首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of plant nutrition》2013,36(8):1581-1593
Abstract

In order to improve determinations of nutrient critical levels using growth response curves, a detailed study of magnesium (Mg) deficiency on pepper (Capsicum annuum L.) biomass allocation was performed. For each growth parameter, data were fitted using the modified Mitscherlich's model and Mg‐critical level was calculated. Under Mg‐deficiency, pepper plants showed a decrease in their relative growth rate (RGR), total dry weight (DW), stem and root mass fractions (SMF and RMF), total leaf area, specific leaf area (SLA), and unit leaf rate (ULR), whereas leaf mass fraction (LMF) and shoot to root ratio increased. Growth response coefficient (GRC) analysis indicated that the decrease in RGR was mainly due to a decrease in ULR. When the interval time between two harvests was ≥10 days, determination of Mg‐critical level (x c ) using the modified Mitscherlich's model showed that the best growth parameter for early detection of Mg‐deficiency in pepper plants was total DW (x c  ≈ 0.21%), whereas other parameters underestimated Mg‐critical level.  相似文献   

2.
This article studied the effects of nitrogen (N) and CO2 enrichment on biomass and N accumulation and partitioning of cucumber grown in open top chambers. At the seedling stage, elevated CO2 increased the biomass and N content of the entire plant. The root had the largest increase in biomass and N content among the organs and more biomass allocation. The largest drops of N concentration showed in root at moderate and high N, in leaf at low N, respectively. Elevated CO2 increased stem biomass allocation at moderate and high N, but decreased leaf biomass allocation at all N levels. At the initial fruit stage, the response to elevated CO2 of biomass and N content decreased. Elevated CO2 increased biomass allocation to leaf and resulted in the largest drop of leaf N concentration at low and moderate N supply. High N supply promoted biomass production and N reallocation from the leaf to fruit, but decreased leaf biomass allocation. Thus, biomass allocation is initially affected by root–shoot growth balance to adapt to enriched CO2, leading to the largest root growth, then biomass allocates to another sink (stem). Long exposure of elevated CO2 results in photosynthetic acclimation in deficient N supply, which probably attributes to excessive stem and leaf biomass allocation and shortage of fruit storage. But high N shifts biomass allocation from leaf to fruit. Practically, sufficient N supply is needed for an efficient transport of carbohydrates to fruits and increases the yields under elevated CO2.  相似文献   

3.
ABSTRACT

Cotton is critical for phosphorus demands and very sensitive for its deficiency. However, identifying the effect of low-phosphorus tolerance on cotton growth, yield, and fiber quality by reducing phosphorus consumption. This may help to develop phosphorus-tolerant high-yielding cotton cultivars. In a two-year repeated (2015 and 2016) hydroponic experiment (using 0.01 and 1 mM KH2PO4), two cotton cultivars with phosphorus sensitivity (Lu 54; a low-phosphorus sensitive and Yuzaomian 9110; a low-phosphorus tolerant) were screened on the base of agronomic traits and physiological indices through correlation analysis, cluster analysis and principal component analysis from 16 cotton cultivars. Low phosphorus nutrition reduced the plant height, leaf number, leaf area, phosphorus accumulation and biomass in various organs of seedlings. The deficiency negatively affected the morphogenesis of seedlings, as well as yield and fiber quality. Further, these screened cultivars were tested in a pot experiment with 0, 50, 100, 150, 200 kg P2O5 ha?1 during 2016 and 2017. It was found to have a significant (P< 0.05) difference in boll number, lint yield, fiber strength, and micronaire at the harvest. Furthermore, after collectively analyzed the characteristics of Lu 54 and Yuzaomian 9110, there were six key indices that could improve the low phosphorus tolerance of cotton cultivars. These were root phosphorus accumulation, stem phosphorus accumulation percentage, leaf and total biomass of seedlings, seed cotton weight per boll and fiber length.  相似文献   

