首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Mineralization of soil organic nitrogen (N) and its contribution toward crop N uptake is central to developing efficient N‐management practices. Because biological incubation methods are time consuming and do not fit into the batch‐analysis techniques of soil‐testing laboratories, an analytical procedure that can provide an estimate of the mineralizable N would be useful as a soil‐test method for predicting plant‐available N in soil. In the present studies, the ability of boiling potassium chloride (KCl) to extract potentially mineralizable and plant‐available N in arable soils of semi‐arid India was tested against results from biological incubations and uptake of N by wheat in a pot experiment. Mineralization of organic N in soils was studied in the laboratory by conducting aerobic incubations for 112 days at 32°C and 33 KPa of moisture. Cumulative N mineralization in different soils ranged from 8.2 to 75.6 mg N kg?1 soil that constituted 2.7 to 8.8% of organic N. The amount of mineral N extracted by KCl increased with increase in length of boiling from 0.5 to 2 h. Boiling for 0.5, 1, 1.5, and 2 h resulted in an increase in mineral‐N extraction by 9.3, 12.7, 19.6, and 26.1%, respectively, as compared to mineral N extracted at room temperature. The boiling‐KCl‐hydrolyzable N (ΔNi) was directly dependent upon soil organic N content, but the presence of clay retarded hydrolysis for boiling lengths of 0.5 and 1 h. However, for boiling lengths of 1.5, and 2 h, the negative effect of clay was not apparent. The ΔN i was significantly (P=0.05) correlated to cumulative N mineralized and N‐mineralization potential (N0). The relationship between N0 and ΔN i was curvilinear and was best described by a power function. Boiling length of 2 h accounted for 78% of the variability in N0. Results of the pot experiment showed that at 21‐ and 63‐day growth stages, dry‐matter yield and N uptake by wheat were significantly correlated to boiling‐KCl‐extractable mineral N. Thus, boiling KCl could be used to predict potentially mineralizable and plant‐available N in these soils, and a boiling time of 2 h was most suitable to avoid the negatively affected estimates of boiling‐KCl‐hydrolyzable N in the presence of clay. The results have implications for selecting length of boiling in soils varying widely in clay content, and this may explain why, in earlier studies, longer boiling times (viz. 2 or 4 h) were better predictors of N availability as compared to 0.5 and 1 h.  相似文献   

2.
Abstract

A cotton (Gossypium hirsutum)–peanut (Arachis hypogaea L.) rotation is widely practiced in the southern coastal plain following the reemergence of cotton as a major crop in the 1990s. Very few plant nutrition studies have been conducted in the coastal plain (CP) with modern cotton varieties and none with the cotton–peanut rotation. Experiments with varying rates of nitrogen (N), phosphorus (P), and potassium (K) were conducted to determine if the recommendations from soil tests provide adequate nutrition for maximizing profit when yield goals are Georgia state averages, due to other conditions. From 1996 through 1998, N, P, and K experiments were conducted in cotton crops, and P and K experiments were conducted in peanut crops on Tifton loamy sand. Initial Mehlich‐1 P was 2 to 3 mg/kg (“low”) and Mehlich‐1 K was 50 to 64 mg/kg (“medium” for cotton and “high” for peanut). Each crop was grown each year. State average yields of cotton and peanuts were produced. There was no response in cotton yield to N rates from 34 to 136 kg N/ha. Lack of response may have been due to the fact that the field had not been in production for several years prior to 1996 and there was ample soil mineral N. In 1997 and 1998, residual N provided by N fixation by the previous peanut crop appeared to be sufficient. Maximum profit from P fertilization in cotton was attained at 50 kg P/ha, the recommendation from the soil test. However, a University of Georgia Cooperative Extension Service recommendation to double the P rate for new land with a “low” Mehlich‐1 P soil test was not validated. Cotton yield did not respond to K fertilization even though an application of 55 kg K/ha/year was recommended from the soil test. Peanut yield and grade did not respond to either P or K fertilization. The recommendation from the soil test was 40 kg P/ha/year and no K. Estimates of P removal were 11 kg/ha for cotton and 8 mg/ha for peanut crops. Estimates of K removal were 25 kg/ha for cotton and 22 kg/ha for peanut crops. Over 3 years, soil P was not depleted, but soil K was depleted. Approximately 12 kg P/ha were required to raise soil test P 1 mg/kg and 18 kg K/ha were required to raise soil test K 1 mg/kg (49 lb. P2O5 to increase the P test 1 lb./acre, 38 lb. K2O to raise the K test 1 lb./acre). Additional studies are needed, but the current studies suggest that revisions in recommendations are needed for both cotton and peanut crops.  相似文献   

