommended rates. Over seven winters, the annual average NO3‐N leached from the inorganic fertilizer treatment (control) was 39 kg/ha in 183 mm drainage. Total manure N loadings over the period of the experiment ranged between 557 and 1719 kg/ha (80–246 kg/ha/yr) for the four treatments. Three of the four manure treatments significantly increased NO3‐N leaching over the rotation (< 0.001). Annual applications of FYM (1719 kg/ha manure N or 246 kg/ha/yr) increased NO3‐N leaching by 39%. We hypothesize that this was due to increased mineralization of the organic N accumulating from repeated FYM applications. BL applied each year (1526 kg/ha manure N or 218 kg N/ha/yr) increased NO3‐N leaching by 52% above the control; BL applied 5 of 7 yr (972 kg/ha manure N or 139 kg N/ha/yr on average) and including inadvisable autumn applications increased leaching by 50%. BL applied in late winter or early spring every 2–3 yr (557 kg/ha manure N or 80 kg N/ha/yr on average) resulted in NO3‐N leaching similar to the control. This suggests that to avoid additional NO3‐N leaching from manure use in an arable rotation, manure should not be applied every year and autumn applications should be avoided; there are real challenges where manure is used on an annual basis.  相似文献   

4.
The response of greenhouse cucumber (Cucumis sativus L. cv. Lolita) to nitrogen (N), phosphorus (P) and potassium (K) fertilizers on a soil high in available P and K was studied during 1986. The greenhouses were located in the Beqa Valley, central Lebanon, and their soil chemical properties before planting were: NO3‐N = 52 ppm, P(NaHCO3 ext.) = 100 ppm, K (ammonium acetate ext.) = 650 ppm, ECe = 1.6 dS/m, pH = 7.5. Nitrogen at 200 kg/ha, P at 85 kg/ha and K at 150 kg/ha were applied in the following combinations: N, N+K, N+P+K and an unfertilized control. The rates were split into four equal weekly applications starting on the fourth week after transplanting the seedlings to the greenhouse. The treatments were applied through the drip irrigation system of the greenhouses. Fruit yield over the two months of harvest was highest in plants receiving N alone, which yielded 57 ton/ha. Yields of the plots receiving N+K, N+P+K and the control were 55.0, 54.0 and 39.5 ton/ha, respectively. Yield during the first month of harvest was comparable in all fertilized treatments and was substantially higher than the control.  相似文献   

5.
It has been suggested that surface applications of animal manure can ameliorate both top and subsoil acidity. For that reason, the effects of surface incorporation (0–5 cm) of a high rate of poultry manure to an acid soil on pH and exchangeable and soluble Al in the top‐ and subsoil were investigated in a leaching column study. During the experimental period of 108 d, columns received a total of 875 mm with leaching events occurring after 9, 37, 58, and 86 d. Incorporation of poultry manure into the surface 5 cm resulted in a large rise in pH measured in both 1M KCl and in soil solution. This liming effect was attributed primarily to the substantial CaCO3 content of poultry manure. In the 15–45 cm layer, pHKCl was not significantly different between poultry manure and control treatments but surprisingly, soil‐solution pH was substantially less in the poultry‐manure treatments. Exchangeable Al was significantly less in poultry manure than in control in all soil layers although the effect was most marked in the 0–5 cm layer. However, although concentrations and activities of monomeric Al (Almono), and the proportion of total Al present as Almono, in soil solution were lower under poultry manure than in control in the 0–5 cm layer, the reverse was, in fact, the case in lower soil horizons. This was attributed to a soluble‐salt effect, originating from the large cation content of poultry manure, displacing exchangeable Al3+ and H+ back into soil solution. Indeed, electrical conductivity and concentrations of Ca2+, Mg2+, K+, and Na+ in soil solution were substantially higher in the poultry‐manure than in the control treatments at all soil depths. Poultry‐manure applications also resulted in substantial increases in the concentrations of Ca2+, Mg2+, K+, Na+, Almono, NH , and NO in leachates, particularly at the fourth leaching. It was concluded that although surface application of poultry manure can raise soil pH in the topsoil, increases in soluble‐salt concentrations in soil solution can greatly modify this effect in the subsoil.  相似文献   

