首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Switchgrass and other perennial grasses have been promoted as biomass crops for production of renewable fuels. The objective of this study was to evaluate the effect of biomass removal on soil biogeochemical processes. A 3-year field study consisting of three levels of net primary productivity (NPP; low, medium, and high growing season precipitation) and two biomass crops (winter wheat and switchgrass) was conducted near Pendleton, Oregon. Switchgrass increased soil carbon (C)–nitrogen (N) ratio, but the effect varied with net primary productivity (NPP) and soil depth. In situ soil respiration (carbon dioxide; CO2) rate from switchgrass increased with NPP level but switchgrass had greater cumulative flux than wheat in medium and low NPP. Nitrogen mineralization and microbial biomass carbon were significantly greater under switchgrass than under wheat at high and medium NPP. Introduction of switchgrass initiates major changes in soil nutrient dynamics through organic-matter input.  相似文献   

2.
The application of animal manure as a source of plant nutrients requires the determination of the amount and pattern of nutrient mineralization from manure.A laboratory incubation study was conducted to investigate the influence of lignite amendment and lignite type on carbon(C) and nitrogen(N)mineralization in raw(feedstock) and composted cattle manure following application to soil at 30 and 60 t ha-1.The mineralization of C and N was determined by measuring changes in CO2 evolution ...  相似文献   

3.
Biochar amendments to soils may alter soil function and fertility in various ways, including through induced changes in the microbial community. We assessed microbial activity and community composition of two distinct clayey soil types, an Aridisol from Colorado (CO) in the U.S. Central Great Plains, and an Alfisol from Virginia (VA) in the southeastern US following the application of switchgrass (Panicum virgatum) biochar. The switchgrass biochar was applied at four levels, 0%, 2.5%, 5%, and 10%, approximately equivalent to biochar additions of 0, 25, 50, and 100 t ha-1, respectively, to the soils grown with wheat (Triticum aestivum) in an eight-week growth chamber experiment. We measured wheat shoot biomass and nitrogen (N) content and soil nutrient availability and N mineralization rates, and characterized the microbial fatty acid methyl ester (FAME) profiles of the soils. Net N mineralization rates decreased in both soils in proportion to an increase in biochar levels, but the effect was more marked in the VA soil, where net N mineralization decreased from -2.1 to -38.4 mg kg-1. The 10% biochar addition increased soil pH, electrical conductivity, Mehlich- and bicarbonate-extractable phosphorus (P), and extractable potassium (K) in both soil types. The wheat shoot biomass decreased from 17.7 to 9.1 g with incremental additions of biochar in the CO soil, but no difference was noted in plants grown in the VA soil. The FAME recovery assay indicated that the switchgrass biochar addition could introduce artifacts in analysis, so the results needed to be interpreted with caution. Non-corrected total FAME concentrations indicated a decline by 45% and 34% with 10% biochar addition in the CO and VA soils, respectively, though these differences became nonsignificant when the extraction efficiency correction factor was applied. A significant decline in the fungi:bacteria ratio was still evident upon correction in the CO soil with biochar. Switchgrass biochar had the potential to cause short-term negative impacts on plant biomass and alter soil microbial community structure unless measures were taken to add supplemental N and labile carbon (C).  相似文献   

4.
Predicting nitrogen (N) and sulfur (S) mineralization of crop residues from the preceding crop might be a useful tool for forecasting soil N and S availability. Two soils from eastern North Dakota and three crop residues – corn, spring wheat, and soybean were used in an 8-week incubation study to estimate N and S mineralization from crop residues. The cumulative N and S mineralized were fit to a first-order kinetic model. Cumulative N mineralized ranged between 0.34 and 2.15 mg kg?1 and 0.45 to 3.41 mg kg?1 for the Glyndon and Fargo soils, respectively. Un-amended soils showed higher N mineralization than residue treated soils. For S, the highest mineralization occurred in un-amended Glyndon soil and in spring wheat-amended Fargo soil. This study indicates that crop residue additions can have a negative impact on plant available nutrients due to immobilization of N and S during the time when crops need the nutrients most.  相似文献   