4.
ABSTRACT

An experiment was carried out to assess the single and combined effects of cadmium (Cd) and zinc (Zn) on growth and component wise biomass accumulation in carrot (Daucus carota L.) plants, grown under natural field conditions. Carrot plants were raised in field and treated with 10 and 100 μ g mL? 1 of Cd, 100 and 300 μ g mL? 1 of Zn singly, and in combination through soil drench. A control was also kept without any treatments of Cd and Zn. The impacts of different treatments of Cd and Zn on carrots were evaluated in terms of number of leaves, leaf area, plant length, and component wise biomass accumulation at different plant ages. Growth indices were also calculated to assess the biomass allocation patterns in carrots. The results showed that the above parameters were significantly affected in carrots treated with Cd and Zn singly and in combination as compared to the control as well as plants treated with 100 μ g mL? 1 of Zn. The results also showed that treatments of Cd and Zn have significant effects on biomass allocation pattern. This study concludes that growth and biomass accumulation in carrots were significantly influenced by the concentration ratios of Cd and Zn in soil/root/stem/ leaves. It is clear from this study that combined treatments of Cd and Zn have more negative impacts on above parameters as compared to their individual treatments.  相似文献   

5.
The partitioning of biomass between aboveground parts and roots, and between vegetative and reproductive plant parts plays a major role in determining the ability of cotton (Gossypium hirsutum L.) to produce a crop in a given environment. We evaluated the single and combined effects of water and N supply on the partitioning of biomass in cotton plants exposed to two N supply levels, 0 and 12 mM of N, and two water regimes, well irrigated and water‐stressed at an early reproductive stage. The N treatments began when the third true leaf was visible, while water deficit treatments were imposed over the N treatments when the plants were transferred into controlled‐environment chambers at a leaf area near 0.05 m2. Both water deficits and N deficits inhibited total biomass accumulation and its partitioning in cotton. Water deficit alone and N deficit alone inhibited the growth of leaves, petioles, and branches, but did not inhibit growth of the stem and enhanced the accumulation of biomass in squares. When water deficit was superimposed on N deficit, leaf growth was inhibited, although to a lesser extent than when it was the sole stress factor, and the accumulation of biomass in squares was also inhibited. Yet, the dry weight of squares in plants exposed to water and N deficits was greater than that of non‐stressed plants. Water and N deficits, either alone or in combination, did not inhibit the growth of the tap root. Growth of lateral roots was not inhibited either by water deficit alone or in combination with N deficit, but was enhanced when plants were exposed to N deficit alone. Exposure to water deficit alone or in combination with N deficit decreased the shoot:root ratio through the inhibition of shoot growth. Exposure to N deficit alone decreased the shoot:root ratio through the combination of shoot growth inhibition and root growth enhancement.  相似文献   

6.
Abstract

The objective of this work was to compare and characterize the response to nitrogen (N) supply of a textile and an oilseed cultivar of flax (Linum usitatissimum L.). The dynamics of growth, biomass partitioning, growth rates, and leaf area evolution and duration of the cultivars Omega (oilseed) and Diane (textile) were compared under three rates of N supply. Plants were grown in pots in the field with nil (N1), 2.5 (N2), and 5 g N per pot (N3); N2 and N3 doses were divided into five applications. Shoot biomass of N2 and N3 treatments was similar in both cultivars and significantly higher than in N1. Partitioning of biomass was unaffected by N treatment but showed contrasting patterns between cultivars. The oilseed cultivar produced 30–42% more reproductive biomass and 18–30% less stem biomass than its textile counterpart. Differences between cultivars in these traits increased with increasing N rate. Maximum growth rates per plant concentrated around 1572°Cd after sowing (fructification). Faster leaf senescence after flowering contributed to the lower leaf area and leaf biomass of the textile cultivar.

