首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fengqiu long-term field experiment was established to examine effects of organic manure and mineral fertilizers on soil total nitrogen (N) and natural 15N abundance. Fertilizer regimes include organic manure (OM), one-half N from organic manure plus one-half N from mineral N fertilizer (1/2OMN), mineral fertilizers [N–phosphorus (P)–potassium (K), NP, NK, PK], and a control. Organic manure (OM and 1/2OMN) significantly increased soil total N and δ15N, which was expected as a great amount of the N applied remained in soils. Mineral NPK fertilizer and mineral NP fertilizer significantly increased total N and slightly increaed δ15N. Phosphorus-deficient fertilization (NK) and N-deficient fertilization (PK) had no effect on soil total N. Significantly greater δ15N was observed in the NK treatment as compared to the control, suggesting that considerable N was lost by ammonia (NH3) voltalization and denitrification in this P-deficiency fertilization regime.  相似文献   

2.
ABSTRACT

A long-term field experiment was performed to assess the effects of fertilization regimes on greenhouse gas emissions, soil properties, soil denitrifies, and maize (Zea mays) grain yield on Mollisols of Northeastern China. Chemical nitrogen (N), phosphorus (P), and potassium (K) fertilizers plus pig manure (MNPK) treatment significantly increased soil N2O emissions by 29.9–226.4% and global warming potential (GWP) by 29.8–230.7% compared to unfertilized control (CK), chemical N fertilizer only (N), chemical N, P, and K fertilizers (NPK) and chemical N, P, and K fertilizers plus corn straw (SNPK) treatments. However, the MNPK treatment yielded similar greenhouse gas intensity (GHGI) as compared with other treatments, mainly due to higher maize grain yield. There were also higher gene copy numbers of nirK, nirS, and nosZ in topsoil (0–20 cm depth) under MNPK treatment. Automatic linear modeling analysis indicated that main factors influencing soil N2O emissions were soil organic carbon (SOC), NO3? content, and nirK gene abundance. Although the application of chemical fertilizers plus organic manure increases N2O emissions due to higher N and C availability and nirK gene activity in the soil, this is still a promising fertilizer management due to its notable enhancement of maize grain yield and SOC content.  相似文献   

3.
不同磷源对设施菜田土壤速效磷及其淋溶阈值的影响   总被引:2,自引:0,他引:2  
土壤中磷的移动性不仅取决于磷的数量且与磷肥形态有关。了解不同磷源(有机肥和化肥)对设施菜田土壤磷素的影响对于指导科学施肥和面源污染防治至关重要。本文选取河北省饶阳县3种不同磷含量的农田土壤(未种植过蔬菜的土壤、种植蔬菜30年的塑料大棚土壤和种植蔬菜4年的日光温室土壤)为研究对象,采用室内培养试验和数学模型模拟方法研究有机无机磷源对设施菜田土壤磷素的影响,确定无机肥和有机肥源土壤磷素淋溶的环境阈值。结果表明添加有机肥和无机磷肥都会显著增加3种不同种植年限设施菜田土壤速效磷(Olsen-P)和氯化钙磷(CaCl2-P)含量,但增加速度不同。对于未种植过蔬菜的低磷对照土壤,磷投入量高于50 mg·kg-1(干土)后,无机肥比有机肥显著提高了土壤Olsen-P含量。对于已种植蔬菜30年的塑料大棚土壤,高磷投入时[300 mg·kg-1(干土)和600 mg·kg-1(干土)],无机肥比有机肥显著提高了土壤Olsen-P含量,低于此磷投入量时有机肥和无机肥处理之间没有显著差异。3种不同农田土壤CaCl2-P的含量所有处理均表现出无机肥显著高于有机肥处理,尤其是在高磷量[>300 mg·kg-1(干土)]投入时表现更加明显。两段式线性模拟结果表明,设施菜田土壤有机肥源磷素和无机肥源磷素淋溶阈值分别为87.8 mg·kg-1和198.7 mg·kg-1。随着土壤Olsen-P的增加,添加无机肥源磷对设施菜田土壤CaCl2-P含量的增加速率是有机肥源磷的两倍。因此,建议在河北省高磷设施菜田应减少无机磷肥的投入,特别是土壤速效磷高于198.7 mg·kg-1的设施菜田应禁止使用化学磷肥和有机肥,在土壤速效磷低于198.7 mg·kg-1的设施菜田应加大有机肥适度替代无机肥技术的推广。  相似文献   

