首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the effects of temperature and drying–rewetting on soil phosphorus (P) fractions and microbial community composition in regard to different fertilizer sources. Soil P dynamics and microbial community properties were evaluated in a soil not fertilized or fertilized with KH2PO4 or swine manure at two temperatures (10 and 25 °C) and two soil water regimes (continuously moist and drying–rewetting cycles) in laboratory microcosm assays. The P source was the dominant factor determining the sizes of labile P fractions and microbial community properties. Manure fertilization increased the content of labile P, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents, whereas KH2PO4 fertilization increased the content of labile inorganic P and microbial P. Water regimes, second to fertilization in importance, affected more labile P pools, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents than temperature. Drying–rewetting cycles increased labile P pools, decreased microbial biomass and alkaline phosphomonoesterase activity, and shaped the composition of microbial communities towards those with greater percentages of unsaturated fatty acids, particularly at 25 °C in manure-fertilized soils. Microbial C and P dynamics responded differentially to drying–rewetting cycles in manure-fertilized soils but not in KH2PO4-fertilized soils, suggesting their decoupling because of P sources and water regimes. Phosphorus sources, temperature, and water regimes interactively affected the labile organic P pool in the middle of incubation. Overall, P sources and water availability had greater effects on P dynamics and microbial community properties than temperature.  相似文献   

2.
In most phosphorus (P) sorption studies, P is added as an inorganic salt to a predefined background solution such as calcium chloride (CaCl2) or potassium chloride (KCl); however, in many regions, the application of P to agricultural fields is in the form of animal manure. The purpose of this study, therefore, was to compare the sorption behavior of dissolved reactive P (DRP) in monopotassium phosphate (KH2PO4)–amended CaCl2 and KCl solutions with sorption behavior of DRP in three different animal manure extracts. Phosphorus single‐point isotherms (PSI) were conducted on eight soils with the following solutions: KH2PO4‐amended 0.01 M CaCl2 solution, KH2PO4‐amended 0.03 M KCl solution, water‐extracted dairy manure, water‐extracted poultry litter, and swine lagoon effluent. The PSI values for the dairy manure extract were significantly lower than the CaCl2 solution for all eight soils and lower than the KCl solution for six soils. The PSI values were significantly higher, on the other hand, for poultry litter extract and swine effluent than the inorganic solutions in four and five of the soils, respectively. Our observations that the sorption of DRP in manure solutions differs significantly from that of KH2PO4‐amended CaCl2 and KCl solutions indicates that manure application rates based on sorption data collected from inorganic P salt experiments may be inaccurate.  相似文献   

3.
《Journal of plant nutrition》2013,36(8):1427-1439
Abstract

Phenolic acids (caffeic, CAF; protocatechuic, PCA; p-coumaric, COU; and vanillic, VAN), catechol (CAT), poly-galacturonic acid (PGA), and citric acid (CIT) were compared for their effectiveness in phosphorus (P) mobilization in three soils differing in chemical properties. The addition of organic ligands at 100 μmol g? 1 soil increased the concentrations of resin P (Pr), water-extractable P (Pw), and bicarbonate-extractable inorganic P (Pbi), thus improving the phosphorus availability. The magnitude of P mobilization in the calcareous soil can be expressed in the following order: CAF > CAT > PCA = CIT > VAN > COU > PGA, which was consistent with the number of phenolic hydroxyl groups they contained and the position of carboxyl on the benzoic ring. In the two acid soils tested, the order of P mobilization was CIT > CAT > PCA > CAF after 24 h incubation, and CIT > PCA > CAF > CAT after a 14 d incubation. The mobilized P originated partly from the organic P fractions, which could be extracted by 0.5 M NaHCO3. In addition, Pr decreased and Pw increased during incubation. The exceptions were that the CAF treatment increased Pr and the CIT treatment did not affect Pw. Calcium extraction from the soils after a 1 d or 14 d incubation could not fully account for the P mobilization. The results suggest that the inorganic P dissolution by the organic ligands was not the only mechanism of P mobilization in the calcareous soil, while in acid soils the chelation of metal cations by organic ligands is likely an important factor in P mobilization.  相似文献   