3.
In a long‐term maize–wheat rotation at the Punjab Agricultural University, Ludhiana, India (subtropical climate), the effects of nitrogen (N), phosphorus (P), and potassium (K) addition on soil fertility and forms of inorganic P and K in the plow layer of an alkaline sandy loam soil were measured after 11 and 22 years of cropping. The treatments comprised four rates of N (0, 60, 120, and 180 kg N ha?1) as urea, three rates of P (0, 17.5, and 35 kg P ha?1) as single superphosphate, and two rates of K (0 and 33 kg K ha?1) as muriate of potash. The treatments selected for the present study were N0P0K0, N120P0K0, N120P17.5K0, N120P35K0, N120P17.5K33, and N120P35K33. A significant year × treatment interaction in decreasing available N [alkaline potassium permanganate (KMnO4)–oxidizable N) status of soils was found in all the treatments. Available P (Olsen P) in the control plot decreased over time whereas in plots with added P, available P increased significantly after years 11 and 22, with the greatest increase in the N120P17.5Ko treatment. Compared to the initial values, continuous P fertilization resulted in greater total P and chloride P concentrations after 11 and 22 years. Although sodium hydroxide (NaOH) P and sulfuric acid (H2SO4) P increased in P‐treated plots from the start of the trial to year 11, they decreased from year 11 to year 22. Among these inorganic P forms, chloride P was significantly positively correlated with P uptake (r = 0.811*). When only N and P were applied, available K [ammonium acetate (NH4OAc)–extractable K] significantly decreased over time. In plots without K addition, water‐soluble and exchangeable K decreased from their initial status. Compared to year 11, water‐soluble K increased, whereas exchangeable K decreased after year 22 in plots receiving no K fertilizer. Compared with NPK treatments, a significant decrease of total K in NP treatment plots suggests the release and uptake of nonexchangeable K. Water‐soluble K and exchangeable K were not correlated with K uptake. These results suggest that long‐term application of P fertilizers resulted in the accumulation of P in the soil, which could have resulted in saturation of P binding sites. Of the soil inorganic P fractions, only chloride P appears to be a good indicator of plant‐available P. The gradual loss in native soil K and release of nonexchangeable K indicates the need for adding K fertilizer to maintain soil fertility.  相似文献   

4.
Abstract

The aim of this work was to assess how potassium (K) and nitrogen (N) fertilization might affect the variation of leaf and fruit nutrient concentrations in carob tree (Ceratonia siliqua L.) under low precipitation. A field study was conducted in 1997, 1998, and 1999 in a calcareous soil. Four fertilization treatments were tested: no fertilizer (C), 0.8 kg N tree?1 (N treatment), 0.83 kg K tree?1 (K treatment), and 0.80 kg N tree?1 plus 0.83 kg K tree?1 (NK treatment). During the hydrological cycle 1998/1999, only 250 mm of rain were recorded. Because of this, from 1998 to 1999 a decrease in the concentrations of mobile nutrients N, phosphorus (P), and K and an increase in calcium (Ca), iron (Fe), and manganese (Mn) were observed in leaves. The application of N led to higher leaf N concentration compared with other treatments. This response allowed the establishment of a linear model that relates soil plant analysis development (SPAD) readings with leaf N concentrations (r2=0.55; P<0.05). Compared with leaves, fruits showed similar amounts of N and P; less Ca, Mg, Fe, and Mn; and high concentrations of K. Fertilization did not change considerably the mineral composition of fruits, and because of large variation among trees, yield was similar for all treatments.  相似文献   