The availability of N at different specific moments of the plant cycle would be useful to improve the growth of organs of economic interest. Results can also provide useful information to future nutrition models and breeding programs in textile and oilseed flax.  相似文献   

7.
Abstract

The effects of night temperature on biomass accumulation and plant morphology were examined in rice (Oryza sativa L.) during vegetative growth. Plants were grown under three different night temperatures (17, 22 and 27°C) for 63 days. The day temperature was maintained at 27°C in all treatments. The final biomass of the plants was greatest in the plants grown at the highest night temperature. Total leaf area and tiller number were also the greatest in this treatment. Growth analysis indicated that the relative growth rate in the 27°C night-temperature treatment was maximal between days 21–42 and this was caused by increases in leaf area ratio, leaf weight ratio and specific leaf area. Plant total nitrogen contents did not differ among treatments. However, nitrogen allocation to the leaf blades was highest and the accumulation of sucrose and starch in the leaf blades and sheaths was the lowest in the 27°C night-temperature treatment by day 42. Despite this, dark respiration was also highest, and both the gross and net rates of CO2 uptake at the level of the whole plant at day 63 were the highest in the 27°C night-temperature treatment. Thus, high night temperature strongly stimulated the growth of leaf blades during the early stage of rice plant growth, leading to increased biomass during the vegetative stage of the rice plants. As the CO2 uptake rate per total leaf area was higher, photosynthesis at the level of the whole plant was also stimulated by a high night temperature.  相似文献   

8.
通过对贺兰山东麓同一立地类型不同种植年限的人工酿酒葡萄林形态指标和生物量的测定,研究了葡萄林生物量随时间的分配格局,同时利用主要构件形态指标与各构件生物量建立了生物量估测模型。结果表明:1)供试林地葡萄树株高(H)、主蔓长(SH)、新梢长(YSH)、分枝数(BN)及茎粗(D)均基本上随林龄增加而逐渐增大。2)葡萄林各构件生物量随林分年龄的增加而增加。3)葡萄树地上部各构件生物量分配表现如下,1~4 a林分为叶生物量>新梢生物量>主蔓生物量,4~12 a林分为主蔓生物量>新梢生物量>叶生物量,2~12 a林分为地上生物量>地下生物量。4)以茎粗与株高结合的D2H作为自变量建立模型,各组分生物量最优估测模型均为幂函数W=a×(D2H)b(其中,W为生物量,D2H为茎粗D2与株高H的乘积,a和b为估测参数):叶生物量与D2H拟合模型为W=12.909×(D2H)0.825 9(R2=0.849 9,P=0.000),主蔓生物量与D2H拟合模型为W=3.963 4×(D2H)1.344 9(R2=0.938 1,P=0.000),新梢生物量与D2H拟合模型为W=6.190 6×(D2H)1.051 7(R2=0.804 7,P=0.000),地上生物量与D2H拟合模型为W=23.017×(D2H)1.076 6(R2=0.938 5,P=0.000),地下生物量与D2H拟合模型为W=27.126×(D2H)0.689(R2=0.892 4,P=0.000)。各预测模型精确度较高。  相似文献   

9.
Abstract

Boron (B) deficiency is common in some cotton (Gossypium hirsutum L.) growing regions of the world. A better understanding of changes in the growth and physiological characteristics of cotton plants during the development of B deficiency will help us to define field diagnosis techniques and improve B fertilizer management recommendation. An experiment was conducted in a controlled‐environment growth chamber to determine effects of B deficiency during early vegetative growth on leaf photosynthesis, plant dry matter accumulation, photosynthetic assimilate partitioning, and other physiological parameters. Boron deficiency considerably decreased leaf net photosynthetic rate, plant height, leaf area, fruiting sites, and dry matter accumulation during squaring and fruiting. Depressed photosynthesis and plant growth (especially fruits and roots) resulted in increased fruit abscission and changes in dry matter partitioning among plant tissues. The results help explain effects of B deficiency on suppression of cotton growth and yield and provide information for improving the diagnosis of B deficiency in cotton production.  相似文献   