6.
The soil of a greenhouse located in the semiarid Lebanese coast of the Mediterranean sea, and which has been in intensive crop production for the past ten years, was chemically analyzed. Results were: NO3‐N = 225 ppm, NH4‐N = 56 ppm, pH = 7.0 and salinity (ECe) = 2.5 dS/m. Irrigation water salinity (ECw) = 0.4 dS/m. Cucumber (Cucumis sativus L. cv. Lolita), a parthenocarpic beit‐alpha type plant, was grown in this greenhouse, and was treated with nitrogen (N) fertilizer at the rates of 0, 81 and 162 kg N/ha. The N was split into six equal weekly applications, with the first application made on the first week of fruit production. Total fruit yield for the first 8 weeks of harvest was 71.4, 63.4 and 60.2 ton/ha for the plots receiving 0, 81 and 162 kg N/ha, respectively. Leaf petiole NO3‐N concentration was higher than the recommended level in all treatments throughout the experiment. At last harvest, NO3‐N concentration in leaf petiole was 12500, 15500 and 19500 ppm in plants receiving 0, 81 and 162 kg N/ha, respectively. Soil salinity has sufficient to cause yield reduction for many greenhouse crops. In contrast, soil mineral N has sufficient to meet the N requirement for an entire season for many annual crops.  相似文献   

7.
Application of clear plastic mulch with or without N fertilizer did not significantly increase (P > 0.05) yield of cos lettuce (Lactuca sativa L. cv. Paris Island), grown in Fall in a greenhouse in the Mediterranean mountains. Yield ranged from 31 to 38 kg/50 heads. Leaf NO3‐N and total P levels were higher in mulched than unmulched plants, and in fertilized than in unfertilized plants, and always above the sufficiency level in all treatments. Soil levels of NO3‐N were higher under mulched than unmulched plots, and under fertilized than unfertilized plots, which had more than 50 ppm NO3‐N at harvest. This indicates ample supply of N and thus explains the lack of response to added N. It may be concluded that in mild climates and on soils with adequate N, lettuce will not respond to the use of clear mulch and N fertilizer.  相似文献   

8.
Improving manure management to benefit both agricultural production and the environment requires a thorough understanding of the long‐term effects of applied manure on soil properties. This paper examines the effect of 25 annual solid cattle manure applications on soil organic carbon (OC), total N (TN), and KCl‐extractable NO3‐N and NH4‐N under both non‐irrigated and irrigated conditions. After 25 annual manure applications, OC and TN contents increased significantly with the rate of manure application at the top two sampling depths (0–15 cm and 15–30 cm), and the increases were not affected by the irrigation treatment. The NO3 content increased at all sampling depths with greater increases observed under non‐irrigated conditions, while NH4 content was not affected by manure application rates or the irrigation treatment. The changes in OC and TN at the surface (0–15 cm) and 15–30 cm depth were dependent on the cumulative weight of manure added over the years. The relationships between cumulative manure OC added and soil OC content and between cumulative manure TN added and soil TN content were linear and not affected by the irrigation treatment. For every ton of manure OC added, soil OC increased by 0.181 g kg–1 in the topsoil (0–15 cm). Similarly, for every ton of manure TN added, surface soil TN increased by 0.192 g kg–1. The linear relationship between manure C added and soil C content suggests that the soil had a high capacity for short‐term C sequestration. However, the total amount of NO3‐N in the soil profile (0–150 cm) was affected by both the manure application rates and the irrigation treatment. A large amount of NO3 accumulated in the soil, especially under non‐irrigated conditions. The extremely high level of NO3 in the soil increases the potential risk of surface and groundwater pollution and losses to atmosphere as N2O.  相似文献   

9.
Imbalanced application of nitrogen (N) and phosphorus (P) fertilizers can result in reduced crop yield, low nutrient use efficiency, and high loss of nutrients and soil nitrate nitrogen (NO3--N) accumulation decreases when N is applied with P and/or manure; however, the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood. The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize (Zea mays L.) yield, N uptake, root growth, apparent N surplus, Olsen-P concentration, and mineral N (Nmin) accumulation in a fluvo-aquic calcareous soil from a long-term (28-year) experiment. The experiment comprised twelve combinations of chemical N and P fertilizers, either with or without chicken manure, as treatments in four replicates. The yield of maize grain was 82% higher, the N uptake 100% higher, and the Nmin accumulation 39% lower in the treatments with combined N and P in comparison to N fertilizer only. The maize root length density in the 30--60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only. Manure addition increased maize yield by 50% and N uptake by 43%, and reduced Nmin (mostly NO3--N) accumulation in the soil by 46%. The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied. Manure application reduced the apparent N surplus for all treatments. These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth, leading to reduced accumulation of potentially leachable NO3--N in soil, and manure application was a practical way to improve degraded soils in China and the rest of the world.  相似文献   