5.
Abstract

Samples of seven controlled‐release fertilizers, Nutricote Total 13–13–13, Nutricote Total 18–6–8, Osmocote Plus 15–9–12, Osmocote 13–13–13, Polyon 18–6–12, Polyon 14–14–14, and Plantacote 14–8–15, were placed in leaching columns containing acid‐washed sand. Samples of all leachates were analyzed weekly to determine release rates of ammonium‐nitrogen (N), nitrate‐N, phosphorus (P), potassium (K), magnesium (Mg), manganese (Mn), and iron (Fe). Release rates for P from all products were slower than those for NH4‐N, NO3‐N, and K. Release of Mg, Mn, and Fe was very poor, with less than 50% of the total amount of each of these elements ever being released from the prills for some products. Nutricote products released Fe and Mn more effectively than did Osmocote or Plantacote.  相似文献   

6.
The process of biomass, nitrogen (N), and potassium (K) accumulation over time as affected by N forms is poorly understood. The objective of this study was to identify the effects of N form on growth as well as on N and K nutrition of flue‐cured tobacco plants (Nicotiana tobaccum L.). The plants were grown in a greenhouse with pots of soil for 117 days after 200 days of preculture. Three treatments (calcium nitrate [Ca(NO3)2], ammonium nitrate (NH4NO3), and ammonium nitrate plus straw (NH4NO3 + straw)) were used. The results showed that there were no significant differences in shoot dry mass of tobacco among the three treatments during the entire growth stage except at 30 and 117 days after transplanting. At these two growth stages, shoot biomass with the Ca(NO3)2 treatment was significantly less than that with NH4NO3 with or without straw. The NH4NO3 + straw plants had more mature leaves and greater leaf dry weight than the other two treatments. At an early stage (before 66 days), N concentration of Ca(NO3)2‐fed plants was less than with the other two treatments. The leaf K concentration and shoot K content of NH4NO3 and NH4NO3 + straw plants were more than with the Ca(NO3)2 treatment before maturity. Also, K concentration in mature leaves with these two treatments was greater than with Ca(NO3)2 treatment. All these results indicated that NH4NO3 application had benefits to the maturity and K accumulation in leaves of tobacco.  相似文献   

7.
Abstract

Alkaline‐treated wastewater sludges with varying doses of fly ash were added to a clay soil at rates equivalent to 100 t (dry weight) raw sludge ha?1 soil, and the variations in ammonium, nitrate, and total nitrogen contents were monitored throughout an incubation period of 360 days at 28°C. The results showed that inhibition of organic nitrogen mineralization occurred in soil amended with fly ash–containing sludge during the first 90 days of incubation. After the total incubation period of 360 days, the inhibition effects of alkaline sludge amendments totally disappeared. In fact, mineralization was enhanced in alkaline pasteurized sludges containing 80% and 120% fly ash. The overall results indicated that application of sludges amended with fly ash may prolong the use (3 to 6 months) of nitrogen from the organic nitrogen pool in sludge.  相似文献   

8.
The Fengqiu long-term field experiment was established to examine effects of organic manure and mineral fertilizers on soil total nitrogen (N) and natural 15N abundance. Fertilizer regimes include organic manure (OM), one-half N from organic manure plus one-half N from mineral N fertilizer (1/2OMN), mineral fertilizers [N–phosphorus (P)–potassium (K), NP, NK, PK], and a control. Organic manure (OM and 1/2OMN) significantly increased soil total N and δ15N, which was expected as a great amount of the N applied remained in soils. Mineral NPK fertilizer and mineral NP fertilizer significantly increased total N and slightly increaed δ15N. Phosphorus-deficient fertilization (NK) and N-deficient fertilization (PK) had no effect on soil total N. Significantly greater δ15N was observed in the NK treatment as compared to the control, suggesting that considerable N was lost by ammonia (NH3) voltalization and denitrification in this P-deficiency fertilization regime.  相似文献   