5.
ABSTRACT

The interactive effect of biochar, cattle manure and nitrogen (N) fertilizer on the dynamics of carbon (C) mineralization and stabilization was investigated in a sandy soil amended with three sole biochar (0, 20 or 40 t ha?1) or manure (0, 13 or 26 t ha?1) and four combined biochar-manure levels (20 or 40 t ha?1 biochar plus 13 or 26 t ha?1 manure) with or without N fertilizer (0 or 90 kg ha?1) and CO2-C evolution measured over 54-d incubation period. Biochar application, solely or combined with manure resulted in lower applied C mineralized (ACM), indicating C sequestration in the soils. Negative attributable effect (AE) of co-application of biochar and manure on C mineralization was observed relative to the sole treatments. Both ACM and AE were negatively correlated with C/N ratio and mineral N content of the soil-mixtures (r ≥ – 0.573; p ≤ 0.01), indicating microbial N limitation. The double first-order exponential model described CO2-C efflux very well and indicated that ≥94% of C applied was apportioned to stable C pools with slower mineralization rate constant and longer half-life. Cumulative C mineralized and modeled C pools were positively correlated with each other (r ≥ 0.853; p ≤ 0.001) and with readily oxidizable C of soil-amendment mixtures (r ≥ 0.861; p ≤ 0.001). The results suggested that co-application of biochar and manure can promote initial rapid mineralization to release plant nutrients but sequester larger amounts of applied C in refractive C pool, resulting in larger C sequestration in sandy soils.  相似文献   

6.
长期施肥潮土在玉米季施肥初期的有机碳矿化过程研究   总被引:9,自引:2,他引:7  
陈吉  赵炳梓  张佳宝  沈林林  张辉  钦绳武 《土壤》2009,41(5):719-725
以黄淮海平原长期定位试验地2007年玉米播种期土壤为研究对象,通过室内37天的培养实验并选择4个应用比较广泛的方程对土壤有机碳矿化过程进行拟合,其目的主要是为了比较研究长期不同施肥土壤在玉米季施肥初期有机碳矿化过程及主要矿化参数的差异,并评估矿化参数和主要土壤性质之间的相关关系.结果表明,37天培养期内各施肥处理土壤CO2-C累积释放量与土壤有机碳、全氮含量和微生物活度均呈显著正相关,大小依次为OM>1/2OM+1/2NPK>NPK>NP>PK>CK>NK,有机碳矿化过程均呈曲线形式,与Jones(1984)改进的一级动力学方程拟合效果最好.拟合所得土壤潜在可矿化有机碳量(C0)、易矿化有机碳量(C1)和初始潜在矿化速率(C0k)均表现出有机肥处理高于化肥处理,施肥处理高于不施肥处理(NK处理除外),与土壤有机碳、全氮和土壤微生物活度均呈显著正相关;有机碳矿化速率(k)和土壤潜在可矿化有机碳占土壤总有机碳的比例在处理间差异均不显著,除k与有机碳呈显著负相关外,其他与土壤性质均无显著相关性.因此,我们推测有机肥和化肥的平衡施用均能显著增强土壤有机碳的矿化作用,有利于土壤无机养分的释放,同时使部分有机碳在土壤中积累.  相似文献   

7.
A 4-month aerobic incubation experiment was conducted measuring carbon and nitrogen mineralization from white clover in soil at 25°C and optimal moisture conditions. Cumulative carbon mineralization from clover followed a double exponential function and was similar for tops and roots amounting to 77.5% of non-lignin carbon initially present. Rate constants for the rapidly and slowly mineralized carbon fractions amounted to 0.21 d?1 and 0.02 d?1 respectively and were identical for tops and roots. Cumulative mineralization of nitrogen followed single first-order kinetics and was lower for older tops (31%) than younger ones (42%) and roots mineralized least relative amounts (28%). Rate constants of nitrogen mineralization from tops of different ages were fairly similar (0.058 d?1) whereas those for roots were lower (0.035 d?1). A simple predictive measure for potential N mineralization of plant material was proposed assuming a C/N ratio of 8 in the stabilized material and a constant fraction of the non-lignin carbon to be mineralized.  相似文献   