10.
Abstract

Periodic nitrate tissue tests are used to determine nitrogen (N) fertility status of a variety of crops. Data on the importance of plant part selection, sample handling techniques, grinding criteria and extraction conditions in N03‐N analysis of wheat tissue are essential if the procedure is to achieve widespread adoption and use. Detailed partitioning of field grown durum spring wheat (Triticum durum) plants at the Feekes 2 (3–4 leaf), 6 (joint) and 10 (boot) growth stages was conducted to document which plant part exhibits the greatest accumulation of NO3‐N. Sample handling, fineness of tissue grinding, different tissue: extractant ratios and extraction times were examined to determine their effects on NO3‐N recovery. Partitioning data confirmed previous findings which identified the basal stem between ground level and the seed prior to jointing and the 5 cm of stem just above ground level thereafter as the plant parts showing the greatest accumulation of NO3‐N. Therefore, these plant parts have the greatest potential as indicators of the ? nutritional status of durum spring wheat. Optimal recovery of tissue NO3‐N was obtained when stem tissue was separated immediately in the field and dried within 8 hours of sampling, ground to pass a 0.55 mm mesh screen, and extracted for at least 30 minutes when using a sample size of 0.1000 g in conjunction with 25 ml of extractant (i.e. 1: 250 plant tissue to extractant ratio)  相似文献   

11.
Low nitrogen (N) supply may change assimilate partitioning between plant organs. We measured the effect of N supply on partitioning of recently assimilated 13C and recently absorbed 15N between generative and vegetative plant organs of two maize genotypes (Zea mays L.) 14 d after silking, i.e., during the lag phase of kernel growth. Furthermore, net partitioning of dry matter and N were assessed during grain filling. Plants were grown in a greenhouse in large containers. Our hypothesis was that N deficiency reduces grain set due to low partitioning of carbon (C) and N to the grains during the lag phase and reduces grain yield also because of excessive remobilization of N from the leaves during grain filling. During the lag phase, low N supply increased partitioning of recently assimilated photosynthates towards stem and roots at the expense of partitioning towards reproductive organs. However, despite of diminished sink strength of the reproductive organs for photosynthates, sugar concentrations in the grains of N‐deficient plants were increased, indicating that kernel set and potential kernel weight were not limited by low C supply at the end of the lag phase. In contrast to C, partitioning of recently absorbed N towards the reproductive organs was increased at low N supply at the expense of partitioning towards the roots. This indicates different mechanisms for the regulation of C and N distribution within the plant. During grain filling, biomass partitioning between plant organs was more affected by genotype than by rate of N supply. Nitrogen accumulation in the grains substantially exceeded total N uptake in the plant after flowering. Excess N accumulation in the grains was covered mainly by depletion of stem N at high N supply and by depletion of leaf N at low N supply. However, high concentrations of nonstructural carbohydrates in the stem at maturity indicated that grain yield of N‐deficient plants was not limited by low source strength of N‐depleted leaves.  相似文献   

12.
Arbuscular mycorrhizal (AM) fungi can form symbiotic association with the roots of plants that acquire carbon (C) exclusively from the host plants and supply nitrogen (N) to the plants. In this study, our objective was to investigate the effects of the AM fungus on plant growth, C and N partitioning and accumulation of Glycine max L. grown under water stress in pot experiment. Soybean seedlings were inoculated or not inoculated with the AM fungus, and were exposed to three irrigation treatments including full irrigation, deficit irrigation and partial root-zone drying irrigation (PRD). The 15N isotope labeling was used to trace soybean N accumulation. Results showed that water stress significantly decreased plant dry weight. Compared with non-AM fungus, AM fungus increased root N and 15N concentration, and decreased stem, leaf and pod N and 15N concentrations under PRD. AM colonization decreased C and N partitioning into stem and leaf, and increased C and N partitioning into root under PRD. AM plants had greater C accumulation and N use efficiency than non-AM plants. It was concluded that AM symbiosis plays an important role in C and N dynamics of soybean grown under water stress.  相似文献   

