首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Abstract

Phosphorus (P) runoff from poultry litter applied to fields can adversely impact water quality. The majority of P in runoff from poultry litter is soluble, so decreasing the solubility of P could lessen the impact of poultry litter on water quality. The objective of this study was to determine long‐term P solubility in soils receiving poultry litter treated with aluminum (Al), calcium (Ca), and iron (Fe) amendments at various soil pHs. Soil pH was adjusted to 4.0, 5.0, 6.0, 7.0, and 8.0 using elemental sulfur (S) or CaCO3 with some soil left at its native pH. The pH‐adjusted soil was then incubated with either no litter (control), litter alone (litter control), or litter amended with alum, A12(SO4)3.16H2O, (100 or 200 g/kg), Ca(OH)2 (25 or 50 g/kg), or FeSO4 .7H2O (100 or 200 g/kg). The soil was then allowed to equilibrate in the dark at room temperature for 0, 7, 49, 98, and 294 days. After equilibration, soils were extracted with deionized water and soluble reactive P levels were determined. Water‐soluble P levels decreased with time in all treatments, including the control and litter control treatments. Soil pH also affected soluble reactive P levels, with the lowest levels generally observed at pH 8.0. Addition of both unamended and chemically‐amended litter to soil significantly increased P concentrations at all combinations of pH and sampling time. Addition of chemically‐amended litter to soil significantly reduced soluble reactive P compared to unamended litter. With all treatments, an apparent equilibrium was reached at 98 d after treatment. Amendment of litter with either FeSO4 .7H2O or alum resulted in the lowest soluble reactive P levels after 294 days. Use of chemical amendments to limit P solubility has potential and should be pursued as a means of reducing eutrophication of sensitive surface waters where poultry litter is applied as a fertilizer.  相似文献   

2.
Abstract

Long‐term potassium (K) fertilization practices are likely to affect the K content of soils. This study assessed the effect of long‐term K fertilization strategies for corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] rotations on extractable K in the soil profile of a major Iowa soil type at two locations. The soil type was a Webster fine‐loamy, mixed, mesic, Typic Haplaquoll at both sites. Soil samples were collected from the 0–15, 15–30, 30–60, and 60–90 cm depths after 17 years (Site 1) or 19 years (Site 2) of K fertilization with combinations of two initial rates and four annual rates. The initial rates were 0 and 1,344 or 1,120 kg K ha‐1 at Site 1 and 2, respectively, and the annual rates ranged from 0 to 100 kg K ha‐1. Samples were analyzed for ammonium acetate‐extractable K (STK) and nitric acid (HNO3)‐extractable nonexchangeable K (HNO3‐K). Concentrations of STK and HNO3‐K in the top 0–15 cm soil layer at the two sites were higher for the high initial K rates and were linearly related with the annual K rate. Results for the subsoil layers varied between sites and extractants. At Site 1, annual rates of 30 kg K ha‐1 or higher resulted in a relative accumulation of HNO3‐K in the 15–30 cm layer. At Site 2, these rates resulted in relative accumulations of STK in the 30–60 cm layer and of HNO3‐K in the 60–90 cm layer, but with relative depletions of STK in the 15–30 and 60–90 cm layers. Thus, use of one extractant may not always be sufficient to evaluate cropping and fertilization effects on subsoil K. Long‐term K fertilization of corn and soybean rotations affected extractable K of both the topsoil and subsoil. The effects on subsoil K, however, were smaller compared with effects on the topsoil and varied markedly between sites, subsoil layers, and extractants.  相似文献   

3.
The oldest still existing long‐term field experiments in Czech Republic were founded in 1955. In Prague Ruzyné, there are five of nine experiments founded by ?karda. Data of two of these experiments (Block III and Block B) were used to evaluate the carbon and nitrogen cycles in time period 1966–1997. These two experiments have a similar design. They differ in the crop rotation. Four variants of organic and mineral fertilisation, receiving similar doses of fertilisers, have been selected. The same was calculated for the same time period for a mini‐plot bare fallow field experiment founded in 1958 by Novák.