8.
The formation and fate of soluble nitrogen (N) forms and their response to organic-matter mineralization is not obvious yet, and results are often inconsistent despite intensive research. The available N supply of the soil is very important for plant nutrition and environmentally sound N fertilization. The determination of actual N supply is very important for sustainable agriculture in Hungary, especially in acidic sandy soils, which are very sensitive to environmental effects and inefficient human treatment. Therefore, the aim of this article is to provide further information about N mineralization processes and organic–mineral interactions of soil. To establish the potentially mineralized N content and available N supply of soil, a biological (incubation) method was carried out an acidic brown forest soil of the Nyírlugos long-term field experiment in Hungary. The incubation was carried out in the laboratory with differently treated soils of the long-term field experiment to investigate the effect of treatments on N mineralization processes of soil. The incubation period was 16 weeks long. The pH and the easily soluble mineralized and organic N fractions of soil were measured periodically from leached solution (0.01 M calcium chloride; CaCl2). The leaching process was repeated after 2, 3, 5, 7, 9, 12, and 16 weeks. The potentially mineralized N content of soil and the actual rate of N mineralization were calculated from periodically collected data. The results of the incubation method can be summarized as follows: the kinetics of incubation of 0.01 M CaCl2 soluble organic N is similar to mineral N; 0.01 M CaCl2–soluble N fractions were mainly in inorganic forms in the incubation period but the content of the organic form was significant too; and the mineralization rate is greater where the microbiological activity of the soil is expressed and the soil properties are more favored as a result of applied treatments.  相似文献   

9.
Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon turnover (measured as changes in the pools during a growing-season-long field incubation of soil cores in situ). The mainly N limited bacterial communities had shifted slightly towards limitation by C and P in response to seven growing seasons of warming. This and the significantly increased bacterial growth rate under warming may partly explain the observed higher C loss from the warmed soil. This is furthermore consistent with the less dramatic increase in the contents of dissolved organic carbon (DOC) and dissolved organic N (DON) in the warmed soil than in the soil from ambient temperature during the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate warming and litter addition treatments, while gross mineralized N was immobilized in the biomass of microbes and plants transplanted into the incubates soil cores, but without any significant effect of the treatments. The effects of warming plus litter addition on bacterial growth rates and of warming on C and N transformations during field incubation suggest that microbial activity is an important control on the carbon balance of arctic soils under climate change.  相似文献   

10.
Fu  HaiMei  Duan  YingHua  Zhu  Ping  Gao  HongJun  Xu  MingGang  Yang  XiaoMei 《Journal of Soils and Sediments》2021,21(2):905-913
Purpose

Understanding the soil nitrogen (N) mineralization potential (N0) and crop N availability during the growing season is essential for improving nitrogen use efficiency (NUE) and preventing over-fertilization, which lead to negative environmental impacts.

Methods

Five black soils with different levels of fertility were selected in Northeast China. The N0 and kinetics of these soils were estimated through laboratory experiments at different incubation temperatures (15, 25, and 35 °C). N mineralization dynamics were simulated using field soil temperature according to the incubation results. Moreover, the N uptake dynamics of maize were simulated according to the literature.

Results

Compared with the very low-fertility soils, the cumulative mineralized nitrogen increased under all incubation temperatures (15, 25, and 35 °C), by 48–136%, 8–61%, and 24–59%, respectively, in the medium- and high-fertility soils. The highest N0 values (96.90, 115.31, and 121.33 mg/kg at the three different temperatures) were recorded in the very high-fertility soils. The soil N mineralization dynamics and N uptake of maize in the growing season were highly consistent over time, although the soil N supply could not meet the maize growth requirements. The higher the soil fertility, the lower the N fertilizer requirement.

Conclusions

Different fertilizer strategies were developed based on the cumulative mineralized N, N uptake by maize, and NUE in soils with different fertility levels. We suggested a reduction of 50–65 kg N/ha in N fertilizer in the two highest fertility soils. This study provided basic data to reduce chemical N fertilizer to improve NUE and reduce negative environmental impacts.