13.
Abstract

Switchgrass (Panicum virgatum L.) has potential as a sustainable biofuel crop. Utilizing alternative sources of fertilizer nutrients could enhance production of switchgrass. However, alternative sources of fertilizer such as sewage sludge sometimes contain heavy metals such as cadmium (Cd) and the response of switchgrass to Cd is not known. Four switchgrass cultivars (Alamo, Blackwell, Cave‐in‐Rock, and Trailblazer) grown in sand culture were watered twice weekly with a nutrient solution containing Cd. Cadmium levels in solution were 0, 1, 2, 4, 8, and 16 mg Cd L‐1. Plants were harvested 63 d after planting and separated into leaf blade, stem (culm + leaf sheath), and root components. Tissue Cd concentrations were determined using atomic absorption spectrophotometry. Cultivars differed (P<0.05) by less than 15% for biomass accumulation and allocation among plant parts. Cadmium levels of 16 mg L‐1 reduced biomass yields by 31% for roots, 39% for leaf blades, and 47% for stems as compared to no added Cd. At 16 mg Cd L‐1, Cd concentration in leaf blades was 9.9 mg kg‐1. The highest levels of Cd (329 mg kg‐1) were found in roots of Blackwell and Trailblazer grown at the highest Cd level. Cadmium at 16 mg Cd L‐1 is phytotoxic to switchgrass and accumulates in all plant parts. The cultivars tested in this study did not differ in biomass accumulation in response to Cd; however, Cd accumulation in plant parts differed among cultivars. Consideration of Cd uptake should be a part of switchgrass cultivar selection when grown in the presence of Cd.  相似文献   

14.
Abstract

The present study was conducted in the existing germplasm block of gerbera under protected condition at ICAR-IIHR, Bengaluru, India during 2017–2019 to obtain comprehensive information on biomass partitioning, nutrient uptake pattern and flower yields in different genotypes for precision use of critical inputs. The number of leaves (187.6–353.2 m?2?yr?1) and flower stalks (166.9–274.5 m?2?yr?1) varied significantly among genotypes. Specific leaf area (SLA) was similar among Balance, Stanza, Arka Aswha and Terra Kalina cultivars (0.150–0.156?cm2 mg?1). Strong positive influence of SLA on number of flower stalks was evident from the significant correlation (r = –0.774). Significant positive correlations among number of flower stalks and leaves, leaf area and SLA substantiate the flower yield pattern in gerbera. Optimum leaf number per plant was estimated at 18.6, while optimum range was quantified at 14.1 to 22.4. In gerbera genotypes, the partitioning of total aboveground dry biomass to leaves and flower stalks was 46–61% and 39–54%, respectively. The average nutrient removal was quantified at 32.8?g N, 7.3?g P, 78.7?g K, 24.7?g Ca and 4.1?g Mg m?2?yr?1 and the uptake of macronutrients was in the order of K?>?N > Ca > P?>?Mg. The order of micronutrient removal (g m?2?yr?1) was Fe (0.2), Zn (0.08), Mn (0.06) and Cu (0.03). The soil fertility status at uniform management was above optimum. It is clear that leaf number, biomass partitioning and nutrient removal pattern had direct impact on flower stalk yields of gerbera.  相似文献   

15.
A better understanding of the impact of fertilizer nitrogen (N) on biomass and N accumulation, and their partitioning into different plant components is needed to optimize crop yield and quality. A field experiment with spring wheat (Triticum aestivum), hulless (Avena nuda), and hulled (Avena sativa) oats was conducted for 3 years in Ottawa, ON, Canada, to determine the crop responses to N addition (0, 75, and 150 kg N ha–1). Biomass, N, and phosphorus (P) accumulation and partitioning into different plant components were examined during the growth season. Lodging score was determined for all crops when it occurred and again at harvest. During the growth season, both hulless and hulled oats and the wheat cultivar showed almost similar patterns of N and P accumulation with maximum contents at late grain filling or at harvest. Plant N concentration was up to 60 g kg–1 during the seedling stage, decreased gradually with advancing growth stages, and was lowest at harvest. Nitrogen treatments significantly increased plant N and P contents. At heading stage, N treatments enhanced dry matter (24%–45%), N (35%–135%), and P (27%–45%) contents in plant components (i.e., culm, leaf, and head), but also enhanced crop lodging, especially in oats. Both hulled and hulless oats had higher total plant N (5%–35%), N : P ratio, and dry‐matter content in leaf (6%–43%) and head (0%–129%) along with higher P (up to 27%) in culm than the wheat cultivar. The wheat cultivar accumulated greater dry matter and higher N content in kernels than both hulled and hulless oats at harvest. Both hulled and hulless oat cultivars exhibited similar lodging susceptibility to N addition (75 or 150 kg N ha–1), produced lower dry weight and lower kernel N, and hence lower grain yield than the wheat cultivar. The larger vegetative dry‐matter accumulation at heading coupled with higher P content in culms under high‐N‐supply conditions may be related to severe lodging in oat cultivars.  相似文献   