4.
Imbalanced application of nitrogen (N) and phosphorus (P) fertilizers can result in reduced crop yield, low nutrient use efficiency, and high loss of nutrients and soil nitrate nitrogen (NO3--N) accumulation decreases when N is applied with P and/or manure; however, the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood. The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize (Zea mays L.) yield, N uptake, root growth, apparent N surplus, Olsen-P concentration, and mineral N (Nmin) accumulation in a fluvo-aquic calcareous soil from a long-term (28-year) experiment. The experiment comprised twelve combinations of chemical N and P fertilizers, either with or without chicken manure, as treatments in four replicates. The yield of maize grain was 82% higher, the N uptake 100% higher, and the Nmin accumulation 39% lower in the treatments with combined N and P in comparison to N fertilizer only. The maize root length density in the 30--60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only. Manure addition increased maize yield by 50% and N uptake by 43%, and reduced Nmin (mostly NO3--N) accumulation in the soil by 46%. The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied. Manure application reduced the apparent N surplus for all treatments. These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth, leading to reduced accumulation of potentially leachable NO3--N in soil, and manure application was a practical way to improve degraded soils in China and the rest of the world.  相似文献   

5.
长期不同施肥红壤磷素特征和流失风险研究   总被引:11,自引:2,他引:11  
为探索长期施肥对红壤磷素吸附固持的影响,分析不同施肥土壤磷流失风险及影响因素。在南方丘陵区红壤上开展了持续25年的长期定位试验,处理包括:不施肥(CK)、施氮肥(N)、施磷肥(P)、施钾肥(K)、施氮磷钾肥(NPK1)、施2倍量氮磷钾肥(NPK2)、单施有机肥(OM)和氮磷钾配施有机肥(MNPK)。研究了不同施肥下土壤全磷、Olsen-P、Mehlich1-P、CaCl2-P含量及磷吸持指数(PSI)、磷饱和度(DPS)的变化,探讨不同施肥处理土壤对磷的吸附和解吸特征,并分析了土壤磷指标与土壤有机碳、pH、CEC之间的关系。结果表明:长期施用化学磷肥有利于补充土壤磷素,特别是土壤全磷,并使Olesn-P和Mehlich 1-P有增加趋势,而对CaCl2-P影响不显著;施用化肥对DPS影响不显著,单施磷会降低PSI,低量氮磷钾提高了PSI,高量氮磷钾处理与对照差异不显著;长期施用有机肥(猪粪)土壤全磷增加,而Olsen-P、Mehlich 1-P和CaCl2-P则大幅累积, PSI显著降低, DPS显著增加。长期施用化肥处理土壤对新添加磷的吸附较强,长期施用有机肥降低了土壤对新添加磷的吸附;土壤全磷、Olsen-P、Mehlich1-P、CaCl2-P、PSI、DPS及最大吸附容量(Qm)与土壤pH、CEC、土壤总有机碳(TSOC)、土壤水溶性有机碳[冷水提取水溶性有机碳(CWSOC)和热水提取水溶性有机碳(HWSOC)]间相关性较高;土壤磷指标和土壤有机碳、pH、CEC指标之间存在典型相关关系,第1对和第2对典型变量的典型相关系数分别为0.997和0.951,达显著水平。研究表明,施用有机肥是调节土壤磷的供给和保持的重要措施,土壤水溶性有机碳和pH可能是反映红壤磷素供应和流失的关键指标。  相似文献   

