首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil pore size distribution(SPSD) is one of the most important soil physical properties. This research investigated the relationships of location and shape parameters of the SPSD curves with plant-available water(PAW) and least limiting water range(LLWR) of the light-textured soils at the Torogh Agricultural Research Station in north-eastern Iran. Soil moisture release curve(SMRC), PAW and LLWR in matric heads of 100 and 330 h Pa for the field capacity and location and shape parameters of the SPSD curves of 30 soils with different texture and organic carbon contents were determined, and the variable relationships were statistically analyzed. The results showed that the median equivalent pore diameter(de), mean de, standard deviation(SD*), and skewness of the SPSD curves were significantly correlated with PAW(PAW330) and LLWR(LLWR330) measured in a matric head of 330 h Pa. Decrease in deand increase in the diversity of soil pore size(SD*) increased PAW330 and LLWR330. The SD* values of all the soil samples were lower than the optimal ranges suggested in literature. Neither PAW nor LLWR values were significantly different in the soils with the optimal modal deand those with non-optimal modal de. Optimal values of median and mean equivalent pore diameters and kurtosis of SPSD curves led to a significant improvement of PAW330 and LLWR330 as soil physical quality indicators. It was recommended to revise the optimal ranges for SD* and modal defor future studies.  相似文献   

2.
喷灌和畦灌对冬小麦农田表层土壤结构的影响   总被引:3,自引:0,他引:3  
A two-year experiment was carried out on the effect of sprinkler irrigation on the topsoil structure in a winter wheat field. A border-irrigated field was used as the control group. The total soil porosity, pore size distribution, pore shape distribution, soil cracks and soil compaction were measured. The sprinkler irrigation brought significant changes to the total soil porosity, capillary porosity, air-filled porosity and pore shape of topsoil layers in comparison with the border irrigation. The total porosity and air-filled porosity of the topsoil in the sprinkler irrigation were higher than those in the border irrigation. The changes in the air-filled and elongated pores were the main reasons for the changes in total porosity. The porosities of round and irregular pores in topsoil under sprinkler irrigation were lower than those under border irrigation. Sprinkler irrigation produced smaller soil cracks than border irrigation did, so sprinkler irrigation may restrain the development of macropore flow in comparison with border irrigation. The topsoil was looser under sprinkler irrigation than under border irrigation. According to the conditions of topsoil structure, it is preferable for crops to grow under sprinkler irrigation than under border irrigation.  相似文献   

3.
为了研究玉米生长后期根系的生长发育规律,利用中国气象局固城农业气象试验站大型根剖面系统,采用微根管观测系统及方形整段标本法和地下根系室玻璃窗,对‘屯玉46号’玉米根系的生长状况进行了试验研究。结果表明:垂直方向上,方形整段标本法和微根管法测得的根长密度占整层总根长密度比例的变化趋势一致,相关系数分别为0.987和0.717,且两种方法在0~20 cm土层的根长密度比例均为最大。0~60 cm土层为玉米根系生长活跃区,方形整段标本法测得根长密度生长量为其余层的4倍。两种方法测得的根长密度无显著差异,相关系数为0.830,均匀性水平较好。玉米成熟期根系的水平幅度较乳熟期窄,下层根系仍处于生长中,垂直深度增加。玻璃窗与方形整段标本法观测的根深测定结果存在差异,这可能与观测环境条件不一致有关。  相似文献   