The results of these experiments conducted in one locality (the same soil and climatic conditions) show the effect of the cultivated crops on the carbon and nitrogen cycles (comparing bare fallow experiment with the cropped ones), the effect of organic and mineral fertilisation (among all experiments), and the effect of crop rotation (comparing Block III to Block B) on these cycles.  相似文献   

4.
Abstract

Total sulphur and extractable sulphate were determined in plant materials by inductively‐coupled plasma emission spectrometry. For total sulphur, plant material was digested in concentrated nitric acid only. For the sulphate determination, the plant material was extracted with water, sulphate was precipitated as barium sulphate, washed, and redissolved in (NH4)4‐EDTA. In the determination of sulphur no spectral interferences were observed, when using the 182.04 nm emission line. The data for total sulphur compared well with a set of certified reference plant samples. For extractable sulphate no such certified plant material is available, but it was established that the proposed procedure did not lead to losses nor interferences.  相似文献   

5.
Abstract

Chemical fractions of copper (Cu) and zinc (Zn) in the organic‐rich particles collected from filtered aqueous extracts (<20 μm) of an acid soil were determined. A sequential extraction procedure was used to partition the particulate Cu and Zn into four operationally defined chemical fractions: adsorbed (ADS), iron (Fe) and manganese (Mn) oxides bound (FeMnOX), organic matter bound (OM) and residual (RESD). Total extractable concentrations of Cu and Zn in the fine particles were higher than their total concentrations in the original bulk soil. The concentration of particulate Cu was usually much higher than that of particulate Zn. Addition of lime stabilized sewage sludge cake and/or inorganic metal salts markedly increased the concentrations of particulate Cu and Zn in aqueous extracts, especially from limed soil. The proportional distributions of particulate Cu and Zn were quite similar. The two particulate metals were present predominantly in the ADS and FeMnOX fractions, with less (about 20%) in the OM and RESD fractions. Some of the ADS metal fraction was associated with dissolved organic substances. The concentrations of particulate Cu and Zn in the various extractable fractions were significantly affected by the application of lime, lime stabilized sewage sludge cake, or inorganic metal salts.  相似文献   

6.
The effect of prolonged sulfur (S) deficiency on photosynthesis and S‐containing compounds in leaves of rapeseed (Brassica napus L.) plants, grown in nutrient solution, was studied under greenhouse conditions. The rate of photosynthetic activity and stomatal conductance of water and CO2 in treated plants decreased significantly after 3 months of treatment. The total chlorophyll content decreased after one month of S deprivation, after which it remained constant. The total S. content and both the water‐soluble and non‐protein soluble S fractions in the leaves showed a marked decrease. Whereas, the total protein soluble S remained unaffected during the period of observation. In the treated plants, the content of two major S compounds, e.g., cysteine and glutathione, were as a result of deprivation, although in the control it showed a trend to increase. Sulfur deficiency also decreased appreciably the activity of ATP sulfurylase. After the three‐month period of S deprivation, this enzymatic activity was about four times lower than that in the control plants. The data reported in this paper suggested that plants grown under S deficiency were capable of adjusting their S metabolism to maintain a sufficient protein and glutathione synthesis by lowering their photosynthetic activity.  相似文献   

7.
Abstract

To examine the distribution of DTPA‐extractable Fe, Zn, and Cu in clay, silt, and sand fractions; surface soils were collected from cultivated fields of North Dakota, South Dakota, West Virginia, Iowa, Ohio, and Illinois. Clay, silt, and sand fractions were separated after sonic dispersion of soil water suspension and analyzed for DTPA‐extractable Fe, Zn, and Cu. In general, clay had the highest and sand the lowest amount of DTPA‐extractable metals. Consequently, clay had the highest and sand the lowest intensity and capacity factors for these metals since DTPA micronutrient test measures both these factors.  相似文献   

8.
Abstract

A long‐term (1968–1987) field study using corn‐soybean in rotation was conducted to compare the effect of rock phosphate (RP) and superphosphate (SP) at two lime levels on crop yield, soil available phosphorus (P) as Bray P‐1 (0.025M HCl + 0.03M NH4F) and Bray P‐2 (0.1M HCl + 0.03M NH4F) tests, and on the relationship between crop yield and available P tests. Treatments included a control, application of RP and SP ranging from 12 to 96 kg P2O5 ha‐1 yr‐1, and combinations of RP with SP or sulphur at various rates. The RP was applied once in 1968 at 8 times the annual rate while SP was applied annually until 1985. Corn and soybean yields increased with P application, more with SP than with RP. Bray P‐l and Bray P‐2 increased linearly with the amount of P applied as SP or RP. A significant correlation (r > 0.64) was found between corn yield and Bray P‐2 at low lime level with both P sources. In contrast, a poor correlation (r < 0.50) was found between soybean yield and soil P tests. Both RP and SP were effective sources of P fertilizers for corn on soils treated with a small amount of lime compared with a large amount of lime. Under low lime the Bray P‐2 accounted for 41% and 66% variability in com yield with applied RP and SP, respectively. On the other hand, Bray P‐1 was only of value when SP was the source of P.  相似文献   