4.
采用室内培养和化学分析的方法研究了几种有机酸对石灰性潮土无机磷形态转化的影响。结果表明,1)石灰性潮土中磷素主要以有效性很低的磷酸盐(Ca10-P等)形式存在,而有效性较高的磷酸盐(Ca8-P等)含量较少,Ca2-P就更少。2)不同磷源施入土壤后,无机磷总量相应增加。磷酸二氢钾与磷酸二钙主要向Ca8-P、Al-P等有效性相对较差的磷素形态转化,磷酸八钙、氟磷灰石、磷酸铁、磷酸铝等有效性较差的磷源,在较短的时期内主要以自身的形态存在。3)施加各种有机酸可以不同程度地降低土壤中Fe-P、Al-P和Ca10-P含量,增加Ca2-P、Ca8-P和O-P含量,总的趋势是促进土壤中植物难以利用的无机磷形态向植物可以利用的形态转化。这种促进能力因有机酸种类和性质的不同而不同,其作用大小顺序为草酸柠檬酸酒石酸。  相似文献   

5.
The geochemical reactivity of single superphosphate (SSP), triple superphosphate (TSP), phosphate rock (PR), partially acidulated phosphate rock (PAPR) and potassium dihydrogen phosphate (KH2PO4) was evaluated in an incubation trial. The soil was Anthrosols, Ap horizon (Sandy loam). Solubility equilibrium of phosphates was calculated by phosphate (PPot = logH2PO4 – pH) and calcium (CaPot = logCa + 2pH) potentials. Next, activity ratio (AR°) and Woodruff potential (ΔF) were considered for estimating phosphate dynamics in the soil. Data showed that phosphate potentials stressed on significant solubility process and varied accordingly to the rates of the fertilizers: ?5.50, ?4.81, ?4.47 and ?4.09 for 0, 50, 100 and 150 kg P ha?1. The values of the Woodruff potential (ΔF) varied widely from ?1929 to 8573 cal mol?1, i.e., from marginal supplying power in the case of the control treatment to very high supplying power for the TSP (Triple superphosphate). These findings are of practical value for the following reasons: TSP and KH2PO4 are recommended for quick and high P supply to plants; SSP and PAPR for moderate supply and finally PR for slow and low supply. Phosphorus efficiency should be treated with priority particularly for areas with intensive cropping and susceptibility to runoffs.  相似文献   

6.
Abstract

Bell pepper (Capsicum annuum cv. Urfa Isoto) and cucumber (Cucumis sativus cv. Beith Alpha F1) were grown in pots containing field soil to investigate the effects of supplementary potassium phosphate applied to the root zone of salt‐stressed plants. Treatments were (1) control: soil alone (C); (2) salt treatment: C plus 3.5 g NaCl kg?1 soil (C + S); and (3) supplementary potassium phosphate: C + S plus supplementary 136 or 272 mg KH2PO4 kg?1 soil (C + S + KP). Plants grown in saline treatment produced less dry matter, fruit yield, and chlorophyll than those in the control. Supplementary 136 or 272 mg KH2PO4 kg?1 soil resulted in increases in dry matter, fruit yield, and chlorophyll concentrations compared to salt‐stressed (C + S) treatment. Membrane permeability in leaf cells (as assessed by electrolyte leakage from leaves) was impaired by NaCl application. Supplementary KH2PO4 reduced electrolyte leakage especially at the higher rate. Sodium (Na) concentration in plant tissues increased in leaves and roots in the NaCl treatment. Concentrations of potassium (K) and Phosphorus (P) in leaves were lowered in salt treatment and almost fully restored by supplementary KH2PO4 at 272 mg kg?1 soil. These results clearly show that supplementary KH2PO4 can partly mitigate the adverse effects of high salinity on both fruit yield and whole plant biomass in pepper and cucumber plants.  相似文献   

7.
Abstract

Organic anions affect solute mobility in soils. This study evaluated citrate and oxalate adsorption (0 to 4 mmol L?1, soil–solution 1∶100, pH 5.5, ionic strength 30 mmol L?1 as NaCl, 72‐h reaction) and desorption (pH 5.5, 30‐mmol L?1 NaCl, 72 h) on A‐ and B‐horizon samples of two Brazilian Oxisols. Langmuir and Freundlich isotherms were used to assess adsorption maximum, distribution coefficients (Kf, Ku), and buffer index. Adsorption maximums (mol kg?1) for red Latossol‐A, red Latosol‐B, red‐yellow Latosol‐A, and red‐yellow Latosol‐B horizons follow: citrate 0.0318, 0.0272, 0.0289, 0.0392; oxalate 0.0641, 0.0329, 0.0538, 0.0380. Kf (mol1?1/n kg?1 L1/n) follows: citrate 0.3550, 0.3781, 0.4211, 0.2024; oxalate 1.0916, 0.0637, 1.8228, 0.0922. Buffer index (mol kg?1)(mol kg?1)?1 follows: citrate 0.0841, 0.0756, 0.0738, 0.0264; oxalate 0.3787, 0.0862, 0.3233, 0.1082. Both anions showed great affinity for variable‐charge soils. The distribution curves for Ku showed higher adsorption energy in B‐ than in A‐horizons.  相似文献   

