首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为揭示不同垄沟坡度对径流中溶解态氮、磷流失的影响,采用人工模拟降雨试验,设置4个垄沟坡度处理(0°,9°,18°和27°),研究了不同垄沟坡度对径流中速效磷(PO_4~(3-)—P)、硝态氮(NO_3~-—N)和铵态氮(NH_4~+—N)浓度和流失量的影响;并利用Inorganic—N/PO_4~(3-)—P、NO_3~-—N/PO_4~(3-)—P和NH_4~+—N/PO_4~(3-)—P 3种氮磷比,评价不同处理的富营养化风险。结果表明:(1)在降雨过程中,4个垄沟坡度处理径流中PO_4~(3-)—P、NO_3~-—N和NH_4~+—N浓度随时间均呈锯齿状变化;其流失量随时间变化均呈先增加后以锯齿状变化的趋势,且波动幅度大,最大值(16.60,1 020.73,48.35 mg)分别出现在垄沟坡度为0°,0°和9°处理。(2)4个垄沟坡度处理间相比较,径流中PO_4~(3-)—P和NH_4~+—N流失量均表现为0°9°27°18°,其浓度最大值(0.50,1.08 mg/L)和最小值(0.37,0.76 mg/L)均分别出现在垄沟坡度为9°和18°处理;而径流中NO_3~-—N浓度和流失量均在垄沟坡度0°处理时为最大值(30.68 mg/L和64.16 mg/m~2),18°处理时为最小值(21.78 mg/L和42.22 mg/m~2)。(3)Inorganic—N/PO_4~(3-)—P率和NH_4~+—N/PO_4~(3-)—P率表明4个垄沟坡度处理径流中均存在一定的富营养化风险。其中,垄沟坡度为0°处理的径流富营养化风险水平最高,27°处理的径流富营养化风险水平最低。研究结果可为横坡垄作的水土流失及养分流失评价、预测以及防治提供科学依据。  相似文献   

2.
Soil freeze-thaw cycles in the winter-cold zone can substantially affect soil carbon, nitrogen and phosphorus cycling, and deserve special consideration in wetlands of cold climates. Semi-disturbed soil columns from three natural wetlands (Carex marsh, Carex marshy meadow and Calamagrostis wet grassland) and a soybean field that has been reclaimed from a wetland were exposed to seven freeze-thaw cycles. The freeze-thaw treatments were performed by incubating the soil columns at −10 °C for 1 d and at 5 °C for 7 d. The control columns were incubated at 5 °C for 8 d. After each freeze-thaw cycle, the soil solution was extracted by a solution extractor installed in each soil layer of the soil column, and was analyzed for dissolved organic carbon (DOC), NH4+-N, NO3-N and total dissolved phosphorus (TDP). The results showed that freeze-thaw cycles could increase DOC, NH4+-N and NO3-N concentrations in soil solutions, and decrease TDP concentrations. Moreover, the changes of DOC, NH4+-N, NO3-N and TDP concentrations in soil solutions caused by freeze-thaw cycles were different in various sampling sites and soil layers. The increments of DOC concentrations caused by freeze-thaw cycles were greater in the wetland soil columns than in the soybean field soil columns. The increments of NH4+-N concentrations caused by freeze-thaw cycles decreased with the increase of soil depth. The depth variation in the increments of NO3-N concentrations caused by freeze-thaw cycles in the wetland soil columns was different from that in the soybean field soil columns. The decrements of TDP concentrations caused by freeze-thaw cycles were greater in columns of Carex marsh and Carex marshy meadow than in columns of Calamagrostis wet grassland and the soybean field. The study results provide information on the timing of nutrient release related to freezing and thawing in natural versus agronomic soils, and have implications for the timing of nutrient application in farm fields in relation to water quality protection.  相似文献   

3.
不同沟灌方式下玉米根区矿物氮迁移动态研究   总被引:1,自引:0,他引:1  
为探索交替隔沟灌溉下玉米根区矿物氮分布规律, 通过遮雨棚内微区试验, 研究了常规沟灌、交替隔沟灌和固定隔沟灌3 种沟灌方式对玉米根区硝态氮、铵态氮迁移的影响。结果表明: 交替隔沟灌溉根区硝态氮等值线和常规沟灌相似, 沟内硝态氮含量基本沿垄的中心对称分布。固定隔沟灌溉的湿润沟内硝态氮含量小于干燥沟, 施氮后非灌水沟硝态氮保持较高水平。收获时交替隔沟灌溉的根区硝态氮残留量比常规灌溉略高。与硝态氮分布相比, 铵态氮在根区土壤中的含量很小, 3 种沟灌方式在沟和垄中的铵态氮含量没有明显差异。  相似文献   

