首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 18O/16O ratios of a number of soil humic and fulvic acids were measured and compared with those of lignin and cellulose samples originating from the same area. The average enrichments above ground water were: cellulose 32%0 humic and fulvic acid 29%0 and lignin 14%0, suggesting that the oxygen in humic and fulvic acid originates pricipally from cellulose or other plant carbohydrates and not lignin as has been suggested.  相似文献   

2.
Incorporation of newly-immobilized N into major soil organic matter fractions during a cropping period under paddy and upland cropping systems in the tropics was investigated in Jawa paddy fields with and without fish cultivation and a Sumatra cassava field in Indonesia. 15N-labelled urea (15N urea) was applied as basal fertilizer, and the soil samples were collected after harvest. The percentage of distribution of the residual N in soil from 15N urea into the humic acids, fulvic acid fraction, and humin were 13.1–13.9, 19.0–20.5, and 53.4–54.3%, respectively, for the Jawa paddy soils, and 14.9, 27.4, and 52.4%, respectively, for the Sumatra cassava soil. These values were comparable to the reported ones for other climatic zones. The percentage of distribution of 15N urea-derived N into humic acids was larger than that of total N into the same fraction in all the soils. The distribution into the fulvic acid fraction was also larger for 15N urea-derived N than for total N in the Jawa soils. Humic and non-humic substances in the fulvic acid fraction were separated using insoluble polyvinylpyrrolidone (PVP) into the adsorbed and non-adsorbed fractions, respectively. Less than 5% of the 15N urea-derived N in fulvic acid fraction was detected in the PVP-adsorbed fraction (generic fulvic acids). The proportion of non-hydrolyzable N remained after boiling with 6 M HCl in the 15N urea-derived N was 9.4–13.5%, 17.3–26.7%, and 8.4–16.6% for the humic acids, generic fulvic acids, and humin, respectively. The significantly low resistance to acid hydrolysis suggested that the 15N urea-derived N was less stable than the total N in soil regardless of the fractions of humus.  相似文献   

3.
The activity of a purified urease, obtained from Bacillus pasteurii, was inhibited by humic and fulvic acids obtained from an agricultural soil. Enzyme kinetic studies showed that the humic substances affected the affinity of the enzyme for its substrate (Km) and the maximum velocity of the reaction (Vmax). The Vmax was inhibited to the same extent by both humic (HA) and fulvic (FA) acids, the precise effect depending on the pH and concentration of humic substance. At pH 4.0, HA concentrations of 25 pg cm?3 and 10 μg cm?3 inhibited the Vmax by 38.5% and 20% respectively. HA and FA had similar effects on the Km but in this case the lowering of the affinity of the enzyme for its substrate was not concentration dependent in the range 0–25 μg cm?3 of humic substance. Typically, the affinity was decreased from a KM of 50 mM in the control to 67 mM in the presence of HA and FA. The effects were not due primarily to the ash or N contents of the humic substances because de-ashed humic acid and synthetic model humic (made from catechol, guaiacol, pyrogallol, resorcinol and protocatechuic acid) and fulvic acid (made from polymaleic acid), containing virtually no ash or N, were equally as effective. The effect was not related to the phenolic monomers which, before polymerization, had no effect on urease activity.  相似文献   

4.
Samples described in the previous paper were analyzed for humus composition by the method of Kumada el al,, elementary composition of humic acids, nitrogen distribution among humic acid, fulvic acid, and humin, and organic matter composition by the modified Waksman method. The samples obtained by physical fractionation from each horizon of Higashiyama soil were as follows: f1 and f2 from the L layer, f1, f2 and f3 from the F layer, f1 f2, sand, silt, and clay fractions from the H-A and A horizons.

With the progress of decomposition, the following tendencies were rather clearly observed.

The extraction ratio of soluble humus, amounts of humic acid and fulvic acid, and PQ, value tended to increase with some exceptions. The degree of humification of humic acid proceeded. Most humic acids belonged to the Rp type, but those of the clay fractions belonged to the B type.