16.
Dry matter (DM) partitioning into root, leaf, stem, shoot dry weight plant?1 response in four cool season C3-cereals viz. wheat (Triticum aestivum L.), rye (Secale cereale L.), barley (Hordeum vulgare L.) and oats (Avena sativa L.) was investigated at 30, 60 and 90 days after emergence (DAE) under eight nitrogen, phosphorus and potassium (NPK) sources: S1 = 20-20-20, S2 = 20-27-5, S3 = 7-22-8, S4 = 10-10-10-20S, S5 = 11-15-11, S6 = 31-11-11, S7 = 24-8-16, and S8 = 19-6-12 in pot experiment at Dryland Agriculture Institute, West Texas A&;M University, Canyon, Texas, USA during winter 2009-10. A considerable variation in DM partitioning into various plant parts was observed in the four crop species at different growth stages and NPK source. At 30 DAE, 27% of the total DM per plant (TDMPP) was partitioned into roots and 73% into shoots (19% stems + 54% leaf). Only16 % of the TDMPP was partitioned into roots and 84% into shoots (18 % stem + 66 % leaf) at 60 DAE. At 90 DAE, 29% of TDMPP was partitioned into roots and 71 % into shoots (33 % stems + 38 % leaf) at 90 DAE. Percent DM partitioning into stems ranked first (33%) at 90 DAE > at 30 DAE (19%) > at 60 DAE (18 %). With advancement in crops age, DM partitioning into various crop parts increased. The root DM plant?1 (RDMPP) increased from 11.5–722 mg plant?1; stem DM plant?1 (STDMPP) from 8.3–889.0 mg plant?1; leaf DM plant?1 (LDMPP) from 23.1–1031.0 mg plant?1; shoot DM plant?1 (SHDMPP) from 31.3–1921 mg plant?1, and TDMPP increased from 42.9–2693.0 mg plant?1 at 30 and 90 DAE, respectively. Because of the higher N contents in S7 (24:8:16) and S6 (31:11:11) reduced the DM partitioning into various plants parts as well as TDMPP at all three growth stages. The adverse effects of S6 and S7 on DM partitioning was more on oats > rye > wheat > barley. The S4 with 10:10:10 (NPK) and :20S was not toxic at 30 DAE, but at 60 and 90 DAE it became toxic that adversely affected the DM partitioning as well as TDMPP probably may be due its high sulfur (20%) content which lacking in other NPK sources. The DM partitioning to various parts of barley and wheat was more than oats and rye at different growth stages (barley > wheat > rye > oats). Since the DM portioning values were determined on the average of five plants in pot experiment under organic soil at field capacity; in case of field experiments more research is needed on various crop species/varieties under different environmental conditions particularly under moisture stress condition.  相似文献   

17.
Crop production in many parts of the world is increasingly affected by soil salinization, especially in the irrigated fields of arid and semi-arid regions. The effects of four magnesium levels [0, 0.5, 1, and 22 millliMolar (mM) magnesium as magnesium sulfate (MgSO4.5H2O)], and three salinity levels [0, 45 and 90 mM sodium chloride (NaCl)] on growth and the chemical composition of pistachio seedlings (Pistacia vera L.) cv. ‘Badami-e-Zarand’ was studied in sand culture under greenhouse conditions. The experiment was set up as a completely randomized design (CRD) with four replications. After 28 weeks the growth parameters of biomass, leaf number, leaf area and stem height were measured. The results demonstrated that salinity decreased biomass, leaf area and stem height; the application of 2 mM magnesium (Mg) significantly reduced biomass, leaf number, leaf area and stem height; salinity stress increased concentrations of sodium (Na) and potassium (K) in shoot as well as Na concentration in root; however, it decreased Mg and calcium (Ca) concentrations in shoot, as well as Mg, Ca, and K concentrations in root. The application of 2 mM Mg reduced K and Ca concentrations in shoot and Na and K concentrations in root.  相似文献   