4.
This study was carried out in the Xujiawan watershed in Sichuan Province, China. The area is characterized by easy weathering of bedrock (sedimentary sandstone and shale) and vulnerability to erosion due to coarse soil texture and weak soil structure. The objective of this study was to understand the dynamics of nitrogen (N) and phosphorus (P) losses during typical storm events. The results showed that runoff generation was sudden and ephemeral, giving rise to flash floods with sharp, narrow hydrographs and short time lags in this type of agricultural ecosystems. The time lag effect of runoff formation depended on soil conditions before storm events. Suspended solids (SS) concentration peaks occurred at the beginning of the storm flow and decreased as rainfall progressed. Meanwhile, SS losses increased at the beginning of runoff flow, then decreased due to flow volume change. Concentrations of NO3-N were four times higher than NH4+-N in runoff. NO3-N concentrations first decreased as runoff volume increased until reaching relatively low concentrations, then increased again as runoff volume decreased. Both NH4+-N and dissolved phosphorus (DP) in runoff remained at low concentrations with a small magnitude of variation. Suspended particulate nitrogen (SN) was the dominant N form. Losses of NO3-N were higher than NH4+-N in the dissolved nitrogen (DN). Suspended particulate nitrogen losses were several times higher than DN in the early period of runoff formation, but the ratio of SN/DN decreased gradually as rainfall progressed, and by the end of the storm event the rate was lower than 1, indicating DN took the main form after the early physical flush. In the early period of storm events, suspended particulate phosphorus (SP)/DP was above 70 and decreased as rainfall progressed, but remained higher than 1, which showed that SP was the main form of P loss. The transport of N, and particularly P, was intimately linked to sediment in the runoff, indicating an obvious soil erosion-associated nutrient transport, especially in relation to P loss.  相似文献   

5.
Experiments were conducted on calcareous and sandy soils to investigate the effects of organic amendments for vegetable production on groundwater nitrogen (N) concentration in south Florida. The treatments consisted of applying yard and food residuals compost, biosolids compost, a cocompost of the municipal solid waste and biosolids, and inorganic fertilizer. Nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), and total N concentrations were collected for a period of two years for both soils. Statistical analysis results revealed that for the three species tested, there were no significant differences among treatments. NO3-N concentrations for all treatments remained less than the maximum contamination level (10 mg/L). NO3-N transport to groundwater was higher in calcareous soil (mean=5.3 mg/L) than in sandy soil (mean=0.6 mg/L). NH4-N concentrations ranged from 0 to 13.6 mg/L throughout the experiment. Calcareous soil had lower NH4-N concentrations (mean=0.1 mg/L) than sandy soils (mean=0.7 mg/L). Total N ranged from 0.4 to 21.7 mg/L for all treatments for both soils reflecting high adsorption of dissolved organic N in both soils. Overall, results indicated that all the compost treatments were comparable to inorganic fertilizer with regard to N leaching and N concentrations in the groundwater while producing similar or higher yields.  相似文献   

6.
施用包膜尿素对水稻生长和氮磷流失的影响   总被引:8,自引:3,他引:5  
施用新型肥料是减少养分径流损失的重要途径。采用田间试验研究了施用包膜尿素对水稻生长和径流氮磷损失的影响,试验设置CK(习惯施肥)、PU1(减磷41%、减氮20%、施普通尿素)、PU2(PU1基础上减氮13%)、UR1(PU2基础上施包膜尿素)和UR2(UR1基础上减氮13%)5个处理。结果表明:PU1和UR1处理水稻氮磷含量与CK处理相近,PU1成熟期氮、磷总积累量比CK增加11.21,2.69kg/hm~2。PU1和UR1处理成熟期地上部生物量和籽粒产量高于CK处理,籽粒产量分别提高7.68%,5.77%。PU1、PU2、UR1和UR2处理径流总磷含量和累积流失量比CK处理低,减少13.18%~21.51%。施用包膜尿素(PU1、PU2)处理径流总氮、铵氮和硝氮含量低于施用普通尿素(CK、UR1、UR2)处理;稻田径流总氮、铵氮和硝氮累积流失量分别减少12.90%~26.91%,54.52%~49.38%和4.03%~15.95%,其中包膜尿素处理铵氮累积流失量显著(P0.05)小于普通尿素处理。施用包膜尿素和优化施肥能促进水稻对氮磷养分的吸收,提高水稻籽粒产量,显著减少稻田氮磷流失量,值得在水稻生产中推广应用。  相似文献   