As for the elementary composition of humic acid, transitional changes from the Lf1 to the clay fraction of the A horizon were observed. But differences in elementary composition among humic acids were far less, compared with those among whole fractions.

Nitrogen contents in humic, fulvic, and humin fractions increased with the progress of decomposition and humiliation, and the largest relative increase was found in fulvic acid nitrogen.

According to the modified Waksman's method, the amounts of residues and protein increased, while the total amounts of each extract, except for the HCl extract, and the amounts of sugars and starch, phenolic substances, hemicelluloses and pectin, and cellulose decreased. Sugars and starch comprised only a small portion of the hot water extract, and polyphenols substances comparable to sugars and starch were also found in the extract. Hemicelluloses and pectin accounted for only about one-half of the HCl extract. Several characteristic differences in the elementary composition of extracts and residues were found.

Pheopigments existed in benzene-ethanol extracts and their amounts seemed to decrease from Lf1 to Ff2.  相似文献   

5.
The objective was to develop and adapt a versatile analytical method for the quantification of solvent extractable, saturated long‐chain fatty acids in aquatic and terrestrial environments. Fulvic (FA) and humic (HA) acids, dissolved organic matter (DOM) in water, as well as organic matter in whole soils (SOM) of different horizons were investigated. The proposed methodology comprised extraction by dichloromethane/acetone and derivatization with tetramethylammonium hydroxide (TMAH) followed by gas chromatography/mass spectrometry (GC/MS) and library searches. The C10:0 to C34:0 methyl esters of n‐alkyl fatty acids were used as external standards for calibration. The total concentrations of C14:0 to C28:0 n‐alkyl fatty acids were determined in DOM obtained by reverse‐osmosis of Suwannee river water (309.3 μg g—1), in freeze‐dried brown lake water (180.6 μg g—1), its DOM concentrate (93.0 μg g—1), humic acid (43.1 μg g—1), and fulvic acid (42.5 μg g—1). The concentrations of the methylated fatty acids (n‐C16:0 to n‐C28:0) were significantly (r2 = 0.9999) correlated with the proportions of marker signals (% total ion intensity (TII), m/z 256 to m/z 508) in the corresponding pyrolysis‐field ionization (FI) mass spectra. The concentrations of terrestrial C10:0 to C34:0 n‐alkyl fatty acids from four soil samples ranged from 0.02 μg g—1 to 11 μg g—1. The total concentrations of the extractable fatty acids were quantified from a Podzol Bh horizon (26.2 μg g—1), Phaeozem Ap unfertilized (48.1 μg g—1), Phaeozem Ap fertilized (57.7 μg g—1), and Gleysol Ap (66.7 μg g—1). Our results demonstrate that the method is well suited to investigate the role of long‐chain fatty acids in humic fractions, whole soils and their particle‐size fractions and can be serve for the differentiation of plant growth and soil management.  相似文献   

6.
Summary Two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) were incubated with 15N-labelled soybean tops for up to 20 weeks at 30°C. Mineralization of soybean 15N was slightly more rapid in the Pakistani soils, and after 20 weeks of incubation, 50%, 53%, and 56% of the applied 15N was accounted for as (NH4 ++NO3 )-N in Drummer, Hafizabad, and Khurrarianwala soils, respectively. Potentially mineralizable N (determined by anaerobic incubation) varied between 1.5% and 10% of the applied 15N in the three soils at different stages of incubation; somewhat higher percentages were mineralizable in the Pakistani soils than in the Drummer soil. From 3.7% to 9% of the applied 15N was accounted for in the microbial biomass. From 10% to 32% of the applied N was recovered in the humic acid and fulvic acid fractions of the organic matter by sequential extraction with Na4P2O7 and NaOH; from 12% to 49% was recovered in the humin fraction. Of the three soils, Drummer soil contained more 15N as humic and fulvic acids. In all cases, the 15N was approximately equally distributed between the humic and fulvic acid fractions. A significant percentage of the humin 15N (52%–78%, equivalent to 8%–34% of the applied 15N) occurred in non-hydrolyzable (6 N HCl) forms. Of the hydrolyzable 15N, 42%–51% was accounted for as amino acid-N followed in order by NH3 (17%–30%), hydrolyzable unknown forms (20%–22%), and amino sugars (6%–2%). The recovery of applied 15N for the different incubation stages was 87±22%. Recovery was lowest with the Khurrarianwala soil, presumably because of NH3 volatilization losses caused by the high pH of this soil.  相似文献   