9.
Exposing 12‐day‐old soybean plants to 0.2 ppm nitrogen dioxide (NO2) for four weeks increased the nitrite concentration and acidity, and decreased the Leghemoglobin (LHb) concentration and the nitrogenase activity of root nodules. The supply of 1 mol.m‐3 nitrate to the roots intensified the nitrite accumulation, decreased the acidity of the nodules, and alleviated the inhibition of nitrogenase activity by NO2 fumigation. These results suggested that the inhibition of nitrogen (N2) fixation by N fertilizer supply might relate to the acid‐alkali balance in nodules.  相似文献   

10.
Abstract

A field experiment was conducted on a Thin Black Chemozemic soil at Crossfield in south‐central Alberta to determine the effect of long‐term application of ammonium nitrate on dry matter yield (DMY), protein yield (PY), protein concentration, N use efficiency and recovery of N applied to bromegrass (Bromus inermis Leyss.) grown for hay. The N fertilizer was applied at 0, 56, 112, 168, 224, 280, and 336 kg N/ha in early spring of every year from 1968 to 1986. The DMY increased with applied N achieving a maximum at 224 kg N/ha, though the rate of increase in DMY from N fertilization was greatest with the first two increments applied (i.e. 56 and 112 kg N/ha). Protein yield and protein concentration maximized at 336 kg N/ha. The DMY was greater with a single‐cut system than with a double‐cut system. The DMY varied from year to year, but it was not closely related to precipitation received during the April to August period (R2 = 0.37). However, in some years low DMYs were associated with low precipitation, or a lack of timeliness of rainfall, or a combination of both. The N use efficiency and % N recovery in bromegrass decreased with increasing N rate. The maximum DMY calculated from quadratic regressions ranged from 3.16 t/ha to 7.91 t/ha, and maximum N rate ranged from 205 to 258 kg N/ha. In summary, DMY, PY, and protein concentration increased, and N use efficiency and % N recovery decreased with increasing N rate in this 19‐year study.  相似文献   

11.
Five field experiments are described which measured the effect of three sources of nitrogen (N) fertilizer, applied at 45 kg N/ha, on the incidence of take‐all and grain yield of wheat. The N fertilizers were ammonium sulphate, ammonium chloride, and sodium nitrate. Compared with the Nil N treatment, ammonium‐nitrogen fertilizer, either as ammonium sulphate (ASdr) or ammonium chloride (ACdr) drilled with the seed, lowered the severity of take‐all. Sodium nitrate topdressed (SNtd) to the soil surface reduced the severity of take‐all in three of five experiments, while ammonium sulphate topdressed (Astd) reduced the severity in four of the five experiments. Ammonium sulphate and ammonium chloride drilled with the seed were equally effective in reducing the severity of take‐all in three of the five experiments. However, ACdr was more effective than ASdr in reducing the severity of take‐all in one experiment whereas ASdr was more effective than ACdr in another experiment. In these two experiments (1 and 5), the effects of the reduction in take‐all severity between the ASdr and ACdr treatments did not affect grain yield. The results suggest that grain yield losses from take‐all are most severe where wheat plants are deficient in N. Chloride containing fertilizers are unlikely to control take‐all disease of wheat on soils of southwestern Australia.  相似文献   

12.
Five field experiments measured the effect of three sources of nitrogen (N) fertilizer, applied at 45 kg N/ha, on the incidence of take‐all and grain yield of wheat. The N fertilizers were ammonium sulphate, ammonium chloride and sodium nitrate. Compared with the nil N treatment, ammonium nitrogen fertilizer, either as ammonium sulphate (ASdr) or ammonium chloride (ACdr) drilled with the seed, lowered the severity of take‐all. Sodium nitrate topdressed (SNtd) to the soil surface reduced the severity of take‐all in three of the five experiments, while ammonium sulphate topdressed (AStd) reduced the severity in four experiments. Ammonium sulphate and ammonium chloride drilled with the seed were equally effective in reducing the severity of take‐all in three of the five experiments. However, ACdr was more effective than ASdr in reducing the severity of take‐all in one experiment, whereas ASdr was more effective than ACdr in another experiment. In experiments 1 and 5, the reduction in take‐all severity between the ASdr and ACdr treatments did not affect grain yield. Results suggested that grain yield losses from take‐all are most severe where wheat plants are deficient in N. Fertilizers containing chloride are unlikely to control take‐all disease of wheat on soils of southwestern Australia.  相似文献   