7.
农业小流域毛沟布置方式对氮素径流流失的影响   总被引:1,自引:0,他引:1  
A comparison experiment was performed, by designing one field ditch (D1 treatment), two field ditches (D2 treatment), three field ditches (D3 treatment), and no field ditch (CK treatment), in an upland of a small agricultural watershed in Nanjing-Zhenjiang hilly regions to observe the farmland surface runoff and N loss characteristics under the different layouts of field ditch. As the layout density of field ditch increased, the drainage effect was improved, the timing of the runoff peak was advanced, and also the peak flow was augmented. At the same time, both the concentration and accumulated transfer flux of total nitrogen (TN) were improved, and thereinto the accumulated transfer fluxes of TN under D3, D2 and D1 treatments were increased by 1.46, 1.34 and 1.16 times, respectively, than that under CK treatment. However, the accumulated transfer fluxes of nitrate-nitrogen (NO3-N) and ammonium-nitrogen (NH+4 -N) under D3, D2 and D1 treatments were reduced by 33.9%, 21.4% and 8.6%, and 35.8%, 24.7% and 12.2%, respectively, compared with those under CK treatment. Under CK treatment, the NO3-N and NH+4-N concentrations were more sensitive to rainfall intensity than the TN concentration. There were significant linear relationships between the transfer fluxes of TN, NO3 -N and NH+4 -N and the runoff flux, with the correlation coefficients of 0.942, 0.899 and 0.912, respectively. In addition, this correlation was also influenced by the layout density of field ditch. Therefore, the environmental effect should be taken into account when designing and constructing field ditches. Especially in the regions of severe fertilizer loss, the approaches of properly increasing the drainage area and decreasing the layout density of field ditch could be adopted under the precondition of avoiding crops from waterlogging.  相似文献   

8.
通过水培试验研究了不同铵硝比的氮素营养和磷素营养对菠菜生长、氮素吸收及硝酸还原酶活性(NRA)和谷氨酰胺合成酶活性(GSA)的影响。结果表明:在供磷水平相同时,菠菜的生物量随着铵硝比的降低而降低,但铵硝比为25:75与0:100两个处理之间没有显著差异;在铵硝比相同时,随着营养液中磷含量的增加,菠菜的生物量随之增加。菠菜茎叶中硝酸盐的含量随着铵硝比和磷水平的降低而升高。不同铵硝比处理,菠菜含氮量没有明显差异,随着磷水平的提高,菠菜植株含氮量有升高的趋势,但各处理之间差异不显著;受到生物量显著差异的影响,菠菜植株中氮素累积量随着铵硝比的降低和磷素水平的增加而增加。在铵硝混合营养条件下,缺磷会显著抑制菠菜对铵态氮和硝态氮的吸收,且磷索缺乏对菠菜吸收硝态氮的抑制作用要大于对铵态氮吸收的抑制作用。铵硝比相同时,随着营养液中磷索供应量的增加,菠菜茎叶中NRA显著增加;但是营养液中铵硝比较高时,会显著抑制菠菜茎叶中NRA,而铵硝比较低时,则有利于提高菠菜的NRA。缺磷会严重抑制GSA;在磷素水平相同时,随着营养液中铵比例的增加,菠菜茎叶中GSA显著增加。为此,在一些硝酸盐含量较高的土壤上栽培蔬菜时,可以采取增施适量磷肥的方法,以降低叶菜的硝酸盐含量。  相似文献   