4.
氨化秸秆还田对土壤孔隙结构的影响   总被引:7,自引:0,他引:7  
【目的】土壤孔隙性质是土壤结构性的反映,直接影响着土壤的肥力和水分有效性。定量研究氨化秸秆还田对土壤不同大小等级孔隙数量和孔隙分布的影响,可以为土壤培肥提供科学依据。【方法】采用室内试验方法,设置氨化秸秆加入量为土壤总质量的 0(CK)、 0.384%(S1)、 0.575%(S2)、 0.767%(S3)4个处理,室内培养。在培养0、60、120和180 d,取样测定土壤水分特征曲线(SWRC)数据,利用双指数土壤水分特征曲线模型(DE模型,Double-exponential water retention equation),分析氨化秸秆对土壤剩余孔隙、基质孔隙和结构孔隙的影响; 基于DE模型的微分函数,探究不同氨化秸秆处理对土壤孔隙分布的影响。【结果】不同处理的土壤水分特征曲线SWRC实测值和DE模型模拟值之间的均方根误差介于0.0036和0.0041 cm3/cm3之间,R2介于0.998和0.999之间,土壤含水量模拟值和实测值非常接近1 ∶1,表明DE模型可以准确反映添加氨化秸秆后土壤含水量随吸力的变化规律,较准确地估算土壤不同大小等级孔隙数量变化。培养120 d内,氨化秸秆对土壤剩余孔隙、基质孔隙和结构孔隙影响不显著; 培养180 d时,各处理土壤结构孔隙度表现出随着氨化秸秆添加量的增加而增加的趋势; 此时S3对土壤剩余孔隙影响不显著,显著减小了土壤的基质孔隙度(P0.05),极显著地增加了土壤的结构孔隙度(P 0.01)。在孔隙分布中,氨化秸秆促进了土壤已有孔隙向较大孔隙的发育,显著增加了土壤结构孔隙分布数量; 随着氨化秸秆添加量的增加,土壤结构孔隙的分布数量越大,且峰值出现的越早。氨化秸秆增加了土壤中有机质含量; 土壤结构孔隙和总孔隙均与有机质含量呈显著的正相关关系(P 0.05); 有机质可以黏结团聚土壤的矿物颗粒,有效地促进了土壤结构孔隙的发育; 氨化秸秆对土壤孔隙的影响随着时间的进行越来越明显。【结论】氨化秸秆增加了土壤中有机质含量,促进了土壤孔隙结构的发育,增加了土壤的结构孔隙度和总孔隙度,这对改良和培肥土壤、改善土壤耕性具有重要意义。  相似文献   

5.
微集水种植技术的农田水分调控效果模拟研究   总被引:22,自引:4,他引:22  
农田微集水种植技术是提高旱区农田作物生产力的一项重要的技术选择,带型(沟垄的宽度比例和数值)的优化设计是其研究和开发所面临的关键问题之一。该研究利用模拟降水等方法,通过降水在沟垄间的分配比例、在沟土中水平分布的不均匀程度,在沟内的最大下渗深度及在沟内的垂直分布特征值4个描述降水在沟垄间分布特征参数对同一沟垄宽度比例的不同宽度值处理对农田水分调控的效果进行了比较分析。结果表明:各种降水处理下,对同一沟垄宽度比值,随着带型的窄化(宽度变窄),降水向垄中的侧渗作用增强,在沟内水平分布的不均匀性降低,在沟内的垂直下渗略有减弱;在蓄水保墒效果上,窄带型要优于同一沟垄比值下的宽带型。  相似文献   

6.
7.
试验研究不同灌溉畦长对灌水量、灌水均匀度与土壤NO3--N分布的影响。结果表明,在农民习惯灌水条件下,短畦处理(90m)灌水量为102mm,而长畦处理(180m)灌水量为132mm,且灌水明显增加了长畦处理田块水分、养分的空间变异。长畦处理比短畦处理多损失44mm灌溉水,N素损失增加20kg/hm2。在农民习惯的大肥大水条件下,由灌溉畦长引起的水肥田块空间变异未对冬小麦产量造成明显影响。但缩短畦长是推广应用节水节肥优化生产体系的首要措施。  相似文献   

8.
基于土壤导气率的燥红土孔隙结构及弯曲连通性研究   总被引:2,自引:0,他引:2  
王卫华  张志鹏 《土壤学报》2018,55(2):360-368
土壤气体传输高度依赖土壤孔隙结构,导气率的获取简单、快速、高效,且对土壤结构破坏小,利用PL-300土壤空气传导性测量系统分别对不同含水率、不同容重条件下的原状土与扰动土进行导气率测量,展开针对土壤孔隙结构与弯曲连通性的讨论。结果表明:(1)原状土样本孔隙弯曲连通性随气相饱和度增加而增加的程度较扰动土样本显著,两者相对导气率与饱和度的关系曲线变化走势差异不大,表明即便饱和度一样的条件下,孔隙弯曲连通程度仍然不同;(2)原状土导气率依赖于大孔隙的存在,扰动土导气率不仅依赖于孔隙连通的程度,还取决于孔隙弯曲程度。基于土壤导气率对土壤孔隙结构及弯曲连通性的讨论,在建立气体传输模型时应考虑孔隙尺寸分布对导气率的影响,就原状土与扰动土不同的弯曲连通系数加以区分与讨论,为进一步揭示土壤气体传输的内在机制提供参考。  相似文献   