8.
Phosphate (PO4-P) sorption characteristics of soils and bedrock composition were determined in catchments of two mountain lakes, Ple?né Lake (PL) and ?ertovo Lake (CT), situated in the Bohemian Forest (Czech Republic). The aim was to explain higher terrestrial P export to mesotrophic PL compared to oligotrophic CT. Concentrations of Al and Fe oxides were the dominant parameters affecting soil ability to adsorb PO4-P. Depending on concentrations of Al and Fe oxides, P sorption maxima varied from 9.7 to 70.5 mmol kg?1 and from 7.4 to 121 mmol kg?1 in organic and mineral soil horizons, respectively. The catchment weighted mean PO4-P sorption capacity was 3.4 mol m?2 and 11.9 mol m?2 in the PL and CT soils, respectively. The higher PO4-P sorption capacity in the CT catchment was predominantly associated with higher pools of soil and Fe oxides. The CT bedrock (mica schist) released one order of magnitude less P than the PL bedrock (granite) within a pH range of catchment soils (pHCaCl2 of 2.5–4.5). The higher ability of PL bedrock to release P and the lower ability of PL soils to adsorb PO4-P thus contributed to the higher terrestrial P loading of this lake.  相似文献   

9.
Potassium (K) leaching is detrimental to the maintenance of sustainable arable soil K fertility,especially in low-K fixation soils.It is not known whether the application of inorganic fertilizers with lower K mobility or crop straw can reduce potential K leaching in low-K fixation arable soils.The potential K leaching of 14 representative arable soils with different K fixation capacities in China was evaluated with or without the addition of K under two rainfall intensities (90 and 225 mm),and then potential K leaching was assessed in relation to five K sources (KCl,K2SO4,KH2PO4,maize (Zea mays L.) straw,and rice (Oryza sativa L.) straw).Without K addition,K leaching mainly occurred in sandy soils at 90 mm of rainfall and in soils with greater organic matter at225 mm of rainfall.With K addition,the leaching percentage of exogenous K ranged from 0.6%to 11.6%at 90 mm of rainfall and 1.2%to 21.2%at 225 mm of rainfall.The greatest K leaching occurred in soils with fewer K-bearing minerals and lower pH at both rainfall intensities.In most cases,KH2PO4,which has lower K mobility,markedly reduced K leaching in both high-and low-K leaching soils at the two rainfall intensities.Maize and rice straw reduced K leaching only in soils with high K leaching,regardless of rainfall amount,whereas more K was leached in soils with lower K leaching at high rainfall intensity.In conclusion,KH2PO4 and straw should be preferred for reducing K leaching in low-K fixation arable soils.  相似文献   

10.
This study investigated phosphorus (P) accumulation and rhizosphere characteristics of Polygonum hydropiper under high levels (400, 800, and 1600 mg P kg?1) of inorganic P (Pi) and organic P (Po), supplied as KH2PO4 and myo-inositol hexaphosphoric acid dodecasodium salt, respectively. Mining (ME) and non-mining (NME) ecotypes were used since they differed in the capacity of nutrient acquisition. Biomass and P accumulation in shoots and roots of the ME increased by increasing Pi levels, whereas they decreased by increasing Po concentrations. Rhizosphere pH declined by 0.15–0.45 U for the ME and 0.04–0.14 U for the NME. Orthophosphate was the most abundant form, and it depleted greatly in the rhizosphere, with higher effect by the ME than by the NME. Glycerophosphate and inositol hexakisphosphate concentrations increased in the rhizosphere under high Po treatments with higher effect by the ME than by the NME. Rhizosphere acid phosphomonoesterase, alkaline phosphomonoesterase, and phytase activities of both ecotypes were higher in high P treatments than the treatment without P, whereas phosphodiesterase activity decreased. Significantly higher enzyme activities were observed in the rhizosphere soil of the ME than the NME. Probably, the ME might obtain higher shoot P than the NME from P-enriched soils through changes in rhizosphere properties.  相似文献   