10.
The use of pyrolysis products of manures gives positive effects on soil fertility, crop productivity and soil carbon sequestration. However, effects depend on soil characteristics, plant species and the raw material from which the biochar is derived, and some negative effects of biochar have been reported. The objective of this study was to evaluate the effectiveness of poultry manure (PM)‐derived biochar on the growth, and P, N, K, Ca, Mg, Fe, Zn, Cu and Mn concentration of lettuce (Lactuca sativa L.) plant. The treatments as follows: control, 20 g/kg poultry manure (PM), 20 g/kg phosphorus‐enriched poultry manure (PM+P), 10 g/kg Biochar (B), 10 g/kg Biochar+P (B+P). Application of biochar and PM significantly increased lettuce growth, and P‐enriched forms of PM and biochar gave the higher growth. PM has no significant effect on the N concentrations but biochar and, P‐enriched PM and biochar treatments significantly increased N concentrations. Phosphorus concentration of the lettuce leaves significantly increased by PM and biochar treatments. Plant K concentrations were also increased by PM and biochar, and their P‐enriched forms. Leaf Ca and Mg concentrations were lower in Biochar and B+P treatments than that of PM and PM+P treatments. Compared to control and PM treatments, biochar applications reduced Fe, Zn, Mn and Cu concentrations of the lettuce plants. The results of this study indicated that application of biochar to alkaline soil is beneficial for crop growth and N, P and K nutrition, but it certainly reduced Fe, Cu, Zn and Mn nutrition of lettuce.  相似文献   

11.
Abstract

Recycled paper treated with boric acid (BA) is gaining acceptance as bedding in broiler houses. Applying this litter to Kentucky 31 (K‐31) tall fescue, Festuca Arundinacea Shreb, pastures raises the issue of potential boron (B) toxicity. There is also the question of nitrogen (N) availability from composts made with borated paper and broiler manure. The effect of five N sources at 224, 448, and 896 kg N/ha in a factorial arrangement plus an unfertilized control and high nitrogen‐phosphorus‐potassium (NPK) + additional boron at 45 kg B/ha on growth and NPKB uptake of K‐31 tall fescue was determined in a greenhouse during the spring of 1992. The five N sources were (1) inorganic salts, (2) compost made from hen manure, broiler manure, fescue hay and bark (M1), (3) fresh broiler litter (M2), (4) compost made from broiler manure and borated paper bedding (M3), (5) compost from hen manure, oak leaves, broiler litter (M4). The soil was Cecil sandy clay loam subsoil. Six harvests were made at 4‐cm cutting heights for determination of dry matter, N, P, K, and B uptake in tops, stubble, roots, and residue. Relative yield response of M2 was 65% of that from inorganic NPK, whereas the yield of the three composts was 22–30% of that from inorganic NPK. Over 50% of the N applied in compost residue remained at the soil surface. Boron toxicity to K‐31 as estimated from yield reduction or from visual symptoms did not occur from 20 kg B/ha in compost made with borated paper (M3). However, a 12% yield reduction did occur at the 45 kg B/ha rate from inorganic B. Industry efforts to reduce the amount of boric acid used in the treatment of recycled paper, the high mobility of B in humid areas, the apparent ability of K‐31 tall fescue to tolerate massive quantities of compost and high rates of B application suggest that the application of the broiler litter from houses where BA‐treated recycled paper is used as bedding would be environmentally safe at application rates based on N requirements of K‐31 tall fescue.  相似文献   