9.
Forty-two-day-old wheat (Triticum aestivum L. var. Asakazekomugi) plants were treated with complete, K-free (—K), Ca-limited (—Ca), and Mg-free (—Mg) nutrient solutions for 10 days using 2 mM NH4NO3 as the nitrogen source, which was replaced with 4 mM 15 NH4C1 or Na15NO3 for the subsequent 2 days to investigate the absorption, translocation, and assimilation of inorganic nitrogen in relation to the mineral supply. In another experiment plants were grown on NO3 ?, NH4 +, NH4N03, and K-free and Ca-limited NH4N03 nutrient solutions for 10 days, and then in the latter three treatments the nitrogen source was replaced with NO3 ? and half of the —K plants received K for 6 days to examine the changes in the nitrate reductase activity (NRA).

Wheat plants absorbed NH4 ?N and NO3-N at a similar rate. Influence of K on the absorption of N03-N was stronger than that on the absorption of NH4-N in wheat plants. The supply of K to the —K plants increased the absorption of NO3-N, while the absorption of NH4-N still remained at a lower rate in spite of the addition of K. A limited supply of Ca and lack of Mg in nutrient media slightly affected the absorption of NH4-N. The influence of K was stronger on the translocation of nitrogen from roots to shoots, while Ca and Mg had little effect. When K was supplied again to the —K plants the translocation of NO3,-N was more accelerated than that of NH4-N. Incorporation of NH4-N into protein was higher than that of NO3-N in all the tissues; root, stem, and leaf. Assimilation of NH4-N and NO3-N decreased by the —K and —Mg treatments.

Leaf NRA of wheat plants decreased in the —K and —Ca plants. Higher leaf NRA was found when K was given again to the —K plants than when the plants were continuously grown in K-free media. Replacement of NO3 ? with NH4 + as the nitrogen source caused a decline of leaf NRA, while the supply of both NH4 ?N and NO3-N slightly affected the leaf NRA.  相似文献   

10.
Sequential diffusion techniques used to speciate inorganic nitrogen-15 (15N) during soil or water analysis are complicated by incomplete recovery of ammonium (NH4+)-N, introducing error in the subsequent determination of nitrate (NO3)-N. Based on studies to evaluate different strategies for minimizing cross-contamination error in Mason-jar diffusions, a simple cleaning technique was developed that involves an additional 6-h diffusion using 0.6 M boric acid (H3BO3) at room temperature following the recovery of NH4+-N. This technique was 60–87% effective for reducing cross-contamination of unlabeled NO3-N by labeled NH4+-N and became more effective for controlling analytical error with decreasing sample volumes, lower NH4+-N enrichment, and larger quantities of NO3-N. When used with the cleaning technique described, sequential diffusions were far superior for 15N analysis of NO3-N, as compared to the nonsequential approach that involves an isotope dilution calculation after separate diffusions to determine NH4+-N and total mineral N.  相似文献   

11.
丹江口库区土壤氮磷养分流失特征   总被引:2,自引:0,他引:2  
[目的]研究丹江口库区土壤的水土流失和非点源污染物氮磷流失的特点,为农业非点源污染模型的建立提供理论依据。[方法]通过室内人工模拟降雨试验,研究了坡度和施肥等处理对产流产沙、氮磷养分(硝态氮、铵态氮、总氮、有效磷和总磷)流失特点的影响。[结果](1)随着坡度的增加,平均入渗率和初始产流时间呈减小趋势,而径流总量和泥沙总量呈增加趋势。(2)相同施肥处理下,随着坡度的增加,泥沙中硝态氮、总氮、有效磷和总磷的流失浓度呈减小趋势,铵态氮流失浓度在不施氮肥条件下呈减小趋势,而在施氮肥处理下呈增加趋势。(3)在相同坡度条件下,随降雨时间推移,总氮浓度呈先减小后趋于稳定的趋势;铵态氮浓度随施肥处理的变化均呈现出波浪形变化;在施氮肥时,径流中硝态氮的浓度随着时间的推移,呈逐渐减小并趋于平缓的趋势,而在不施氮肥时几乎无变化。[结论]在不同施肥措施和坡度条件下,硝态氮主要随径流而流失,为随泥沙流失的8~11倍;铵态氮主要是随径流泥沙而流失,为随径流流失的1~17倍;总氮则是随径流和径流泥沙共同流失;有效磷和总磷都是以泥沙结合态流失为主,分别为随径流流失的1 000~6 200和1~3倍。  相似文献   