  相似文献   

11.
Blood meal is an organic nitrogen (N) fertilizer containing about 10–13% organic N. The fertilizer is mainly composed of hemoglobin which is characterized by the presence of a prosthetic group containing iron (Fe). Knowledge about the influence of blood meal on soil organic matter and soil fertility is now limited. In this work, blood meal was incubated in the soil for one year and the evolution of the organic matter was followed at time intervals by use of isoelectric focusing (IEF) and humification parameters. The mineralization of the total N and the availability of some mineral nutrients (Fe in particular) were also followed. The results show that only a part (about 75%) of the organic carbon (C) and of the organic N mineralized and that the remaining C was transformed into humified compounds. The availability of the Fe increased during the incubation, probably due to the progressive degradation of the prosthetic group and the successive chelation of the Fe from the humic substances.  相似文献   

12.
Abstract

The mineralization of nutrients from deoiled neem seed (neem seed cake), the residue left after oil extraction, was examined in a typical savanna soil with a view to determining its potential for fertility improvement. The neem seed cake (NSC) application rates were 0, 2.5, and 5.0 g kg?1 soil (0, 5, and 10 tons ha?1). The concentrations of ammonium‐nitrogen (NH4‐N) and nitrate (NO3)‐N mineralized from the neem‐amended soil were two to three times greater than the control. Similarly, exchangeable potassium (K), magnesium (Mg), and cation exchange capacity were significantly greater than the control. The neem‐amended soil maintained organic carbon (OC) at the pre‐incubation level, whereas OC in the control soil declined to significantly less than the pre‐incubation concentration. The electrolytic conductivity of the soil saturation extract with neem application was 8–10 times greater than the control soil. However, the NSC increased exchange acidity markedly and decreased the soil pH significantly. Thus, the benefits of NSC in increasing the concentrations of N, K, and Mg and maintaining OC of the soil must be weighed against the consequences of soil acidity, though it is unlikely that NSC can acidify the soil to the same extent under field conditions as it did in this closed‐system incubation study.  相似文献   

13.
长期有机培肥模式下黑土碳与氮变化及氮素矿化特征   总被引:21,自引:3,他引:18  
土壤氮的矿化是土壤氮素肥力的重要指标,是影响作物产量至关重要的因素。本研究依托黑土长期定位试验,通过取样分析研究了32 a不同培肥模式下黑土碳、 氮及主要活性组分的变化,采用淹水培养法研究了不同施肥模式下黑土氮素的矿化特征。结果表明,施肥显著提高黑土可溶性碳(DOC)、 氮(DON)的含量及其比例。在氮、 磷、 钾化肥的基础上配施有机肥,显著降低了土壤微生物量氮(SMBN)占土壤总氮的比例,提高了土壤微生物量的C/N比值(SMBC/SMBN),促进了土壤氮的生物固持。施肥32 a后,单施常量和高量有机肥处理的土壤氮的矿化量(Nt)显著提高,分别相当于不施肥的8.2倍和10.2倍,而单施氮或氮磷钾化肥对黑土氮素矿化量无明显影响。施用有机肥显著提高了土壤氮素的矿化率(Nt/TN),但有机肥配施化肥(氮或氮磷钾)的处理与单施有机肥相比,黑土氮的矿化率显著降低,降低幅度分别为23.5%~32.1% 和14.1%~17.8%。土壤氮素矿化量与土壤有机质、 全氮储量、 活性碳、 氮组分均呈极显著线性相关,但氮素的矿化率随着有机质和全氮含量的提高而提高至0.4% 后基本稳定。表明尽管土壤氮的矿化与有机质的含量直接相关,但土壤有机质的品质同样决定着土壤氮素的矿化能力。施有机氮是提高土壤供氮能力的重要途径。  相似文献   

14.
长期施用化肥和秸秆对水稻土碳氮矿化的影响   总被引:5,自引:0,他引:5  
闫德智  王德建 《土壤》2011,43(4):529-533
以长期定位试验的土壤为供试材料,通过室内培养试验,研究了长期施用化肥和秸秆对水稻土?C、N矿化和微生物生物量的影响。结果表明长期施用化肥和秸秆增加了土壤?C?矿化量,但降低了可矿化?C?在土壤有机?C?中的比例。长期施用化肥能够增加土壤?N?矿化量,而且增加了可矿化?N?在土壤全?N?中的比例,但配施秸秆不能继续增加?N?矿化量。长期施用化肥和秸秆能够显著增加土壤微生物生物量?C、N?含量,但微生物量在土壤中的比例变化不大。  相似文献   