12.
ABSTRACT

The present investigation was planned to determine the effect of deficit irrigation, mulching and poultry manure application on sorghum grain, forage yield and water-use efficiencies. Two field experiments were conducted during 2016 and 2017 growing seasons at Demo farm, Fayoum, Egypt. Eighteen treatments comprising of two rates of rice straw as soil mulching (SM; zero and 10 ton per hectare), three irrigation treatments (I100% = 100%, I85% = 85% and I70% = 70% of crop evapotranspiration (ETc) and three poultry manure (PM) levels (0, 24 and 36 ton per hectare) were studied under controlled surface irrigation system. Sorghum growth attributes (plant height, stem diameter, leave area), grain and forage yield, water-use efficiencies (G-WUE and F-WUE) were significantly (p < .05) affected by irrigation quantity and both soil mulch and poultry manure application. Poultry manure resulted in a significant decrease in soil bulk density, electrical conductivity (ECe), soil pH, hydraulic conductivity and total porosity, useful pores, and water holding pores were increased. The results showed that underwater scarcity, application of (I85 × PM36× SM10) treatment was found to be favorable to save 15% of the applied irrigation water as compared to I100, at the time produced the same sorghum yields.  相似文献   

13.
Following 13‐year treatments of soil pH and nitrogen (N) source in a peach orchard of North Carolina, the concentration of calcium (Ca), magnesium (Mg), N, phosphorus (P), and potassium (K) in leaves, shoots, trunks and roots, as well as soil pH, soil exchangeable Ca, Mg, and K content, were determined. Through liming, higher soil pH treatment enhanced soil Ca and tissue Ca level. Among six N sources examined, the highest values of soil pH and soil Ca, Mg, and K were detected following poultry manure application. Compared to ammonium sulfate [(NH4)2SO4], calcium nitrate [Ca(NO3)2] increased soil pH and soil Ca and K content, but reduced soil Mg. For most of macronutrients examined in peach tissues, the highest levels were found in manure treatment. Mineral N sources containing Ca(NO3)2 resulted in high tissue Ca and low tissue N. In the above‐ground tissues, Mg concentration was relatively low following application of mineral N materials containing Ca, K, or sodium (Na). Acid‐ forming N, especially (NH4)2SO4, reduced tissue Ca and P. The magnitude of impact of liming and N source on macronutrients was tissue‐type dependent, with leaves and other new growth the most sensitive ones while trunks seldom responded to the treatments.  相似文献   

14.
Tillage with a spring tine harrow has become a recommended mechanical weeding technique for cereal crops. In this study, the impact of its use on soil mineral N content, soil aggregation and spring wheat (Triticum aestivum L.) production was investigated. The experiment was performed during 2 successive years (2005–2006) on a clay loam and on a silty loam. The two-main plot treatments consisted of a wheat crop subjected or not to intensive harrow use in a weed-free production system. Two N fertilizer treatments (mineral fertilizer and dry granular poultry manure) were also included as subplots within these main treatments and compared to a non-fertilized control. Harrowing had significant and variable effects on soil NO3 contents in the 0–5 cm soil layer. Slightly higher NO3 contents (average difference of 3.2 kg NO3 ha−1) were measured in the harrowed treatments than in the undisturbed plots in the clay loam soil in 2006. However, significantly lower mineral N contents were observed in the harrowed treatments than in the undisturbed plots in the clay loam soil in 2005 and in the silty loam soil in 2006. This apparent N immobilization amounted to 19 kg NO3 ha−1 in the clay loam soil in 2005 (for both fertilizers) and 30 kg NO3 ha−1 in the silty loam soil in 2006 (only in mineral fertilizer plots) after the successive harrowing treatments. In all cases, data of the last sampling dates in the fall indicated that residual NO3 content was not affected by the treatments. Overall harrowing had a minor decreasing and transient effect on the mean weight diameter (MWD) of soil aggregates while the dry poultry manure tended to increase MWD. The harrowing treatment had no significant effect on wheat, grain N uptake and yield. In conclusion, harrow use had variable impacts on soil NO3 content and a minor decreasing effect on the MWD of soil aggregates. Of note, significant apparent mineral N immobilization was observed on a few sampling dates following the harrow treatments.  相似文献   