11.
A greenhouse experiment was conducted to examine whether foliarly applied potassium + phosphorus (K + P) in the form of monopotassium phosphate (KH2PO4) could mitigate the adverse effects of salt stress on sunflower plants. There were two levels of root-applied salt [0 and 150 mM of sodium chloride (NaCl)], and varying levels of KH2PO4 [(NS (no spray), WS (spray of water), 5 + 4, 10 + 8, 15 + 12, and 20 + 16 mg g?1 K + P, pH 6.5] applied foliarly to 18-day old non-stressed and salt stressed sunflower plants. Salt stress adversely affected the growth, yield, photosynthetic capacity, and accumulation of mineral nutrients in the sunflower plants. However, varying levels of foliar applied KH2PO4 proved to be effective in improving growth and yield of sunflower under salt stress. The KH2PO4 induced growth in sunflower was found to be associated with enhanced photosynthetic capacity, water use efficiency and relative water contents.  相似文献   

12.
Fertilizer recommendations are needed to increase organic vegetable yields. Thus, organic lettuce growth and nutrient uptake was investigated in a randomized block pot experiment with twelve treatments from the factorial structure of three factors: (i) Gafsa phosphate [0 and 200 kg phosphorus pentoxide (P2O5) ha?1], (ii) compost from source separated municipal organic waste (0, 15, and 30 t ha?1) and (iii) limestone [0 and 8 t ha?1 calcium carbonate (CaCO3) equivalent]. Lettuce yield increased with compost application and a first order interaction between lime and phosphate was clear because lime partially replaced the need for phosphate. This was explained by the effect of liming on P availability in acid soils. Nitrogen (N), phosphorus (P), and potassium (K) accumulation increased in lettuces produced with compost or phosphate but only the accumulation of N was increased with lime. This compost is recommended to increase nutrient availability for organic lettuce whereas the need for phosphate fertilization may decrease with liming.  相似文献   

13.
A rhizobox experiment was conducted to investigate the effects of phosphorus (P) sources on the rhizosphere soil characteristics of two wheat genotypes Xiaoyan54 (P-efficient) and Jing411 (P-inefficient), which were colonized with an arbuscular mycorrhizal fungus and grown in Cumulic Haplustoll. The four P sources included a control (no added P), OP [organic P: sodium (Na)-phytate], IP [inorganic P: monopotassium phosphate (KH2PO4)], and OPIP (Na-phytate plus KH2PO4). The results showed that when no exogenous P was added the shoot biomass of Xiaoyan54 was 28% significantly higher than Jing 411. The acid phosphatase activity (APA) in the rhizosphere soil was significantly depressed when inorganic P was added; the APA for Xiaoyan54 was higher than that of Jing411 in most of the layers regardless of the P source. Inorganic and organic P fertilizer conditions did not significantly impact the soil pH relative to the control, and the pH did not significantly differ between the two genotypes. In conclusion, when no exogenous P was added, shoot biomass of Xiaoyan54 was greater than Jing411. This increase was promoted by greater soil APA but not soil acidification. The rhizosphere soil pH was not altered across different wheat genotypes or P sources, but APA was increased in the soil of control and OP-treated plants compared with IP- and OPIP-treated plants. The APA of Xiaoyan54 was higher than Jing411 for all of the P sources. The response mechanism of rhizosphere soil acidification is different from acid phosphatase exudation in plants receiving different P sources under arbuscular mycorrhizal fungus inoculation.  相似文献   

14.
《Journal of plant nutrition》2013,36(9):1635-1651
Abstract

Most agricultural soils in Iran are usually low in organic matter (OM). Therefore, increasing OM in these soils is of great concern. Environmental pollution caused by chemical fertilizers has created an interest in the integrated use of organic wastes with inorganic fertilizers. The main purpose of this greenhouse study was to evaluate the impact of two organic wastes and phosphorus (P) on the growth, and elemental composition of spinach (Spinacia oleracea L.) and soil chemical properties. Treatments consisted of four levels of municipal waste compost, MWC (0, 1, 2, and 4%), five rates of poultry manure, PM (0, 1, 2, 3, and 4%), and three P levels (0, 25, and 50 mg kg?1 as KH2PO4). Application of P and MWC alone or in combination significantly increased the top dry weight of spinach. However, spinach growth was markedly increased up to 3% PM and suppressed with the higher rate, probably due to an excess of soluble salts in the soil. Moreover, the enhancing influence of P on spinach seedling growth was more pronounced at lower levels of MWC and PM. Plant P concentration tended to increase with increasing P, MWC, and PM application rates, whereas nitrogen (N) concentration was only affected by the two organic wastes treatment. Manganese (Mn) concentrations decreased, and copper (Cu), lead (Pb), and cadmium (Cd) increased by soil P application. However, P addition significantly decreased zinc (Zn) concentration only in MWC-treated spinach. Spinach plants enriched with either of the two biosolids accumulated more Mn, Zn, Pb, Cd, chloride (Cl), and sodium (Na) than control plants. Furthermore, spinach grown on MWC-amended soil contained higher Mn, Zn, Cu, and Pb and lower N, Cl, and Na than those raised on PM-treated soil. Postharvest soil sampling indicated that application of the two biosolids significantly increased concentration of soluble salts, (ECe), OM, TN, NaHCO3-extractable P, and DTPA-extractable iron (Fe), Mn, Zn, Cu, Pb, and Cd.  相似文献   