7.
The effect of endogeic earthworms (Octolasion tyrtaeum) and the availability of clay (Montmorillonite) on the mobilization and stabilization of uniformly 14C-labelled catechol mixed into arable and forest soil was investigated in a short- and a long-term microcosm experiment. By using arable and forest soil the effect of earthworms and clay in soils differing in the saturation of the mineral matrix with organic matter was investigated. In the short-term experiment microcosms were destructively sampled when the soil had been transformed into casts. In the long-term experiment earthworm casts produced during 7 days and non-processed soil were incubated for three further months. Production of CO2 and 14CO2 were measured at regular intervals. Accumulation of 14C in humic fractions (DOM, fulvic acids, humic acids and humin) of the casts and the non-processed soil and incorporation of 14C into earthworm tissue were determined.Incorporation of 14C into earthworm tissue was low, with 0.1 and 0.44% recovered in the short- and long-term experiment, respectively, suggesting that endogeic earthworms preferentially assimilate non-phenolic soil carbon. Cumulative production of CO2-C was significantly increased in casts produced from the arable soil, but lower in casts produced from the forest soil; generally, the production of CO2-C was higher in forest than in arable soil. Both soils differed in the pattern of 14CO2-C production; initially it was higher in the forest soil than in the arable soil, whereas later the opposite was true. Octolasion tyrtaeum did not affect 14CO2-C production in the forest soil, but increased it in the arable soil early in the experiment; clay counteracted this effect. Clay and O. tyrtaeum did not affect integration of 14C into humic fractions of the forest soil. In contrast, in the arable soil O. tyrtaeum increased the amount of 14C in the labile fractions, whereas clay increased it in the humin fraction.The results indicate that endogeic earthworms increase microbial activity and thus mineralization of phenolic compounds, whereas clay decreases it presumably by binding phenolic compounds to clay particles when passing through the earthworm gut. Endogeic earthworms and clay are only of minor importance for the fate of catechol in soils with high organic matter, clay and microbial biomass concentrations, but in contrast affect the fate of phenolic compounds in low clay soils.  相似文献   

8.
To investigate the chemical heterogeneity of humic substances in relation to molecular size, fulvic and humic acids were extracted and purified from the surface horizon of a Humic Gleysol in northern Switzerland. A fractionation scheme using hollow‐fibre ultrafiltration cartridges was developed and used to obtain four size fractions of the humic acid with nominal molecular weight ranges > 300 kDa, 100–300 kDa, 30–100 kDa, and 10–30 kDa. The fulvic acid and all humic acid fractions were characterized by size exclusion chromatography, elemental analysis (C, H, N, S), as well as spectroscopic techniques including UV‐VIS, CP‐MAS 13C‐NMR, FT‐IR, and fluorescence spectroscopy. Clear chemical differences between the humic acid size fractions were observed. Smaller size fractions of the soil humic acid contained more chargeable functional groups and a larger percentage of aromatic carbon than the larger size fractions. Conversely, the percentage of aliphatic carbon increased with increasing apparent molecular weight. The chemical composition of the smallest humic acid fraction differed clearly from the fulvic acid fraction, despite similar apparent molecular size and carboxyl carbon content. Small humic acids contained much more aromatic carbon and less aliphatic carbon than the fulvic acid fraction. Apparently, humic size fractions differ in their chemical composition, which can have important implications for their environmental behaviour.  相似文献   