6.
Because of the important role of soil organic carbon (SOC) in nutrient cycling and global climate changes, there has been an interest in understanding how different fertilizer practices affect the SOC preservation and promotion. The results from this study showed that long‐term application of manure (21 years) could increase significantly the content of SOC, total nitrogen (N) and soil pH in the red soil of southern China. The chemical structure of SOC was characterized by using solid‐state cross‐polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy, and the aromatic C, ratio of alkyl C : O‐alkyl C, aromaticity and hydrophobicity of mineral fertilizers N, P and K plus organic manure (NPKM) and organic manure (M) treatments were less than those of mineral fertilizer nitrogen (N) and mineral fertilizers N, P and K (NPK) treatments. Both poorly crystalline (Feo) and organically complexed (Fep) iron contents were influenced significantly (P < 0.05) by different fertilizers, and it was observed that NPKM and M treatments increased the non‐crystalline Fe (Feo‐Fep) content. There was a significant (P < 0.01) positive correlation between soil organic C and non‐crystalline Fe in both the surface (0–20 cm) and subsurface (20–40 cm) soils. The results suggested that non‐crystalline Fe played an important role in the increase of SOC by long‐term application of organic manure (NPKM and M) in the red soil of southern China.  相似文献   

7.
Abstract

A 7‐year‐long field trial was conducted on integrated nutrient management for a dry season rice (Boro)–green manure (GM)–wet season rice (T. Aman) cropping system at the Bangladesh Rice Research Institute Farm, Gazipur during 1993–1999. Five packages of inorganic fertilizers, cow dung (CD), and GM dhaincha (Sesbania aculeata) were evaluated for immediate and residual effect on crop productivity, nutrient uptake, soil‐nutrient balance sheet, and soil‐fertility status. Plant height, active tiller production, and grain and straw yields were significantly increased as a result of the application of inorganic fertilizer and organic manure. Usually, the soil‐test‐based (STB) fertilizer doses for a high‐yield goal produced the highest grain yield of 6.39 t ha?1 (average of 7 years) in Boro rice. Application of CD at the rate of 5 t ha?1 (oven‐dry basis) once a year at the time of Boro transplanting supplemented 50% of the fertilizer nutrients other than nitrogen (N) in the subsequent crop of the cropping pattern. A positive effect of GM on the yield of T. Aman rice was observed. Following GM, the application of reduced doses of phosphorus (P), potassium (K), sulfur (S), and zinc (Zn) to the second crop (T. Aman) did not reduce yield, indicating the beneficial residual effect of fertilizer applied to the first crop (Boro rice) of the cropping pattern. The comparable yield of T. Aman was also observed with reduced fertilizer dose in CD‐treated plots. The total P, K, and S uptake (kg/ha/yr) in the unfertilized plot under an irrigated rice system gradually decreased over the years. The partial nutrient balance in the unfertilized plot (T1) was negative for all the nutrients. In the fertilized plots, there was an apparent positive balance of P, S, and Zn but a negative balance of N and K. This study showed that the addition of organic manure (CD, dhaincha) gave more positive balances. In the T4c treatment at 0–15 cm, the application of chemical fertilizers along with the organic manures increased soil organic carbon by (C) 0.71%. The highest concentration of total N was observed with T4c followed by T4d and T4b, where CD was applied in Boro season and dhaincha GM was incorporated in T. Aman season. The sixfold increase in soil‐available P in T4b‐, T4c‐, T4a‐treated plots was due to the addition of CD. Dhaincha GM with the combination of chemical fertilizer helps to mobilize soil‐available P by 3 to 6 ppm. The highest amount of soil‐available S was found in T4c‐ and T4a‐treated plots. It was 2.5 times higher than that of the initial soil. The application of CD and dhaincha GM along with chemical fertilizers not only increased organic C, total N, available P, and available S but also increased exchangeable K, available Zn, available iron (Fe), and available manganese (Mn) in soil.  相似文献   