13.
Abstract

The bioavailability and toxicity of metals in soils to plants, hence to animals and human beings through the food chain, and their mobility in the ecosystems highly depends upon their forms, pathways and kinetic rates of transformation in soil. Long‐term transformation pathways, kinetics and lability of cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), zinc (Zn), manganese (Mn), and iron (Fe) in two arid‐zone soils were studied under saturated water regime (simulating the moisture regime in the soil during the raining season and shortly after irrigation) by using operationally selective sequential dissolution techniques. Iron, Mn, Co, vanadium (V), Ni, Zn, and Cu were transformed from the non‐available form (reducible oxide fraction) and potential available form (easily reducible oxide fraction) into the available and readily available form (exchangeable and carbonate fractions), thereby increasing their mobility, availability or toxicity. However, Cd was transformed from the readily available form into the potentially available form, thus decreasing its lability. The fast transformations of all metals occurred in the first month, followed by a much slower process.  相似文献   

14.
Three‐week‐old nodulated faba bean plants were subjected to two levels of water stress (0.5 and 0.25 field capacity; soil water content of 20 and 10%) for five weeks. Half of the stressed plants was treated with potassium chloride (KC1) at 10 (K1) and 150 mg (K2)/kg soil at the beginning of water deficit. Nodulation was examined and some nodule activities were assayed. Nodulation, nitrogenase activity, total nitrogen (N), and dry matter yield were significantly decreased by increasing stress but were significantly higher with the two levels of potassium (K) supply. Leghaemoglobin and protein contents of cytosol as well as nodule protease and invertase were severely depressed by drought stress. Soluble carbohydrate contents of nodules, however, was significantly increased. Protein and leghaemoglobin contents and enzyme activities were greater with K fertilization but less soluble carbohydrate was accumulated. The results indicate that K supply, particularly at the 150 mg/kg soil level, increased faba bean resistance to water stress.  相似文献   

15.
Abstract

The objectives of this work were to quantify the total and available copper (Cu) and zinc (Zn) contents in soils which have been used for intensive agricultural production and to investigate the influence of the soil's properties on the absorption and migration of these metals. Total and available Zn and Cu contents in the topsoil and their variation with depth in Mollisols from the Bahía Blanca (Argentina) horticultural belt have been studied. Total contents of Cu and Zn were extracted by means of acid digestion in Teflon bombs placed in a microwave oven. The available Cu and Zn contents were extracted using the DTPA method and the analysis of Cu and Zn was carried out by atomic absorption spectrophotometry. High contents of Cu and Zn were found in the surface layers of all the plots studied and lower contents were noted in plots recently used for horticulture. The lowest contents were found in control farms. The results showed that 70% of the Zn in the surface layers were found in unavailable form, whereas almost 50% of the Cu was in available form. No relationship was noted between each kind of cultivation and Cu content. Most of the Zn in the different plots was adsorbed or complexed by organic ligands and clay. The variation of Cu and Zn content with the depth indicated a greater mobility of Cu. Most of the Zn was detected in the surface soil, whereas no differences were noted in Cu content between surface and subsoil. The results obtained confirmed the anthropic origin of these metals in the cultivated plots. The correlation found between the different forms of Zn and Cu as well as between their total and available contents suggested that these metals have been applied together via agrochemicals and waste.  相似文献   

16.
Abstract

Plants commonly suffer from phosphorus (P) deficiency in calcareous soils. Plant responses to P application on such soils mostly show poor correlation with their soil test P values. Experiments were conducted on 24 different soil samples under laboratory and greenhouse conditions to illustrate the relationship of various inorganic P fractions in different calcareous soils with P uptake by plants, P extraction by iron‐impregnated filter paper, and P soil test values estimated by 0.5M NaHCO3 and ammonium bicarbonate diethylene triamine penta‐acetic acid. Total P in the 24 soils ranged from 652 to 1245 mgkg?1 with a mean of 922 mgkg?1. A major proportion (98%) of inorganic P was in HCl‐P (Ca‐bound) form. The HCl‐P (Ca‐bound) ranged from 296 to 729 with a mean of 480 mgkg?1. The iron (Fe) and aluminum (Al)‐P (NaOH‐P) ranged from 0.92 to 12 mgkg?1 with a mean of 1.57 mgkg?1. The Fe‐P (citrate‐dithionite bicarbonate) ranged from 0.22 to 4.40 mgkg?1 with a mean of 5.99 mgkg?1. Data regarding P release from the soil matrix obtained by desorption with iron‐impregnated filter paper was best described by the Elovich equation. Range of slope and intercept values were found to be 5.48 to 17.3 and 17.23 to 56.27 mgkg?1, respectively. Intercept values calculated for the Elovich equation may be related to labile P initially available for plant uptake in soils. Intercept values calculated for the Elovich equation correlated (r=0.77) significantly (p<0.01) with NaHCO3 extractable (Olsen‐P)P. Significant correlation (p<0.05) of intercept with CDB‐P (r=0.44) and of slope with HCl‐P (0.43) suggested that the initially available P, regulated through CDB‐P, is replenished by HCl‐P [calcium (Ca) bound].  相似文献   