12.
采用田间试验研究了硝态氮、铵态氮、酰胺态及不同硝态氮与铵态氮配比对川芎生长发育和产量与品质的影响。结果表明,硝态氮、铵态氮、酰胺态及硝态氮与铵态氮配施均可在一定程度上促进川芎的生长,延长其根长,茎蘖数增加,干物质积累增加,从而显著提高川芎的产量以及阿魏酸和生物碱含量。在硝态氮、铵态氮和酰胺态氮单独施用时,以尿素的增产增收和改善品质的效果最好,硝态氮最差;硝态氮与铵态氮配施可增强其肥效,延长其肥效持续期。高产高效的最佳施肥方式是50%的硝酸钙与50%的碳酸铵配施;优质高产的最佳施肥方式是75%的硝酸钙与25%的碳酸铵配施。  相似文献   

13.
Grassland field plots were compared to two sizes of excised microcosms (15 and 30 cm diameter) and 30-cm diameter homogenized microcosms to assess the effects of As on soil-plant nutrient dynamics. The goal of this experiment was to determine the feasibility of using microcosms for screening chemicals which are potentially toxic to terrestrial ecosystems. All experimental units were treated with As, at rates of 0, 0.5, and 5.0 mg cm?2, by superficial application of dissolved Na2AsO4. Calcium, PO4-P, NO3-N, dissolved organic carbon (DOC), and NH4-N were determined in soil leachate and soil extracts. Greater loss of PO4-P, NO3-N, NH4-N, and DOC occurred via soil leachate from microcosms treated with the greatest level of As relative to untreated microcosms. Field plots were unaffected by As treatment. Excised microcosms were found to be more representative of field plots in reflecting microbial dynamics than were homogenized microcosms. Thus excised microcosms were recommended for testing potentially hazardous chemicals.  相似文献   

14.
Plants can play an important role in wastewater treatment and water reuse in terrestrial and space systems. Chive growth in biologically treated graywater, simulating the anticipated early planetary base graywater, was evaluated in this study for NASA. Phytotoxicity due to physiochemical parameters such as ammonium-nitrogen (NH4 +-N), nitrite-nitrogen (NO2 ?-N), pH, and sodium (Na+) was assessed using a series of hydroponic experiments in an environmentally controlled growth chamber. Nitrification in wastewater was observed in all graywater treatments, which converted NO2 ?-N (a toxic form of nitrogen) and NH4 +-N (toxic at high concentrations) to nitrate-nitrogen (NO3 ?-N) (preferred N form for plant uptake). Irrespective of the increase in the NO3 -N concentration due to nitrification, chives in the wastewater treatments typically had poor or no growth. The high levels of Na+ present in the graywater treatments affected potassium uptake and may have affected other nutrient uptake. The impact of nitrification on wastewater pH and NO2 ?-N toxicity is believed to be the critical factor affecting chive growth and may hinder the use high nitrogen waste streams for plant growth unless NO2 ?-N concentrations are controlled during biological treatment of graywater.  相似文献   

15.
间歇性降雨对黄土坡地水土养分流失的影响   总被引:4,自引:4,他引:0  
坡面水土养分流失是研究农业非点源污染方面的核心问题,涉及土壤侵蚀、坡地水文和环境治理等方面的内容。以黄土坡地为研究对象,利用人工降雨模拟试验,分析间歇降雨时坡地产流-入渗-土壤侵蚀过程,以及通过预先在坡地喷施养分(NH_4~+-N、NO_3~--N、PO_4~(3-)-P),研究间歇降雨时坡面水土流失以及土壤溶质的迁移规律。试验采用针孔式人工模拟降雨器进行模拟降雨,对试验坡地间歇性进行3次降雨,雨强恒为100mm/h,每次降雨历时60min,降雨间隔时间60min。结果表明:(1)3次降雨的初始含水率不同,但产流规律相似,降雨径流率均为先增大后趋于平稳。(2)3次降雨产生的泥沙累积量分别为250.91,100.20,79.76g,第1次降雨的泥沙量远高于第2,3次。泥沙率先迅速增大到峰值然后缓慢减少,平均泥沙率随降雨次数的增多而递减。(3)对于非吸附性的NO_3~-、NH_4~+,3场降雨过程中溶质浓度均呈现由高降低并逐渐平稳的变化趋势;PO_4~(3-)-P浓度的变化规律却略显不同,降雨初期溶质浓度先短暂升高,然后再由高降低并逐渐平稳。(4)3次降雨的NH_4~+-N、NO_3~--N、PO_4~(3-)-P的径流总流失量分别为535.33,1 058.18,400.79mg,其中NO_3~--N流失量最多,PO_4~(3-)-P流失量最少。随着降雨次数的增加,不同降雨次数下的NH_4~+-N、NO_3~--N、PO_4~(3-)-P径流流失量均逐渐减少,流失量较前次降雨分别降低了19%,14%、3%,62%和57%,28.3%。因此,通过对间歇性降雨条件下黄土坡地水土溶质迁移特征的研究,对揭示降雨-径流-土壤相互作用过程和土壤养分迁移机理具有重要意义。  相似文献   