8.
通过盆栽试验,研究等养分投入条件下,施用化肥与不同有机肥(猪粪、牛粪、鸡粪、麸酸有机无机复混肥)对花生营养吸收、土壤酶活性及速效养分的影响。结果表明,与化肥相比,施用有机肥脲酶活性提高6.2%~22.1%,磷酸酶活性提高7.9%~27.9%,过氧化氢酶活性提高45.1%~65.2%,分别以猪粪、鸡粪、麸酸有机无机复混肥最高,而转化酶活性各处理表现不一。施用有机肥较化肥促进了N、P、K养分向花生果仁转移累积,果仁吸N量、吸P量、吸K量、吸S量分别较化肥提高22.7%~78.0%、47.1%~74.5%、65.2%~91.6%、5.6%~61.2%,其NPK养分总吸收量以麸酸有机无机复混肥最高。施肥均提高了种植花生后的土壤N、P、K速效养分含量,施用麸酸有机无机复混肥还明显改善了土壤S素营养。  相似文献   

9.
长期施用不同有机肥对甘薯产量和土壤生物性状的影响   总被引:3,自引:1,他引:2  
以花生—甘薯轮作的长期定位试验为研究对象,研究不同(类)有机肥对甘薯产量、土壤微生物丰度和酶活性的影响,为选取合适的有机肥在提高作物产量和改善土壤生物性状方面提供依据.共选取5个施肥处理:(1)CK,空白对照;(2)NPK,单施化肥;(3)NPK+SR,化肥+稻草;(4)NPK+M,化肥+商品有机肥;(5)NPK+P,...  相似文献   

10.
Field experiments were conducted at Owo, southwest Nigeria to select organic fertilizer treatments most suitable for sustaining high soil fertility and yam productivity on a nutrient-depleted tropical Alfisol. Eight organic fertilizer treatments were applied at 20 t ha?1 with a reference treatment inorganic fertilizer (NPK 15–15–15) at 400 kg ha?1 and natural soil fertility (control), laid out in a randomized complete block design with three replications. Results showed that organic fertilizers significantly increased (p = 0.05) tuber weight and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and organic C concentrations compared with the NSF (control). The oil palm bunch ash + poultry manure treatment increased tuber weight, vine length, number of leaves and leaf area of yam by 66, 25, 21 and 52%, respectively, compared with inorganic fertilizer (NPK) and 37, 22, 19 and 44%, respectively, compared with poultry manure alone. Sole or mixed forms of organic fertilizers showed significant improvement in soil physical conditions compared with IF (NPK) and NSF (control). Synergistic use of oil palm bunch ash + poultry manure at 10 t ha?1 each was most effective for sustainable management of soils and for improving agronomic productivity of yam.  相似文献   

11.
Abstract

Quantifying the relative contribution of different phosphorus (P) sources to P uptake can lead to greater understanding of the mechanisms that increase available P in integrated P management systems. The 32P–33P double isotope labeling technique was used to determine the relative contribution of green manures (GMs) and P fertilizers to P uptake by Setaria grass (Setaria sphacelata) grown in an amended tropical acid soil (Bungor series) in a glasshouse study. The amendments were factorial combinations of GMs (Calopogonium caeruleum, Gliricidia sepium and Imperata cylindrica) and P fertilizers [phosphate rocks (PRs) from North Carolina (NCPR), China (CPR) and Algeria (APR), and triple superphosphate (TSP)]. Dry matter yield, P uptake, and P utilization from the amendments were monitored at 4, 8, and 15 weeks after establishment (WAE). The GMs alone or in combination with P fertilizers contributed less than 5% to total P uptake in this soil, but total P uptake into Setaria plants in the GM treatments was three to four times that of the P fertilizers because the GMs mobilized more soil P. Also, the GMs markedly increased fertilizer P utilization in the combined treatments, from 3% to 39% with CPR, from 6–9% to 19–48% with reactive PRs, and from 6% to 37% with TSP in this soil. Both PGM and the other decomposition products were probably involved in reducing soil P‐retention capacity. Mobilization of soil P was most likely the result of the action of the other decomposition products. These results demonstrate the high potential of integrating GMs and PRs for managing P in tropical soils and the importance of the soil P mobilization capacity of the organic components. Even the low‐quality Imperata GM enhanced the effectiveness of the reactive APR more than fourfold.  相似文献   