15.
Abstract

Nitrogen (N) fertilizers increase yield and quality of grass forage, and may also alter soil chemical properties. A field experiment was conducted in south‐central Alberta to determine the effect of long‐term application of ammonium nitrate to bromegrass on concentration and downward mobility of soluble NO3‐N, extractable NH4‐N, P, Ca, Mg, and K, and total C and N in a Thin Black Chernozemic loam soil. The fertilizer was applied annually in early spring for 16 years at 0 to 336 kg N/ha. There was little accumulation of NO3‐N in the soil at N rates of 112 kg/ha or less. However, at rates higher than 112 kg N/ha there was accumulation of NO3‐N in the 15–30 and 30–60 cm layers, but very little in the 90–120 cm depth. The NH4‐N accumulated in the 0–5 cm layer when the fertilizer was applied at rates between 168 to 280 kg N/ha and in the 5–10 cm layer at N rates exceeding 280 kg/ha. There was a decline in extractable P in soil with N application up to 84 kg N/ha rate, while it increased with high N rates. The increasing amounts of applied N resulted in a decline in extractable soil Ca, Mg and K, and this decrease was more pronounced in the 0–5,5–10,10–15, and 15–30 cm layers for K, 0–5 and 5–10 cm layers for Ca, and 0–5, 5–10, and 10–15 cm layers for Mg. There was a build‐up of total C and N in the surface soil with increasing rate of applied N.  相似文献   

16.
施氮量对白萝卜硝酸盐含量和土壤硝态氮淋溶的影响   总被引:6,自引:1,他引:5  
在保护地栽培条件下,通过6个施氮水平的田间小区试验,结合土层原位渗滤装置,研究了施用氮肥对白萝卜(Raphanus sativus L.)产量和硝酸盐含量及土壤硝态氮淋溶的影响。结果表明,施氮处理白萝卜产量比不施氮处理仅增加6.04%~10.92%,当尿素氮施用量大于N 100 kg/hm2时,增产幅度开始下降。不同施氮处理白萝卜产量没有显著差异,说明在土壤基础肥力较高的情况下,增施氮肥不能明显提高白萝卜的产量;单施有机肥白萝卜体内硝酸盐含量为 196.86 mg/kg,比不施氮处理降低 5.08%。在此基础上加施尿素后,硝酸盐含量随氮肥施用量的增加显著升高(p0.05);0—100cm土壤剖面硝态氮累积量随氮肥施用量的增加而增加,且与氮肥施用量显著正相关(r=0.993, r0.01=0.917);白萝卜生长期间收集到的土壤淋溶液中硝态氮浓度较高,平均为32.88 mg/L,硝态氮的淋失量为 4.42~6.14 kg/hm2,不同施氮量处理之间没有显著差异。  相似文献   

17.
We performed a series of experiments in controlled conditions to assess the potential of hardwood‐derived biochar either as a source or as a removing additive of macronutrients [nitrate‐nitrogen (NO3‐N), ammonium‐N (NH4‐N), potassium (K), phosphorus (P), and magnesium (Mg)] in solution. In addition, a 3‐year field trial was carried out in a commercial nectarine orchard to evaluate the effect of increasing soil‐applied biochar rates on tree nutritional status, yield, fruit quality, soil pH, soil NO3‐N, and NH4‐N concentration and soil water content. In controlled conditions, the concentrations of K, P, Mg, and NH4‐N in solution were significantly increased and positively correlated with biochar rates. Biochar was ineffective in removing NO3‐N, K, P, and Mg from enriched solutions, while at the rate of 40 g L?1 biochar removed almost 52% of the initial NH4‐N concentration. In a mature, irrigated, fertilized, commercial nectarine orchard (Big Top/GF677) on a sandy‐loam soil in the Italian Po Valley, soil‐applied biochar at the rates of 5, 15, and 30 t ha?1 were effective in reducing the leached amount of NH4‐N in the top 0.25 m soil layer over 13 months, as estimated by ion exchange resin lysimeters. Nevertheless, independent of the rate, biochar did not affect soil pH, soil N mineral availability, soil moisture, tree nutritional status, yield, and fruit quality. We conclude that, unless an evident constraint is identified, in non‐limiting conditions (e.g., water availability and soil fertility), potential benefits from biochar application in commercial orchards are hidden or negligible.  相似文献   

18.
Abstract

Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Nitrogen fertilizer (15N‐labeled urea) and irrigation methods (drip and furrow) were evaluated on spring and fall potato cultivars under Syrian Mediterranean climatic conditions. Field experiments were conducted in the El‐Ghab Valley near Hama in fall 2000 and spring 2001 on a heavy clay soil. Four N‐fertilizer applications (70, 140, 210, and 280 kg N/ha) were applied in five equally split treatments for both irrigation methods. Potato was irrigated when soil moisture in the specified active root depth reached 80% of the field capacity as indicated by the neutron probe.