18.
High soil salinity imposes osmotic stress and ion toxicity in plants, leading to substantial crop yield loss worldwide. Understanding of the quantitative and dynamic physiological responses to composite soil salt stress is limited and needs to be expanded. In this study, physiological, nutritional, and biomass yield parameters of tobacco(Nicotiana tabacum L.) grown in soil with five levels of composite soil salinity(CSS), basal CSS level(control, CK) and 3(T1), 6(T2), 9(T3), and 12(T4) times the...  相似文献   

19.
Field experiments were conducted to determine the interactive effect of sulfur (S) and nitrogen (N) on growth and yield attributes of oilseed crops [Brassica campestris L. (V1) and Eruca sativa Mill. (V2)] differing in yield potential. Two combinations of S and N (in kg ha?1): 0S + 100N (?S+N;T1) and 40S + 100N (+S+N;T2) were used. Biomass accumulation, leaf area index (LAI), leaf area duration (LAD), and photosynthetic rate in the leaves were determined at various phenological stages. The results showed that the combined application of S and N (+S+N) significantly (P<0.05) improved the growth and yield attributes of both the genotypes compared with N applied alone (?S+N). Genetic variability was observed between the two genotypes in response to combined application of S and N (T2). Genotype V1 had higher biomass accumulation, photosynthetic rate, seed yield, oil yield, biological yield, and harvest index when compared with genotype V2. Treatment T2 resulted in 142, 95, 56, and 349% enhancement in biomass accumulation, leaf-area index (LAI), leaf-area duration (LAD) and photosynthetic rate, respectively in comparison with treatment T1 in genotype V1. Seed yield, oil yield, biological yield, and harvest index were improved by 141, 171, 85, and 30%, respectively, by treatment T2 in comparison with T1. In the case of genotype V2, increase in biomass accumulation, LAI, LAD, and photosynthetic rate due to application of treatment T2 were 156, 137, 125 and 467%, respectively, over the results of T1. Seed yield, oil yield, biological yield and harvest index improved by 193, 251, 98, and 48%, respectively, with this treatment. On the basis of results obtained in this study, it can be concluded that sulfur must be included in the nutrient management package for optimum growth and yield attributes of oilseed crops. Furthermore, the yield potential of oilseed crops with low seed and oil yield can be improved using this treatment as achieved in our study in case of taramira (Eruca sativa Mill.), a genotype with low seed and oil yield.  相似文献   

20.
《Journal of plant nutrition》2013,36(12):2469-2488
Abstract

An experiment comprised of five treatments [T1 = municipal effluent @ 1 PET (without plant), T2 = municipal effluent @ (1/2) PET, T3 = municipal effluent @ 1PET, T4 = municipal effluent @ 2 PET, and T5 = good (canal) water @ 1 PET] was carried out with Eucalyptus camaldulensis. The aim was to utilize sewage water in growing tree plantation and to increase the supply of fuel wood to the growing urban population. Height, collar diameter, and number of branches were monitored periodically. Biomass and leaf and root growth were recorded at 24 months of age. Mineral composition and uptake were monitored to observe their removal from the soil. Increase in rate of municipal effluent application was associated with better tree growth compared to irrigation with canal water. At 24 month age, the T4 was the best treatment in which E. camaldulensis attained 393 cm height and 6.6 cm collar diameter. Height and collar diameter of T2 seedlings did not differ (P > 0.05) with respective parameters in T5 treatment. Collar diameter increased by 1.2 times in T3 treatment. Number of leaves and biomass increased with increase in quantity of municipal effluent. Modeling of total biomass against quantity of municipal effluent application produced better result with non‐linear fitting than the linear one. Mineral composition and accumulation in different parts of the seedling was high and varied with the quantity and nutrient composition of irrigation water. Concentration of total nitrogen (N), phosphorus (P), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) was high in the municipal effluent irrigated seedlings compared to the good water irrigated seedlings. However, sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) were high in the seedlings of T5 compared to T2 and T3 treatments. Municipal effluent did not show any toxicity to the seedlings up to 24 months age. Conclusively, the municipal effluents could be recommended as a good source of water and nutrient for tree biomass production to fulfill the requirement of fuel need in the suburban area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号