12.
ABSTRACT

Green manure is an efficient nitrogen (N) source when used as an alternative to chemical fertilizer. However, the N taken up by rice derived from green manure, chemical fertilizers or soil native N in complex nutrient systems is unclear. A pot experiment with partial substitution of urea with Chinese milk vetch (a green manure) implemented with 15N-labeled urea and Chinese milk vetch was set up to study the sources of N in rice and the fate of the fertilizers. The dry weights, N contents, N uptake, and urea N use efficiency were notably higher (by 15–16%, 4–13%, 22–30% and 182%-203%, respectively) in the Chinese milk vetch applied with urea treatment than in the urea alone treatment. The uptake of N from Chinese milk vetch and the use efficiency of Chinese milk vetch N were increased with reductions in the urea input amount. The application of Chinese milk vetch substantially changed the fate of urea: higher amounts of urea N were taken up by rice (approximately 29%) and remained as residue in the soil (approximately 15%) in the related treatments than in the treatment with urea alone (10% and 9%). More urea N than Chinese milk vetch N was taken up by rice (29% vs 20%, respectively) and lost (56% vs 14%, respectively), but less urea N than Chinese milk vetch N remained as residue in the soil (15% vs 66%, respectively). The partial substitution of chemical fertilizer with green manure is an effective method of promoting rice growth by supplying N for rice uptake and promoting more efficient N use.  相似文献   

13.
长期施肥对土壤酶活性和氮磷养分的影响   总被引:86,自引:7,他引:86  
10年定位试验的结果表明,有机肥与化肥配合施用能提高土壤有机质和氮磷养分含量,增强土壤蛋白酶、脾酶、转化酶、磷酸酶和过氧化氢酶的活性。其中,土壤蛋白酶、腺酶、转化酶的活性与土壤NH4+-N和有机质,土壤磷酸酶的活性与土壤有效磷和有机质呈显著或极显著正相关。有机肥和化肥长期配合施用,可为作物生长创造一种良好的土壤环境。在水稻生育期,土壤蛋白酶、脲酶和转化酶的活性随水稻生育期递进而降低;土壤磷酸酶的活性在水稻拔节期至抽穗期最高,分蘖期和成熟期较低。土壤的酶活性与氮、磷养分的有效化密切相关。  相似文献   

14.
The dynamics of C mineralization in an organically managed Cambic Arenosol amended with hen manure, a stabilized compost (compost), and three different combinations of both fertilizers (varying from a 1:100 to a 1:10 ratio) were studied during an incubation experiment to estimate the potential of such combinations to preserve/restore soil C content relative to single applications. A strong increase of the CO2‐C emissions relative to the unamended soil (control) was observed after soil application of all five organic‐fertilizer treatments. A significantly higher amount of applied C was lost in hen‐manure treatment (648 mg CO2‐C [g C applied]–1) when compared to compost (159 mg CO2‐C [g C applied]–1) or to the three combined treatments (176–195 mg CO2‐C [g C applied]–1). The first‐order exponential model and the double exponential model were used to fit the C‐mineralization data in the treatments considered. Results showed that mixing “small” amounts of hen manure with compost did not affect the total amount of potentially mineralizable C, but significantly increased the mineralization rate constant. Clearly, combinations of both fertilizers promoted an initial faster mineralization of the organic matter, and consequently a faster release of nutrients, without affecting the total amount of C sequestered in soil.  相似文献   