9.
10.
A two-step digestion–ultraviolet (UV) spectrophotometry method for total nitrogen (N) determination in solid samples is described in this work. Three influencing factors (amount of hydrogen peroxide, amount of sulfuric acid, and digestion time) of the digestion are optimized, and for digestion of a 0.1-g solid sample, the optimal conditions are 0.5 mL of sulfuric acid, 0.2 mL of hydrogen peroxide, and 40 min of the digestion time. The results of ion chromatography show that under the optimal conditions the organic nitrogen almost quantitatively mineralizes into ammonium in the first digestion. The nitrogen content in six real samples has been analyzed under the optimal conditions, and the nitrogen recovery rates of standard compounds added in the real samples were between 88% and 99%. The results obtained by two-step digestion–UV spectrophotometry method are consistent with those by classical Kjeldahl method (correlation coefficient is 0.9999). The possible degradation pathways of three amino acids were also proposed.  相似文献   

11.
Quantity–intensity relations of potassium (K) were worked out for guava orchard soils. Equilibrium activity ratio of potassium (ARe k) ranged from 0.46?×?10?3 to 21.30?×?10?3 (mol L?1)0.5. The majority of the samples had less than 1?×?10?3 (mol L?1)0.5, indicating K depletion in these soils due to continuous K mining. ARe k was significantly and positively correlated with available forms of K, K saturation percentage, labile K (KL), and specific-site K (KX) and negatively correlated with free energy of exchange (–ΔG). The potential buffering capacity (PBC0 K) of K varied from 8.8 to 286.2 cmol kg?1/(mol L?1)0.5. PBC0 K was positively and significantly correlated with clay content. Sixty percent of the soils had ΔK0 values of less than 0.1 cmol kg?1. High KG (Gapon selectivity coefficent) indicated high affinity for K in these soils. Leaf K was positively and significantly correlated with ΔK0, KL, and KX and negatively correlated with –ΔG.  相似文献   

12.
In this paper,the nitrogen forms in newly-formed humic substances,including humic acid (HA),fulvic acid (FA) and humic acid in humin (HAI),were studied by using the ^15N CP-MAS NMR technique in combination with chemical approaches.Results show that the majority of nitrogen in HA,FA and HAI was in the amide form with some presented as aliphatic and/ or aromatic amines and some as pyrrole type nitrogen,although the contents of nonhydrolyzable nitrogen in them differed greatly from each other (15-55%).  相似文献   

13.
An assessment of the environmental quality of sediments at several locations of the Ría de Pontevedra (NW of Spain) was performed by integrating toxicity data obtained from multiespecies bioassays, chemical data from analysis of mussels and sediment, and physical–chemical parameters of the sampled sites. Subsequently, a toxicity identification evaluation (TIE) method intended for characterization and identification of the toxic agents was applied to the most polluted location by using the Paracentrotus lividus sea urchin bioassay. Both metals and organic compounds seem to be the causative agents of toxicity in elutriates of the studied sediment. Finally, multivariate statistics were applied for a better interpretation of results. A factor analysis was developed to establish the relationship among variables and to derive local sediment quality guidelines (SQG) by linking chemical contamination to biological effects. When multidimensional scaling and cluster analysis were performed to group the locations according to either the chemistry or toxicity data, P3-site was always clearly broken up the others. The different approaches all supported the same conclusion: site P3 can be considered highly contaminated by both trace metals and PAHs resulting in high toxicity for all the tested species.  相似文献   