9.
Dehydrogenase activity, alkaline phosphatase activity and NH4 +, NO2 and NO3 concentrations were monitored in an aridisol treated with three commercially available humic amendments. The materials were of plant residue, lignite and peat origins. The humus plant residues, fulvic acids, with a high content of Kjeldahl-N, sustained high enzyme activities and highest levels of NH4 +, NO2 and NO3 . Humus lignite (mainly humic acids) produced the highest dehydrogenase activity, whereas the alkaline phosphatase activity was not as high as that amendment with humus plant residues. The lower activity of alkaline phosphatase could not be attributed to the higher P content of humus lignite. Nitrification was also low, probably due to the low N content of this fertilizer. The amendment of humus peat origin (only humic acids) did not increase enzyme activity or inorganic N concentrations of soil. Our results show that although these materials are widely utilized and recommended as microbial and plant activators, they all behave very differently, and the effects on soil microbiological activity cannot be predicted solely on the basis of their humic and/or fulvic acid contents.  相似文献   

10.
Abstract

Differences were studied in humic (HA) and fulvic acid (FA) extracted from soils and streams in South Georgia by the Amberlite XAD‐8 resin and conventional NaOH method. Characterization analysis was performed by liquid 13C NMR, infrared (IR) spectroscopy, scanning electron microscopy (SEM), and chemical analysis. The NMR spectra indicated that the resin method yielded black water HA and FA with spectroscopic, chemical and elemental characteristics different from those isolated by the conventional NaOH method. Humic acids from both the resin and conventional NaOH methods were composed of aliphatic, aromatics and carboxyl groups, but the “resin”; HA contained more aliphatic groups. These differences were also noticed between the FA fractions obtained by the two methods. The differences corresponded to differences in IR spectra. The IR spectrum of “resin”; FA exhibited only a weak shoulder at 1625/cm for the COO”; stretching vibration, in contrast to that of FA isolated by the conventional NaOH procedure. Apparently, the high aliphatic‐CH3 group content has blocked the vibration above, as evidenced by methylation of HA. Fulvic acid extracted by the resin method was also higher in total acidity, but considerably lower in N content than FA obtained by the conventional NaOH method. Both methods yielded black water FA which was less aromatic in nature than black water HA, or soil FA.  相似文献   

11.
ABSTRACT

Sugarcane is a strategic commodity in Indonesia. It is usually raised in a monoculture system. There is a lack of information about the effects of extended sugarcane monoculture on the soil carbon fraction. The aim of this study was to determine the relative changes in the soil organic C fractions in response to the duration of sugarcane monoculture on Entisols, Inceptisols, and Vertisols. The measured variables were the percentages of sand, silt, and clay, organic matter (OM), total nitrogen (TN), pH (H2O), cation exchange capacity (CEC), NH4 +, NO3 -, labile carbon fraction (soil carbon mineralization (C-Min), soil microbial carbon (C-Mic), and carbon particulate organic matter (C-POM)), and stable carbon fraction (humic and fulvic acids). Soil type with sugarcane monoculture period had significant influences on the percentages of clay, sand, silt, CEC, and pH (H2O). Soil type and sugarcane monoculture period had no apparent significant effect on C-Min or C-POM but did significantly influence C-Mic. The humic and fulvic acid levels in all three soil types were affected by the duration of sugarcane monoculture. To establish the impact of long-term sugarcane monoculture on the physicochemical properties of soils with various textures, it is more appropriate to measure the soil stable carbon fractions such as humic and fulvic acid rather than the soil labile carbon fractions such as C-Min, C-POM, or C-Mic.  相似文献   