15.
There is increasing evidence that microorganisms participate in soil C sequestration and stabilization in the form of resistant microbial residues. The type of fertilizers influences microbial activity and community composition; however, little is known about its effect on the microbial residues and their relative contribution to soil C storage. The aim of this study was to investigate the long-term impact (21 years) of different fertilizer treatments (chemical fertilizer, crop straw, and organic manure) on microbial residues in a silty clay loam soil (Udolls, USDA Soil Taxonomy). Amino sugars were used to indicate the presence and origin of microbial residues. The five treatments were: CK, unfertilized control; NPK, chemical fertilizer NPK; NPKS1, NPK plus crop straw; NPKS2, NPK plus double amounts of straw; and NPKM, NPK plus pig manure. Long-term application of inorganic fertilizers and organic amendments increased the total amino sugar concentrations (4.4–8.4 %) as compared with the control; and this effect was more evident in the plots that continuously received pig manure (P?<?0.05). The increase in total amino sugar stock was less pronounced in the straw-treated plots than the NPKM. These results indicate that the accumulation of soil amino sugars is largely influenced by the type of organic fertilizers entering the soil. Individual amino sugar enrichment in soil organic carbon was differentially influenced by the various fertilizer treatments, with a preferential accumulation of bacterial-derived amino sugars compared with fungal-derived glucosamine in manured soil.  相似文献   

16.
We studied the effects of 15N-labelled ammonium nitrate and urea on the yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L., cv. Mexi-Pak-65) in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 33.6–51.5 and 30.5–40.9% of the N from ammonium nitrate and urea, respectively. Splitting the fertilizer N application had a significant effect on the uptake of fertilizer N by the wheat. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the two N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied according to the fertilizer N split; six split applications gave the highest added N interaction compared to a single application or two split applications for both fertilizers. Ammonium nitrate gave 90.5, 33.5, and 48.5% more added N interaction than urea with one, two, and six split N applications. A values were not significantly correlated with the added N interaction (r=0.557). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N replaced unlabelled soil N.  相似文献   

17.
ABSTRACT

Organic amendments in the soil perform better than synthetic fertilizers in regards to soil fertility and sustainable crop productivity. Experiments were conducted to compare the effects of organic and synthetic fertilizers on soil fertility and wheat (Triticum aestivum L.) productivity. Soil fertility and protein contents of wheat grains (13.2% and 13.3% during 2005–06 and 2006–07, respectively) were improved by organic amendments. However, synthetic fertilizer (at the rate of 150, 100, and 60 kg ha?1 N, P2O5, and K2O, respectively) applications resulted in the maximum grain yield (4.05 and 4.46 t ha?1 during 2005–06 and 2006–07, respectively). The observed and simulated soil organic carbon (SOC) reasonably agreed during RothC model validation (R 2 = 0.99). Economic analysis showed the maximum net profit and relative increase in income ($729 US ha?1 and 309%, respectively) from inorganic treatment. Application of synthetic fertilizers increased grain yield and farm profit while organic manure enhanced grain quality. The RothC model had potential for determining the SOC in organic farming under arid environment.  相似文献   

18.
 Using soils from field plots in four different arable crop experiments that have received combinations of manure, lime and inorganic N, P and K for up to 20 years, the effects of these fertilizers on soil chemical properties and estimates of soil microbial community size and activity were studied. The soil pH was increased or unaffected by the addition of organic manure plus inorganic fertilizers applied in conjunction with lime, but decreased in the absence of liming. The soil C and N contents were greater for all fertilized treatments compared to the control, yet in all cases the soil samples from fertilized plots had smaller C:N ratios than soil from the unfertilized plots. The soil concentrations of all the other inorganic nutrients measured were greater following fertilizer applications compared with the unfertilized plots, and this effect was most marked for P and K in soils from plots that had received the largest amounts of these nutrients as fertilizers. Both biomass C determined by chloroform fumigation and glucose-induced respiration tended to increase as a result of manure and inorganic fertilizer applications, although soils which received the largest additions of inorganic fertilizers in the absence of lime contained less biomass C than those to which lime had been added. Dehydrogenase activity was lower in soils that had received the largest amounts of fertilizers, and was further decreased in the absence of lime. This suggests that dehydrogenase activity was highly sensitive to the inhibitory effects associated with large fertilizer additions. Potential denitrification and anaerobic respiration determined in one soil were increased by fertilizer application but, as with both the microbial biomass and dehydrogenase activity, there were significant reductions in both N2O and CO2 production in soils which received the largest additions of inorganic fertilizers in the absence of lime. In contrast, the size of the denitrifying component of the soil microbial community, as indicated by denitrifying enzyme activity, was unaffected by the absence of lime at the largest rate of inorganic fertilizer applications. The results indicated differences in the composition or function of microbial communities in the soils in response to long-term organic and inorganic fertilization, especially when the soils were not limited. Received: 10 March 1998  相似文献   