14.
Plant availability of potassium (K) in soils is controlled by dynamic interactions among its different pools. Potassium quantity–intensity (Q/I) parameters were determined to relate them to bean plant indices in a pot experiment. The results showed that the activity ratio at equilibrium (ARk) ranged from 0.015 to 0.358 (mmol L?1)0.50, the potential buffering capacity (PBC) ranged from 7.54 to 26.32 mmol kg?1/(mmol L?1)0.50, the labile K (Δk°) ranged from 9.1 to 112.2 mg kg?1, and the K adsorbed at specific sites (Kx) ranged from 6.51 to 69.69 mg kg?1. The results of pot experiment showed that some K Q/I parameters were significantly correlated with some plant indices. Also, the correlation study showed that readily exchangeable K was significantly correlated with K Q/I parameters except Kx. The results of this research show that the K Q/I method can be used for estimating of soil K availability for bean.  相似文献   

15.
Denitrification losses measured by direct method (measuring the evolution of (N2 N2O)-^15N) were compared with the apparent denitrification losses (calculated from the difference between the total N loss and ammonia loss), for fertilizers applied to flooded soils.The direct measured denitrification losses from potassium nitrate were 23.0%,40.0%,and 63.1-79.7% of applied N in rice field,and in incubations of 7 cm deep layer of soil and 2 cm deep layer of soil,respectively;while the corresponding apparent denitrification losses were 96.0%,98.4%,and 97.7-97.9%,respectively.In field experiments with urea,the direct measured denitrification losses ranged from 0.1-1.8%,which were much less than the apparent denitrification losses (41.3-45.7%).Such discrepancies were primarily due to the entrapment of the gaseous products of denitrification in the soil as revealed by the facts:(1) stirring the floodwater and the surface soil markedly increased the fluxes of (N2_N2O)-^15N from urea or potassium nitrate applied to the flooded rice field,and (2) reducing the pressure in the headspace of the incubation bottle with the 7 cm soil layer during gas sampling decreased the discrepance between the direct measured and apparent denitrifecation losses from 58.4% to 21.2%.The advantage of reducing the pressure in the headspace is that there is minimal disturbance of the soil.Further testing of this technique in rice field is needed to determine its effectiveness in releasing the entrapped gaseous products of denitrification so that denitrification losses can be quantified directly.  相似文献   

16.
In a long-term fertilizer experiment at the Indian Agricultural Research Institute, New Delhi, with maize, wheat, and cowpea, various forms of potassium (K) and their contribution toward K uptake were found to be affected by fertilizer use and intensive cropping. The treatments included for the study were a control, 100% nitrogen (N), 100% N–phosphorus (P), 50% NPK, 100% NPK, 100% NPK + farmyard manure (FYM at 15 t ha?1 to maize only), and 150% NPK. The concentration of nonexchangeable K was greatest, followed by exchangeable K and water-soluble K. The study revealed no significant change in water-soluble K concentration in surface soil compared to N, NP, and control, indicating existence of an equilibrium between different K forms. Application of 100% NPK significantly increased water-soluble K concentration in surface soil compared to N, NP, and control treatments after maize, wheat, and cowpea. Application of NPK + FYM and 150% NPK resulted in greater quantities of all the K forms as compared to other treatments. Among the three forms, water-soluble K contributed predominantly to K uptake by maize and wheat; however, nonexchangeable K contributed significantly to K uptake by cowpea.  相似文献   

17.
Composting municipal wastewater sludge may generate composting wastewater (acid washer water and tunnel wastewater) with high ammonium–nitrogen (NH4–N) concentration; this kind of wastewater is usually generated in a rather small daily amount. A procedure of air stripping with catalytic oxidation was developed and tested with pilot-scale and full-scale units for synthetic disposal of the high NH4–N wastewaters from composting facilities. In air stripping, around 90% NH4–N removal efficiency was reliably achieved with a maximum of 98%. A model to describe the stripping process efficiency was constructed, which can be used for process optimization. After catalytic oxidation, the concentrations in the outlet gas were acceptable for NH3, NOX, NO2, and N2O, but the NH3 and N2O concentrations limited the feasible loading range. The treatment costs were estimated in detail. The results indicate that air stripping with the catalytic oxidation process can be applied for wastewater treatment in composting facilities.  相似文献   