9.
10.
It is well established that increasing soil bulk density (SBD) above some threshold value reduces plant root growth and thus may reduce water and nutrient acquisition. However, formation and elongation of maize seminal roots and first order lateral (FOL) roots in various soil layers under the influence of SBD has not been documented. Two studies were conducted on a loamy sand soil at SBD ranging from 1.25 g cm–3 to 1.66 g cm–3. Rhizotrons with a soil layer 7 mm thick were used and pre‐germinated plants were grown for 15 days. Over the range of SBD tested, the shoot growth was not influenced whereas total root length was reduced by 30 % with increasing SBD. Absolute growth rate of seminal roots was highest in the top soil layer and decreased with increasing distance from the surface. Increasing SBD amplified this effect by 20 % and 50 % for the top soil layer and lower soil layers, respectively. At the end of the experiment, total seminal roots attributed to approximately 15 % of the total plant root length. Increasing SBD reduced seminal root growth in the lowest soil layer only, whereas FOL root length decreased with SBD in all but the uppermost soil layer. For FOL, there was a positive interaction of SBD with distance from the soil surface. Both, increasing SBD and soil depth reduced root length by a reduction of number of FOL roots formed while the length of individual FOL roots was not influenced. Hence, increasing SBD may reduce spatial access to nutrients and water by (i) reducing seminal root development in deeper soil layers, aggravated by (ii) the reduction of the number of FOL roots that originate from these seminal roots.  相似文献   

11.
《Soil Use and Management》2018,34(1):101-110
Carbon sequestration in agricultural soils may help to reduce global greenhouse gas concentrations, but building up soil carbon levels requires accumulating organic matter faster than it is lost via heterotrophic respiration. Using field and laboratory studies, this study sought to elucidate how tillage, the below‐ground incorporation of cover crop residue, and soil macroporosity affect soil respiration and residue decomposition rates. In the field, residue from a cover crop mixture of barley (Hordeum vulgare ) and crimson clover (Trifolium incarnatum ) was placed into litter bags that were left on the surface versus incorporated into the soil at three depths (4, 8 or 12 cm), while the laboratory study compared surface‐placed versus incorporated litter (8 cm depth). To assess tillage effects on cover crop decomposition, the field study simulated no‐till and conventional tillage treatments, while the laboratory and field studies both included treatments in which artificial soil macropores were created. The field study showed that conventional tillage and the presence of macropores enhanced soil respiration, while in the laboratory study, incorporating cover crop residue resulted in higher soil respiration and faster litter decomposition rates. Additionally, the laboratory measurements showed that macropores increased soil respiration in wet conditions, likely by enhancing oxygen diffusion. Thus, organic matter incorporation and macropores may represent important factors that affect soil respiration and carbon dynamics.  相似文献   

12.
Minimal information has been garnered regarding the spatial distribution of soil water in relation to pores and the soil matrix. Destructive layer-by-layer reconstructions derived from polished section methodology exclude any data of water in the soil. In contrast, microfocus X-ray tube computerized tomography generates images of the internal structure of the soil with a resolution down to 1 μm, at the same time creating a visual image of the spatial distribution of water in undisturbed soils.As X-rays pass through the soil, some radiation is absorbed, some is scattered, and some is transmitted. Using advanced microfocus computerized tomography (μCT) which ensures controlled and stable output intensity for X-ray emissions and thus a constant focal spot size and spatial resolution, the resulting pattern of radiation detects to a 0.5% contrast difference. While 2D X-ray imaging is sufficient in many cases, 3D images derived from X-ray irradiation of a soil sample can reveal complex inner structures in more comprehensive format, providing information on the causal connection of water and soil structure.Using the X-ray Feinfocus Y.FOX System and related programmes, two- and three-dimensional images of two different soils (Haplic Luvisol and Stagnic Anthrosol) at field capacity (pF 1.8) have been produced which show films of water which are associated with the pore surfaces. The mean thickness of the water films was 10.6 μm in the Stagnic Anthrosol and 3.0 μm in the Haplic Luvisol. These results were unexpected in pores >50 μm since at field capacity only the adhesive water should be present which would create water films in the range of nanometres. Myriads of colloidal dispersed nanoparticles, detected with dark field microscopy and SEM, seem to be the source of the adhesion and cohesion, causing micro-rheological effects which lead to water films of up to 30 μm in pores. Additionally, nanoparticles correlated to the clay content (fine clay) appear to conglomerate in the water films, presumably forming surface protuberances on the films of varying extent.  相似文献   