16.
宁夏引黄灌区稻田氮素浓度变化与迁移特征   总被引:3,自引:0,他引:3  
过量施氮与不合理灌水是农田面源污染加剧的主要原因。为了寻求较优的水氮管理模式以促进农业生产和减少农田退水对黄河水体的污染, 在宁夏引黄灌区典型稻田中开展了不同水氮条件下稻田氮素迁移转化规律研究。结果表明: 不同水氮条件下稻田田面水NH4+-N 与NO3--N 浓度伴随施肥出现明显峰值, NO3--N 峰值出现时间较NH4+-N 晚, 且变化较平缓。3 次追肥时期和整个生育期田面水NH4+-N 平均浓度与施氮量和灌水量都呈显著相关, 田面水NO3--N 平均浓度与施氮量呈显著正相关, 与灌水量相关性不显著。稻田30 cm与60 cm 深度的直渗水NH4+-N 浓度受施肥影响较大, 与田面水NH4+-N 浓度变化规律相似, 90 cm 处直渗水NH4+-N 浓度峰值出现较为滞后, 且浓度较上层土体低, 120 cm 处直渗水NH4+-N 浓度大体呈现持续上升趋势,整个生育期直渗水NH4+-N 平均浓度与施氮量呈显著相关, 仅30 cm 处NH4+-N 平均浓度与灌水量呈负相关, 其他土层深度不显著。30 cm 与60 cm 直渗水NO3--N 浓度在首次灌水后急剧下降, 在施肥后有较小幅度上升, 90 cm 与120 cm 直渗水NO3--N 浓度下降缓慢, 仅30 cm 处NO3--N 平均浓度与施肥量显著正相关。总的结果表明减少施肥或灌水均可达到减少农田氮素淋失的目的。  相似文献   

17.
Commonly used soil analyses and resin capsules are employed to assess nutrient status in agriculture soils, but their validity in semi-arid ecosystems is unknown. Field studies with six rates of nitrogen (N) and phosphorus (P) application were established on crested wheat stands in both Rush Valley and Skull Valley, Utah. Resin capsule and conventional soil tests for nitrate (NO3)-N, ammonium (NH4)-N, and P were administered, and plant nutrient status was examined. Resin capsules were removed and replaced, and soil samples were taken every 90 d for 1 year. Concentration of P in resin capsules was not related to P rate but sodium bicarbonate (NaHCO3)-extracted P was, and resin NH4-N, resin NO3-N, potassium chloride (KCl)–extracted NO3-N and KCl-extracted NH4-N were all related to N rate. Only KCl-extracted NO3-N and NH4-N levels related to plant tissue N. Overall, traditional soil tests are more effective than resin capsules in semi-arid field conditions, but resin capsules have potential for use in N assessment.  相似文献   