15.
Abstract

Lead arsenate was extensively used to control insects in apple and plum orchards in the 1900s. Continuous use of lead arsenate resulted in elevated soil levels of lead (Pb) and arsenic (As). There are concerns that As and Pb will become solubilized upon a change in land use. In situ chemical stabilization practices, such as the use of phosphate‐phosphorus (P), have been investigated as a possible method for reducing the solubility, mobility, and potential toxicity of Pb and As in these soils. The objective of this study was to determine the effectiveness of calcium carbonate (lime), P, and iron (Fe) amendments in reducing the solubility of As and Pb in lead‐arsenate‐treated soils over time. Under controlled conditions, two orchard soils, Thurmont loam (Hapludults) and Burch loam (Haploxerolls), were amended with reagent‐grade calcium carbonate (CaCO3), iron hydroxide [Fe(OH)3], and potassium phosphate (KH2PO4) and incubated for 16 weeks at 26°C. The experimental results suggested that the inorganic P increased competitive sorption between H2PO4 ? and dihydrogen arsenate (H2AsO4 ?), resulting in greater desorption of As in both Thurmont and Burch soils. Therefore, addition of lime, potassium phosphate, and Fe to lead‐arsenate‐contaminated soils could increase the risk of loss of soluble As and Pb from surface soil and potentially increase these metal species in runoff and movement to groundwater.  相似文献   

16.
Four frequently used extractants (H2O, 0.1 M NaCl, 0.016 M KH2PO4, and 0.5 M NaHCO3) as well as different extraction conditions have been tested for sulphate extraction from gypsum‐free agricultural soils. Water is the preferable extractant for soils with pH > 6. Two extraction steps have to be carried out for complete extraction (> 95%). A 0.016 M KH2PO4 solution was found to be the most efficient extractant for soils with a pH < 6 within a single extraction step. A shaking frequency of 170 min‐1 and a duration of extraction of 4 hours are the optimized conditions for the sulphate extraction with H2O and KH2PO4 solution.  相似文献   

17.
Fertilization with nitrogen (N) or phosphorus (P) can improve plant growth in saline soils. This study was undertaken to determine wheat (Triticum aestivum L; cv Krichauff) response to the combined application of N and P fertilizers in the sandy loam under saline conditions. Salinity was induced using sodium (Na+) and calcium (Ca2+) salts to achieve four levels of electrical conductivity in the extract of the saturated soil paste (ECe), 2.2, 6.7, 9.2 and 11.8?dS?m?1, while maintaining a low sodium adsorption ratio (SAR; ≤1). Nitrogen was applied as Ca(NO3)2?·?4H2O at 50 (N50), 100 (N100) and 200 (N200)?mg?N?kg?1 soil. Phosphorus was applied at 0 (P0), 30 (P30) and 60 (P60)?mg?kg?1?soil in the form of KH2PO4. Results showed that increasing soil salinity had no effect on shoot N or P concentrations, but increased shoot Na+ and chlorine ion (Cl?) concentrations and reduced dry weights of shoot and root in all treatments of N and P. At each salinity and P level, increasing application of N reduced dry weight of shoot. At each salinity and N level P fertilization increased dry weights of shoot and root and shoot P concentration. Addition of greater than N50 contributed to the soil salinity limiting plant growth, but increasing P addition up to 60?mg?P?kg?1 soil reduced Cl? absorption and enhanced the plant salt tolerance and thus plant growth. The positive effect of the combined addition of N and P on wheat growth in the saline sandy loam is noticeable, but only to a certain level of soil salinity beyond which salinity effect is dominant.  相似文献   

18.