18.
Potassium (K) fixation and release in soil are important factors in the long-term sustainability of a cropping system. Changes in K concentration and characteristics of K fixation and release in rhizosphere and nonrhizosphere soils in the rapeseed (Brassica napus L.)–rice (Oryza sativa L.) rotation were investigated using a rhizobox system. The concentrations of different forms of K in both rhizosphere and nonrhizosphere soils decreased with plants compared to without plants, regardless of K fertilizer application. Potassium uptake by crops mainly came from the rhizosphere soil. In the treatment without K fertilizer (–K), the main form of K supplied by the soil to the crops was 1.0 mol L?1 nitric acid (HNO3) nonextractable K, followed by nonexchangeable K, and then exchangeable K. In the treatment with K fertilizer (+K), the main K forms supplied by the soil to the crops were exchangeable K and nonexchangeable K. The amount and rate of K fixation after one cycle of the rapeseed–rice rotation was greater in rhizosphere soil than in nonrhizosphere soil. The amount and rate of K fixation of soil in the +K treatment were significantly less than in the –K treatment. The cumulative amounts of K released with 1.0 mol L?1 ammonium acetate (NH4OAc) and 1.0 mol L?1 HNO3 extraction increased with the increasing numbers of extractions, but the K-releasing power of soil by successive extraction decreased gradually and finally became almost constant. The release of K was less in rhizosphere soil than in nonrhizosphere soil. The release of K in the +K treatment was similar to that in the –K treatment in rhizosphere soil, but the K release in nonrhizosphere soil was greater with the +K than the –K treatment. Overall, the information obtained in this study will be helpful in formulating more precise K fertilizer recommendations for certain soils.  相似文献   

19.
Recent progresses in efficient management of nitrogen fertilizers for flooded rice in relation to nitrogen transformations in flooded soil were reviewed.Considerable progress has been achieved in the investigation on the mechanism of ammonia loss and the factors affecting it .However,little progress has been obtained in the investigations on nitrification-denitrification loss owing to the lack of method for estimating the fluxes of gaseous N products.Thus,so far the management practices developed or under investigation primarily for reducing ammonia loss are feasible or promising,while those for reducing nitrification-denitrification loss seem obscure,except the point deep placement. In addition,it was emphasized that the prediction of soil N supply and the recommendation of the optimal rate of N application based on it are only semi-quantitative.The priorities in research for improving the prediction are indicated.  相似文献   

20.
Bypass flow, the vertical flow of free water along the walls of macropores or preferential flow paths in the soil, can lead to movement of fertilizer nutrients beyond the reach of plants. Fertilizer type and the rate of application, as well as the amount, frequency, and intensity of rainfall, can influence the amount of fertilizer nitrogen (N) loss in leaching or bypass flow. The effect of fertilizer N form and rate of application on N recovery in bypass flow in a Kenyan Vertisol was determined. Calcium nitrate and ammonium sulfate, used to supply nitrate (NO3 ?)‐N and ammonium (NH4 +)‐N, respectively, were surface‐broadcast to 40‐cm‐long undisturbed soil columns at equivalent rates of 50, 100, and 200 kg N ha?1. Using a rainfall simulator, two rainfall events (30 mm of water applied in 1 h) were applied to the soil columns, one before and the other after fertilizer application. Total N, NO3 ?‐N, and NH4 +‐N concentrations in the bypass flow were determined after the second rainfall event. The application of NH4 +‐N, regardless of the rate, had no effect on N recovery in the bypass flow. When nitrate N was applied, the amount of fertilizer N recovered in the bypass flow significantly increased with the rate of NO3 ?‐N application. Of the total N in the bypass flow, 24 to 48% was derived from the soil, the bulk of which was organic N. It is concluded that following the application of NO3 ?‐N, bypass flow is an important avenue of loss of both fertilizer and soil N from Vertisols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号