17.
Solution pH, temperature, nitrate (NO3 )/yammonium (NH4 +) ratios, and inhibitors effects on the NO3 and NH4 + uptake rates of coffee (Coffea arabica L.) roots were investigated in short‐term solution culture. At intermediate pH values (4.25 to 5.75) typical of coffee soils, NH4 + and NO3 uptake rates were similar and nearly independent of pH. Nitrate uptake varied more with temperature than did ammonium. Nitrate uptake increased from 0.05 to 1.01 μmol g‐1 FWh‐1 between 4 and 16°C, and increased three‐fold between 16 to 22°C. Between 4 to 22°C, NH4 + uptake rate increased more gradually from 1.00 to 3.25 μmol g‐1 FW h‐1. In the 22–40°C temperature range, NH4 + and NO3 uptake rates were similar (averaging 3.65 and 3.56 umol g‐1 FW h‐1, respectively). At concentrations ranging from 0.5 to 3 mM, NO3 did not influence NH4 + uptake rate. However, NO3 uptake was significantly reduced when NH4 + was present at 3 mM concentration. Most importantly, total uptake (NO3 +NH4 +) at any NO3 /NH4 + ratio was higher than that of plants fed solely with either NH4 + or NO4 . Anaerobic conditions reduced NO3 and NH4 + uptake rate by 50 and 30%, respectively, whereas dinitrophenol almost completely inhibited both NH4 + and NO3 uptake. These results suggest that Arabica coffee is well adapted to acidic soil conditions and can utilize the seasonally prevalent forms of inorganic N. These observations can help optimizing coffee N nutrition by recommending cultural practices maintaining roots in the temperature range optimum for both NH4 + and NO3 uptake, and by advising N fertilization resulting in a balanced soil inorganic N availability.  相似文献   

18.
Abstract

Increasing demand for soil analysis prompted by environmental and economic factors has intensified the need for an inexpensive, fast, convenient and precise extraction. Current soil analysis procedures require several extractants which limit their use in many small commercial and residential applications. This paper reports the results of tests conducted with an innovative hot water extraction method to meet these needs in the soils of the arid Western United States. Hot water under pressure generated by commonly available espresso makers was used, with an appropriate proper soil/water ratio, to extract nitrate, potassium (K), sulfate, and phosphorus (P) in as many as 38 soils. The same extract was also used to measure pH. There were high and significant correlations when comparing standard soil analysis extraction methods and the hot water extraction for nitrate, sulfate, K, and P [r=0.99, 0.92, 0.85, and 0.60, respectively (p=0.001)]. The time of extraction varied with each soil, ranging from 0.3 minutes with a sandy soil to 4.5 minutes for a clay soil, and averaged 1.4 minutes. This extraction procedure coupled with available analytical equipment shows promise as an acceptable process for measuring nitrate, K, sulfate, P, and pH in soils.  相似文献   

19.
Abstract

This study was undertaken to determine the effect of previous water and acid‐washing soil treatment on soil pH, Delta pH and Zero Point of Charge of soil surface samples of three Hawaii soils, Molokai (Typic Torrox), Wahiawa (Tropeptic Eutrustox), and Hilo (Typic Hydrandept).

The acid‐washing treatment lowered the soil pH and shifted the Zero Point of Charge to lower pH values. The effect was greater in the Wahiawa and Molokai soils that are dominated by oxidic materials. Whereas the acid‐washing treatment did not change the magnitude of the negative charge in the Wahiawa and Molokai soils, it overestimated the magnitude of the positive charge in the Hilo soil. This phenomena probably was enhanced by the dominance of variable charge clay minerals in the Hilo soil. The results indicated that the acid‐washing treatment changed the nature of the charge characteristics of the soils, hence it should not be recommended in the characterization of the net charge in variable charge soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号