Purpose

The application of roxarsone (ROX), an arsenic-containing compound, as a feed additive in the animal production industry results in elevated soil levels of ROX and its metabolites, namely, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), and arsenite (As(III)). This study was conducted to study the extraction and speciation analysis of ROX-related arsenicals in soils with different physicochemical properties and the possible effects of soil properties on the extraction of ROX and its metabolites.

Materials and methods

Analytical method based on high-performance liquid chromatography (HPLC)-inductively coupled plasma–mass spectrometry (ICP-MS) was employed to determine the concentrations of As(III), DMA, MMA, As(V), and ROX extracted by different extraction solvents from different soils spiked by arsenicals. Validity of the developed method was assessed by the recovery efficiencies of arsenic species in soil-dissolved matter solutions containing 20 μg As?·?L?1 of each arsenic species. Effects of soil properties on the extraction of ROX and its metabolites were analyzed by Pearson’s correlation.

Results and discussion

Arsenic species were separated using gradient elution of water and 20 mmol?·?L?1 (NH4)2HPO4 + 20 mmol?·?L?1 NH4NO3 + 5 % methanol (v/v) within 27 min. The linear ranges of all arsenicals were 0–200 μg As?·?L?1 with R 2?>?0.9996. The developed method provided lower limits of detection for As(III), DMA, MMA, As(V), and ROX (0.80, 0.58, 0.35, 0.24, and 1.52 μg As?·?L?1, respectively) and excellent recoveries (92.52–102.2 %) for all five species. Arsenic speciation was not altered by 0.1 mol?·?L?1 NaH2PO4 + 0.1 mol?·?L?1 H3PO4 (9:1, v/v), which offered better average extraction efficiencies for As(III), As(V), DMA, MMA, and ROX (32.49, 92.50, 78.24, 77.64, and 84.54 %, respectively). Extraction performance of arsenicals was influenced by soil properties, including pH, cation exchange capacity (CEC), total Fe, and amorphous Fe.

Conclusions

ROX and its metabolites from soils could be satisfactorily separated by the developed method for the studied arsenicals. To extract arsenic species from soils, 0.1 mol?·?L?1 NaH2PO4 + 0.1 mol?·?L?1 H3PO4 (9:1, v/v) was recommended. Extraction efficiencies of arsenicals were influenced more by solvent composition than soil physicochemical properties. The present study provides a valuable tool and useful information for determining the concentrations of ROX and its metabolites in contaminated soils.
  相似文献   

19.
The long-term fertilization results in accumulation of phosphorus especially in the top layer of the soils. Inundation of agricultural lands leads to a switch to anaerobic soil condition, causing reduction of iron and leaching of phosphate simultaneously. From the ecological and environmental perspective, high nutrients flux especially phosphorus will increase the possibility of eutrophication in aquatic system. The fern Azolla had a good potential to adsorb phosphorus, it also has distinctive nitrogen-fixing capacity. We conducted a 10-week aquarium experiment to investigate the phosphorus release capacity from two agricultural soils in the Netherlands with different Fe and P concentrations but comparable Fe/P ratios. Besides, the research questions rose to whether Azolla could use the mobilized phosphate released from the soils for growth. We also tried to find an effective indicator to estimate the actually phosphate mobilization from sediment to water layer. Results showed that the soils with high Fe and P concentrations had higher phosphate release rate compared with the soil with low Fe and P concentrations. Pore water Fe: PO43? ratios were valid to identify P release to surface water, when the Fe: PO43? ratios less than 8 mol mol?1 substantial phosphorus mobilization occurred. The conclusions showed that the actual mobilization of phosphate is more important than the phosphorus retained in the sediments for the internal PO43? fluxes. From 10-week experimental results, we found that Azolla can reuse the phosphate retained in soils thus removed the mobilized phosphate in a moderately low surface water nutrient loading.  相似文献   

20.
In this work, selective chemical sensors of phosphorus (PO4 3?) installed in PVC probes and their associated instrumentation were evaluated in soil solution phosphorous monitoring. The evaluation was carried out with the addition of a 0.1 mol L?1 P‐PO4 3? solution in the soil, followed by data acquisition supplied by the probes; by collecting soil samples in the region where the probes were installed; and by phosphorus determination through conventional laboratory techniques. The phosphorus amounts were determined by spectrophotometry after the following extraction methodologies: Mehlich 1, Mehlich 3, and ionic exchange resin. The results, compared with the potentials registered by the probes, express the best correlation with the results obtained with the resin method. The results indicate good response of the sensors and the potential applicability of these probes to assist in the monitoring of soil nutrients, helping to establish rational processes in the use of fertilizers in crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号