15.
Ji Young Jung  Rattan Lal 《Geoderma》2011,166(1):145-152
Growing switchgrass (Panicum virgatum, L.), a promising bioenergy crop, needs finely-tuned nitrogen (N) fertilization to improve biomass yields depending on soil types and site characteristics. N fertilization can also affect the soil organic carbon (SOC) pool. Therefore, this study was conducted to assess the effects of N fertilization on switchgrass biomass production and the SOC stock in Ohio. Switchgrass was established at three research stations (Northwest, Jackson, and Western sites) of the Ohio Agricultural Research and Development Center (OARDC) in spring 2004. N fertilizer was applied at four different rates (0, 50, 100, and 200 kg N ha−1) in 2008 and 2009. Aboveground and root biomass and the carbon (C) and N concentrations in plant tissues, SOC concentrations up to 30 cm depth were measured at the end of the growing season in 2009. Aboveground biomass at the Western site was the highest as 26 Mg ha−1 with 200 kg N ha−1 application, but there were no significant effects of N fertilization on aboveground biomass at two other sites and on root biomass across all sites. The amount of N export due to harvesting aboveground biomass increased with increase in N rates but did not vary among sites. With increasing N rates, the SOC stock linearly increased from 102 to 123 and from 55 to 70 Mg C ha−1 at the Northwest and the Jackson sites, respectively. However, this positive correlation was not observed for the Western site (a range of 59 to 67 Mg C ha−1). This study showed a potential of growing switchgrass as a bioenergy crop in Ohio and positive responses of the SOC stock to N fertilization.  相似文献   

16.
持续棉杆还田对新疆棉田土壤可矿化碳库的影响   总被引:1,自引:0,他引:1  
魏飞  黄金花  马芳霞  景峰  刘建国 《土壤》2017,49(2):295-301
依据新疆绿洲棉花长期连作的微区定位试验,研究了在秸秆还田和不还田处理下,棉田土壤有机碳矿化特征,以及土壤有机碳释放随棉花秸秆还田年限的变化规律.结果表明:秸秆还田与不还田处理相比增加了0~60 cm土层土壤的总有机碳(TOC)、可矿化碳(MC)的含量和矿化速率(MR),并且随着秸秆还田年限的加长呈上升趋势,但随土层的加深而下降.持续秸秆还田后棉田随着秸秆还田时间增加土壤有机碳矿化速率、累积矿化排放量(CO2-C排放量)增加,但矿化强度呈降低趋势,而棉花连作但秸秆不还田的棉田变化趋势与之相反.说明棉花秸秆还田措施增加了新疆绿洲棉田土壤有机碳含量,土壤中有机碳虽然不断得到补充,但尚未达到饱和状态,随着秸秆还田时间延长棉田固碳能力下降.  相似文献   

17.
The uniformity, low cost and ease of application associated with inorganic fertilizers have diminished the use of organic nutrient sources. Concern for food safety, the environment and the need to dispose of animal and municipal wastes have focused attention on organic sources of N such as animal-derived amendments, green manures, and crop rotations. Managing organic N sources to provide sufficient N for crop growth requires knowledge of C and N decomposition over several years, particularly where manure and compost are applied. We report a comparison of compost and chemical fertilizer, use of a corn-corn-soybean-wheat rotation compared to continuous corn and the use of cover crops. Nitrogen (150 d) and C incubations (317 d) were conducted to determine the effect of cropping system and nutrient management on: N mineralization potential (NMP), the mineralizable organic N pool (No), the mean residence time (MRT) of No, C mineralization (Cmin), and soil organic carbon (SOC) pool sizes and fluxes. Compost applications over 6 y increased the resistant pool of C by 30% and the slow pool of C by 10%. The compost treatment contained 14% greater soil organic C than the fertilizer management. Nitrogen was limiting on all compost treatments with the exception of first year corn following wheat fallow and clover cover crop. The clover cover crop and wheat-fallow increased inorganic N in both nutrient managements. We recommend that growers adjust their N fertilizer recommendation to reflect the quantity and timing of N mineralized from organic N sources and the N immobilization that can be associated with compost or other residue applications. Proper management of nutrients from compost, cover crops and rotations can maintain soil fertility and increase C sequestration.  相似文献   