13.
Pierre Robert 《Geoderma》1993,60(1-4):57-72
Soil variability within fields is well documented by a variety of sources: soil survey, soil testing, and crop yields. Technology is emerging to vary field management procedures as the machinery traverses fields. This new concept can increase farm profitabily and reduce environmental pollution. Operational methods of soil characterization includes US National Cooperative Soil Survey maps and databases, various methods of field soil sampling, aerial photography and remote sensing techniques, and some soil sensors. Although some techniques have been used for many years, there is still a strong need to improve precision and procedures of methods. Soil specific management is a high technology type management. Easy-to-use soil characterization tools must be developed and incorporated into decision aid systems to insure a successful adoption of this emerging technology.  相似文献   

14.
生物炭对沙质土水分蒸发和导水率的影响   总被引:6,自引:0,他引:6  
Biochar, as a kind of soil amendment, has important effects on soil water retention. In this research, 4 different kinds of biochars were used to investigate the influences of biochar addition on hydraulic properties and water evaporation in a sandy soil from Hebei Province, China. Biochar had strong absorption ability in the sandy soil. The ratio of water content in the biochar to that in the sandy soil was less than the corresponding ratio of porosity. Because of the different hydraulic properties between the sandy soil and the biochar, the saturated hydraulic conductivity of the sandy soil gradually decreased with the increasing biochar addition. The biochar with larger pore volume and average pore diameter had better water retention. More water was retained in the sandy soils when the biochar was added in a single layer, but not when the biochar was uniformly mixed with soil. Particle size of the added biochar had a significant influence on the hydraulic properties of the mixture of sand and biochar. Grinding the biochar into powder destroyed the pore structure, which simultaneously reduced the water absorption ability and hydraulic conductivity of the biochar. For this reason, adding biochar powder to the sandy soil would not decrease the water evaporation loss of the soil itself.  相似文献   

15.
16.
Numerous studies have been devoted to the physical-chemical weathering processes leading to the creation of unique soil formations having their own history that induce soil-biotic diversity. However, the extent to which unique geomorphic formations influence soil biotic seasonal variation is not clear. Our aim was to define seasonal variations of soil biota in soils of different-aged terraces of the Makhtesh Ramon anticline erosional cirque in southern Israel. The strong effect of Makhtesh Ramon (Ramon Crater) erosional fluvial terrace age initiated by climatic changes during the Late Pleistocene–Early Holocene period on seasonal variations in both soil properties and the abundance and composition of soil biota were demonstrated. However, age dependence was not constant and values for observed soil properties and microbial activity were negligible between younger and older terraces for certain seasons, while free-living nematodes along with bacteria-feeding group were strongly dependent on the geomorphic features of the ages throughout the study period.  相似文献   

17.
  目的  为了有针对性选取典型潮土区的土壤质量评价最优方法,而进行不同种植制度下的土壤质量评价。  方法  以华北典型潮土区为研究区域,结合实测与调研数据,运用主成分分析法筛选最小数据,基于线性和非线性两种评分指标方法与加性(SQIa)、加权加性(SQIw)和记忆(SQIn)三种不同的土壤质量指数法。选取最优方法的同时,评价典型潮土区不同种植制度下的土壤质量。  结果  ①描述性统计分析表明,河北省中部潮土区土壤pH变异系数属于弱变异性,其余指标都属于中等变异性;有效磷、阳离子交换量(CEC)、土壤有机质(SOM)、土壤的速效养分含量的变异系数较大。②相关性研究表明,作物单产与SOM、全氮(TN)和缓效钾含量显著正相关,与土壤pH、速效钾、水溶态硼、有效铜、有效锌和有效铜含量呈显著负相关。③方法研究表明,典型潮土区最小数据集是SOM、缓效钾、有效铁、水解性氮、有效锌、有效磷、有效硫含量。不同方法最小数据集(MDS)与总数据集(TDS)的相关性强弱为:SQIw-NL > SQIa-NL > SQIw-L > SQIa-L > SQIn-L > SQIn-NL。④空间特征研究表明,研究区的土壤质量主要由中等等级II、III和IV等级主导。土壤质量指数(SQI)从南到北减少。⑤土地利用研究表明,不同种植制度土壤质量的大小顺序为:小麦-玉米/豆 > 花生 > 麦-玉米 > 棉花 > 玉米。  结论  华北潮土区的最佳土壤质量评价方法是SQIw-NL法,最小数据集为SOM、缓效钾、有效铁、水解性氮、有效锌、有效磷、有效硫含量,不同管理措施一定程度下影响了作物的生长发育,且小麦-玉米/豆轮作可以提升土壤质量,献县的土壤质量相对较高。  相似文献   