19.
Repeated applications of mineral and/or organic fertilizer will probably affect gross nitrogen (N) dynamics in soils in the long term but only a limited number of observations are available. Here we present results of a 15N tracing study with soil from the various fertilizer treatments of the Huang‐Huai‐Hai Plain experiment that has been in operation for more than 17 years. Mineral fertilizer in various combinations of N, phosphorus (P) and potassium (K), organic manure (OM) or a mixture of mineral fertilizer and manure had been repeatedly applied for 17 years. The gross N transformation rates were quantified with a 15N tracing model, which uses a parameter optimization routine based on Bayesian principles. Mineralization of soil organic matter was at least 2.7 times greater in all fertilizer treatments compared with the untreated control (0.67 µg N g?1 day?1). While application of mineral N enhanced mineralization from recalcitrant organic N, the application of organic fertilizers stimulated the mineralization of labile organic N. Gross nitrate (NO3?) production solely resulted from ammonium (NH4+) oxidation. Compared with the gross NO3? production in the control treatment (2.22 µg N g?1 day?1), long‐term N applications stimulated gross nitrification by more than 5.3 times. The largest gaseous N emissions were associated with the organic manure treatments. The ratio of gross NO3? production to total mineral N consumption, a ratio proposed previously to determine potential NO3? loss, was a good indicator except for the treatment without N application. This ratio increased from 0.8 in the control to 2.7 in the mixture of mineral fertilizer and manure treatment. The largest gaseous N emissions (N2O + NO) (P < 0.05) were generally found at greater ratios. Results clearly showed that various fertilizers have a differential effect on N dynamics and potential gaseous N losses in the long term.  相似文献   

20.
A 2-year field experiment was conducted in wheat ecosystem to assess the key soil biological characteristics in inceptisols of northeastern region of India. Nine treatments using organic inputs (farmyard manure and vermicompost) and mineral fertilizers were applied by modulating the doses of organics and mineral N fertilizer. Soil enzymes (urease, phosphatase, dehydrogenase, fluorescein diacetate (FDA) and arylsulphatase), microbial biomass carbon (MBC), bacteria and fungi populations were measured before seed sowing (GS1), at flowering stage (GS2) and after harvest (GS3) of wheat, whereas total organic carbon (TOC) was studied at GS3. GS2 recorded significantly higher soil enzyme activities, except FDA, which increased considerably at GS3. Enzyme activities, available N and TOC significantly (p ≤ 0.05) enhanced with application of organic inputs even with reduced (50%) mineral N. Except urease and phosphatase, other enzymes did not respond significantly to mineral fertilization. Vermicompost application increased mean enzyme activities, MBC, microbial growth and TOC fractions (particulate organic carbon, humic acid and fulvic acid carbon) than farmyard manure. Significant (p ≤ 0.05) positive correlations (r = 0.61–0.87) were obtained between TOC and its fractions with studied soil enzymes. Thus, in conclusion, 5 t ha1 organics incorporation (especially vermicompost) in wheat fertility programme can uphold soil biological health, reduce (50%) N application and would be a sustainable option for wheat grown in inceptisols of northeastern region of India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号