18.
选择13C-葡萄糖作为稻田土壤典型易利用态外源有机碳,通过室内培养试验,研究不同C/N/P/S计量比条件下,葡萄糖分解矿化的动态规律及其激发效应。结果表明,稻田土壤中葡萄糖-碳(C)快速矿化,60 d培养实验后,有65.5%~74.6%的葡萄糖-C矿化。养分元素的添加使土壤中葡萄糖-C快速转化碳库的比例逐渐由58%增加至65%,从而使葡萄糖-C矿化率提高了3.9%~12.5%,养分元素的添加量与葡萄糖-C快速转化碳库的比例和矿化率均表现出显著的正相关关系(R2=0.63,p0.05;R2=0.83,p0.05)。葡萄糖-C矿化过程中,导致稻田土壤碳的累积负激发效应为-370~-570 mg kg-1,养分元素添加比例越大,其负激发效应越强,二者呈显著的负相关性(R2=0.66,p0.05)。研究表明,稻田土壤中易利用态碳的矿化受C/N/P/S元素计量比的影响,高比例养分元素的添加,促进土壤中易利用态碳的矿化,抑制土壤原有有机质的分解,增强负激发效应。本研究可为深入了解稻田生态系统碳循环、实现农田土壤肥力提升和温室气体减排提供理论依据。  相似文献   

19.
长期施肥对黑土呼吸过程的影响   总被引:26,自引:2,他引:26  
土壤呼吸是土壤有机C矿化分解,释放无机养分的重要生物化学过程。对公主岭地区长期有机肥(不施有机肥、施中量和高量有机肥处理)与化肥(不施化肥、施用N、NP、NPK化肥)配合施用的12个处理的黑土进行室内好气培养(196天),采用一级动力学方程模拟土壤的呼吸过程,结果表明,有机肥和化肥的施用能显著增加土壤呼吸释放的CO2 -C的累积量,提高土壤中潜在矿化的有机碳含量及其占土壤有机质的比例,促进土壤有机质中无机养分的释放,有利于提高土壤养分的有效性,改善黑土的供肥状况。有机肥与NPK化肥配合施用效果更为明显。  相似文献   

20.
Pyrogenic carbon (biochar) amendment is increasingly discussed as a method to increase soil fertility while sequestering atmospheric carbon (C). However, both increased and decreased C mineralization has been observed following biochar additions to soils. In an effort to better understand the interaction of pyrogenic C and soil organic matter (OM), a range of Florida soils were incubated with a range of laboratory-produced biochars and CO2 evolution was measured over more than one year. More C was released from biochar-amended than from non-amended soils and cumulative mineralized C generally increased with decreasing biomass combustion temperature and from hardwood to grass biochars, similar to the pattern of biochar lability previously determined from separate incubations of biochar alone.The interactive effects of biochar addition to soil on CO2 evolution (priming) were evaluated by comparing the additive CO2 release expected from separate incubations of soil and biochar with that actually measured from corresponding biochar and soil mixtures. Priming direction (positive or negative for C mineralization stimulation or suppression, respectively) and magnitude varied with soil and biochar type, ranging from −52 to 89% at the end of 1 year. In general, C mineralization was greater than expected (positive priming) for soils combined with biochars produced at low temperatures (250 and 400 °C) and from grasses, particularly during the early incubation stage (first 90 d) and in soils of lower organic C content. It contrast, C mineralization was generally less than expected (negative priming) for soils combined with biochars produced at high temperatures (525 and 650 °C) and from hard woods, particularly during the later incubation stage (250-500 d). Measurements of the stable isotopic signature of respired CO2 indicated that, for grass biochars at least, it was predominantly pyrogenic C mineralization that was stimulated during early incubation and soil C mineralization that was suppressed during later incubation stages. It is hypothesized that the presence of soil OM stimulated the co-mineralization of the more labile components of biochar over the short term. The data strongly suggests, however, that over the long term, biochar-soil interaction will enhance soil C storage via the processes of OM sorption to biochar and physical protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号