Higher marketable tuber yield of spring potato was obtained by fertigation compared to furrow irrigation; the magnitude of tuber yield increases was 4, 2, 31, and 13%, whereas for fall potato the tuber yield increases were 13, 27, 20, and 35% for N fertilizer rates of 70, 140, 210, and 280 kg N/ha, respectively. Shoot dry matter and tuber yields at the bulking stage were not good parameters to estimate marketable tuber yield. The effect of N treatments on potato yield with furrow irrigation and fertigation was limited and not significant. Drip fertigation improved tuber yield of fall potato relative to national average yield. Nitrogen uptake increased with increasing N input under both irrigation methods. Reducing N input under both irrigation methods improved N recoveries. Increasing N input significantly increased total N content in plant tissues at the bulking stage. Spring potato yields were almost double those of fall potato under both irrigation methods and all N treatments.

Nitrate (NO3) movement in the soil solution for fall potato was monitored using soil solution extractors. Furrow irrigation resulted in greater movements of NO3‐N below the rooting zone than drip fertigation.

Harvest index did not follow a clear trend but tended to decrease upon increasing N fertilization rates beyond 140 kg N/ha under both irrigation methods. Drip fertigation improved field water‐use efficiencies at the bulking and harvest stages. Fertigation increased specific gravity of potato tubers relative to furrow irrigation. Higher N input decreased specific gravity of potato tubers under both irrigation methods.  相似文献   

19.
Drip irrigation lines installed at 5 cm (shallow) or 15 cm (deep) below the soil surface and furrow irrigation were compared for vegetables grown on calcareous desert soils. Urea phosphate (UP) fertilizer (17–44–0) was injected twice in the drip irrigation lines during the growing season. Yields were compared to preplant fertilized and unfertilized furrows. Fall cabbage (Brassica oleracea var. capitata L.) gave comparable yields under the different irrigation treatments with the drip treatments using half the water used by the furrow treatment. Cabbage yield increased in all fertilized treatments as compared to the unfertilized furrow. Petiole P and NO3‐N concentrations were higher from the drip than from the furrow treatments. Zucchini squash (Cucurbita pepo L.) had the highest yields under deep drip and fertilized furrow treatments, with the deep drip using half the water and P rate used by the furrow treatment. The deep drip increased squash yield by 34% over the shallow drip. The unfertilized furrow gave the lowest yield. Leaf tissue concentrations of P and NO3‐N were comparable under deep drip and fertilized furrow treatments and were higher than the concentrations achieved from shallow drip and unfertilized furrow treatments.  相似文献   

20.
The capability to determine nitrogen availability of composts is necessary to ensure that such materials will provide sufficient fertilization to the growing crop and cause minimal environmental degradation. A greenhouse study using tall fescue as a bioindicator was used to evaluate nitrogen availability of two biosolids composts, two mixed yard waste-poultry manure composts, and one commercially-processed poultry litter. Five inorganic nitrogen (as NH4NO3-N) treatments applied at 0, 22.5, 45, 67.7, and 90 mg N/kg soil were employed to establish an N calibration curve. Yield, fescue biomass total nitrogen (as total Kjeldahl N (TKN)), and soil TKN and KCl extractable NO3?-N and NH4+-N concentrations of the organically amended treatments were compared to the inorganically fertilized treatments to determine amendment N mineralization rates and N fertilizer equivalent values (NFEV). Nitrogen mineralization rates were greatest in the poultry litter (21%) and Panorama yard waste compost (5%) amended pots. The NFEV of these amendments were 49% and 10%, respectively. Wolf Creek biosolids compost and Huck's Hen Blend yard waste compost immobilized N (?5% and 0.18%, respectively), and had percent NFEV of ?0.66% and 0.19%, respectively. Rivanna biosolids compost immobilized N (?15%), but the NFEV was 30% due to the relatively high inorganic N content in the amendment. Nitrogen mineralization and NFEV were generally greater in amendments with greater total N concentrations and lower C:N values. The total N concentration and C:N values were less reliable variables in predicting N mineralization and percent NFEV when a significant portion of the total N was in the inorganic form. Nitrogen equivalency value and N mineralization for each amendment increased with time of sampling, indicating the potential for early season N insufficiency to plants fertilized with compost due to lack of synchrony between N mineralization and plant N needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号