18.
为分析比较不同土地利用方式以及种植年限土壤团聚体质量,获得较灵敏的团聚体状况指标与研究方法,揭示人为活动对土壤质量的作用与影响,以关中地区不同种植年限的菜园土壤和果园土壤为研究对象,经干筛法测定团聚体的组成状况后分别用平均质量直径(MWD)、几何均重直径(GMD)、分形维数D以及矩法参数为指标,分析菜园土壤和果园土壤在系列时间的振动筛分过程中团聚体组成变异特征,结果表明:用MWD和GMD作为团聚状况指标,只有在适宜的振动筛分时间范围内才能基本反映各种性状土壤的团聚水平差异;用分形维数作为指标,表征各类土壤的团聚水平的可信性值得商榷;用矩法的理论和其中的偏倚系数Cs能够较为灵敏地表征各类土壤的团聚水平。同时,研究发现菜园土壤和果园土壤的团聚化水平均有随着种植年限的增加有先提高后降低的趋势。研究得出了矩法的偏倚系数能够更清楚地区分各土壤之间的团聚水平,为评价土壤团聚水平提供更为灵敏的指标。  相似文献   

19.
Soil bulk density varies among sites as well as microhabitats, and in different years at the same site. Bulk density is a highly variable parameter that introduces undefined but significant errors to abundance field data of soil microfauna when given in individuals per g soil dry mass (sdm). Such data are not comparable among sites, microhabitats and years and they are unsuitable for comparative ecological field studies. Soil corer sampling technique, defined as soil surface square units (e.g. 1 cm2), is recommended to overcome the methodological imprecision of estimating abundance of soil microfauna from field studies in ind·g sdm. This removes consideration of variable soil bulk density and enables us to establish abundance values directly in ind·cm−2 without any recalculations. Resultant data are comparable both spatially and temporally. Abundance data as individuals per m2 is a commonly used unit for soil meso-, macro- and megafauna.

Résumé

La densité apparente du sol est extrêmement variable aussi bien selon les sites que selon les microhabitats, ainsi que selon les différentes années sur un même site. La variabilité de ce paramètre induit des erreurs mal définies, mais significatives, dans l'estimation des abondances de la microfaune du sol lorsque celles-ci sont produites en termes de nombre d'individus par gramme de sol sec. De telles données ne sont pas comparables entre sites, microhabitats, ou années, et ne sont donc pas utilisables pour des études d'écologie comparative. La méthode d'échantillonnage par carottage du sol sur une surface connue (par exemple 1 cm2) est recommandée afin de maîtriser l'imprécision liée aux estimations par poids de sol sec. Cela permet de s'affranchir du paramètre de densité apparente du sol et permet de donner directement des valeurs d'abondance en nombre d'individus par cm2 sans aucun calcul. Les données ainsi exprimées sont comparables, à la fois spatialement et temporellement. Le nombre d'individus par m2 est une unité communément utilisée pour la méso-, macro- et mégafaune.  相似文献   

20.
Many unimodal models have been developed to describe the soil water characteristic curves (SWCC). However, for soils with inner porosity the independent draining of the structural and matrix pores frequently results in two distinct air-entry values, which any single unimodal function does not reproduce adequately. In the presented study, a bimodal lognormal (BLN) SWCCs function have been developed for soils with inner porosity. The model involved two overlaying continua pore systems, the pore probability density functions of systems were assumed as lognormal distribution and them can be superposed to obtain the overall probability density function of the soil. The experimental SWCCs data were used to verify the proposed method. The fitted result showed that the BLN approach resulted in the best agreement between measurement and simulation (R2 > 0.99, RSME < 0.66). Another advantage of proposed function was capable of simulating bimodal SWCC using parameters which can be related to physical properties of the structural soils. These physically based parameters could more intuitively analyse the measured data. The BLN approach can potentially be used as effective tool for identifying mechanical and hydraulic porosities in the structural mediums.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号