18.
氮素形态对巨峰葡萄果实品质的影响   总被引:3,自引:0,他引:3  
为了探讨氮素形态对巨峰葡萄果实品质性状的影响,设置了尿素T1(酰胺态)、全硝T2(硝铵比为100/0)、混合氮T3、T4、T5(硝铵比为70/30、50/50、30/70)及全铵处理T6(硝铵比为0/100)和清水对照CK,于生长季节进行叶面喷施试验。结果表明,不同处理均提高了果实的营养品质,喷尿素的总糖量、糖酸比最大,其次是混合氮处理,全铵处理最小;果实的Vc含量以混合氮处理较高,全铵处理的最低;果实中花青素的含量顺序为:全硝尿素混合氮全铵CK。果实硝酸盐含量从高到低依次为:全硝混合氮全铵尿素CK;硝态氮促进了果实生长,各处理平均单果重为全硝混合氮全铵尿素CK。综上结果,尿素及适当的硝态氮配比有利于巨峰葡萄果实品质的提高。  相似文献   

19.
为探究自然降雨下不同堆沤方式秸秆还田对小流域坡耕地径流泥沙及氮素流失的影响,以滇中二龙潭流域坡耕地为研究对象,设置9种不同玉米秸秆堆沤方式,分别为CK及8种处理,各处理包括2种秸秆还田量(0.75,1.5 kg/m^2)、2种秸秆粒度(1,5 cm)、2种秸秆堆沤方式(水或水与尿素堆沤),研究烤烟坡耕地产流产沙及氮素流失特征。结果表明:(1)在4场具有典型产流的降雨中,施用较高秸秆还田量(1.5 kg/m^2)和粗颗粒秸秆(5 cm),均可有效减少坡耕地产流产沙量(10.06%~38.60%和10.07%~38.60%);(2)施用较低秸秆还田量(0.75 kg/m^2)、粗颗粒秸秆(5 cm)及未添加尿素堆沤的秸秆径流TN、NO3--N浓度低于施用高秸秆还田量(1.5 kg/m^2)、细颗粒秸秆(1 cm)及添加尿素堆沤的处理(1.96%~32.79%和3.97%~40.89%);(3)各处理下NO3--N/TN、NH4+-N/TN、PN/TN分别为63.64%~86.18%,5.31%~13.86%和5.33%~25.80%,表明坡耕地地表径流氮素主要流失形式为NO3--N,溶解态氮是径流中的主要氮素污染物;(4)施用较低秸秆还田量(0.75 kg/m^2)、粗颗粒(5 cm)秸秆、未加尿素堆沤的秸秆,泥沙TN流失浓度降低(16.87%~48.15%);(5)施用较高秸秆还田量、粗颗粒秸秆及未添加尿素堆沤可有效降低滇中坡耕地氮素的流失风险(0.32%~35.05%和54.52%~77.23%)。TN径流和泥沙流失中,以径流输出为主,占TN流失量的50.09%~71.67%。为了减少该流域氮素流失量,可选择施用较高秸秆还田量(1.5 kg/m^2)和粗颗粒(5 cm)秸秆,并依据烤烟不同生长期的吸收情况和土壤养分情况等选择少量或不添加尿素堆沤进行秸秆还田。  相似文献   

20.
为探讨双季稻田控释尿素施用对养分在土壤剖面的垂直分布与迁移的影响,通过长期田间定位试验,研究比较普通尿素(U)和控释尿素(CRU)减施稻田剖面的养分累积和分布。结果表明:随着土层深度的增加,土壤全氮、NO_3~-—N、有机质、全磷、速效磷和全钾含量呈下降趋势,NH_4~+—N含量先下降后升高,速效钾含量呈上升趋势,土壤pH升高且趋于稳定。施肥会降低0—20cm土层pH和速效钾含量。与U处理相比,0—20cm土层CRU处理全氮含量提高7.72%~19.45%,且随着施N量的增加呈上升趋势;40—60cm土层CRU处理NH_4~+—N含量降低6.99%~19.23%。施用CRU可以有效降低土层NH_4~+—N向下淋溶,提高0—40cm土层全氮和NO_3~-—N含量,避免土壤N素流失。施用CRU对不同深度土层有机质、速效磷、全磷、速效钾、全钾和pH的影响不显著,但减量过大会导致有机质降低。CRU减量10%~20%处理显著提高双季稻成熟期N、P、K的吸收量。相关分析表明,不同用量控释尿素处理早、晚稻成熟期N、P、K吸收量与籽粒产量均呈显著正相关。总之,CRU处理有效地控制N素向下淋溶,减少因N肥施用带来的潜在面源污染,而CRU减施可更好地维持和提高土壤的养分水平和肥力,促进养分累积,实现生态与经济效益的双赢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号