12.
The mobility of hydrophobic organic compounds (HOCs) in soils can be influenced by the presence of dissolved organic matter (DOM). While numerous studies have determined interactions of HOCs with humic and fulvic acids, only few data exist on the partitioning of HOCs to natural, non‐fractionated DOM as it occurs in soil solutions. In this study, DOM was extracted from 17 soil samples with a broad range of chemical and physical properties, originating from different land uses. The partition coefficients of pyrene to DOM were determined in all soil extracts and for two commercial humic acids using the fluorescence quenching method. For the soil extracts, log KDOC values ranged from 3.2 to 4.5 litres kg?1. For the Aldrich and Fluka humic acids, log KDOC was 4.98 and 4.96 litres kg?1, respectively, thus indicating that they are not representative for soil DOM. After excluding these two values, the statistical analysis of the data showed a significant negative correlation between log KDOC and pH. This was also shown for one sample where the pH was adjusted to values ranging from 3 to 9. A multiple regression analysis suggested that ultraviolet absorbance at 280 nm (an indicator for aromaticity) and the E4:E6 ratio (an indicator for molecular weight) had additional effects on log KDOC. The results indicate that the partitioning of pyrene to DOM is reduced at alkaline pH, probably due to the increased polarity of the organic macromolecules resulting from the deprotonation of functional groups. Only within a narrow pH range was the KDOC of pyrene mainly related to the aromaticity of DOM.  相似文献   

13.
X-ray photoelectron spectroscopy(XPS) was applied to examine the N structures of soil humic substances and some of their analogues.It was found that for soil humic substances XPS method gave similar results as those obtained by ^15N CPMAS NMR (cross-polarization magic-angle spinning nuclear magnetic resonance) method.70%-86% of total N in soil humic substances was in the form of amide,and 6%-13% was presented as ammes,with the remaining part as heterocyclic N.There was no difference in the distribution of the forms of N between the humic substances from soils formed over hundreds or thousands of years and the newly formed ones.For fulvic acid from weathered coal and benzoquinone-(NH4)2SO4 polymer the XPS results deviated significantly from the ^15N CPMAS NMR data.  相似文献   

14.
Summary The application of liquid anhydrous NH3 to soil leads to chemical fixation of NH3 by organic matter and of NH inf4 sup+ by clay minerals. A laboratory study was conducted to ascertain the biological transformations of newly fixed liquid anhydrous 15NH3 in a Drummer silty clay loam by incubation of the 15N-labelled soil with glucose for 0, 7, 30, and 90 days and by sequential extraction of organic-matter-fixed 15NH3 with 0.15 M Na4P2O7, 0.15 M KOH, 0.1 M NaOH, and acidified dimethyl sulfoxide. About 16% of the 15NH3 injected was fixed, of which 52% was accounted for by clay fixation. The various humic fractions (fulvic acid, humic acid, and humin) were obtained, and the distribution patterns of the fixed 15NH3-N in these fractions were compared. The potential availability of the fixed 15NH3-N was also estimated. The percentage of the 15NH3 recovered as organic-matter-fixed 15NH3 decreased as the length of incubation increased (to 28% after 90 days); the decrease was attributed in part to an increase in the amount recovered as clay-fixed NH inf4 sup+ (from 52 to 64%). Changes in the distribution of the organic-matter-fixed 15NH3-N in the humic fractions included: (1) an increase in the relative amount of the fixed 15NH3 as humic acid in both the Na4P2O7 and KOH extracts, (2) an increase in the percentage of organic-matter-fixed 15NH3-N in the fulvic acid fractions as high-molecular-weight components (determined by dialysis) or as generic fulvic acid (determined by sorption-desorption from XAD-8 resin), and (3) an increase in the percentage of the organic-matter-fixed 15NH3 as humin. The potential availability of the organic-matter-fixed 15NH3-N decreased as the length of the incubation increased, from 22 to 4% over the 90-day incubation period, and was correlated significantly (0.05 level) with Na4P2O7-extractable N. These results suggest that organic-matter-fixed liquid anhydrous NH3 is initially more labile than the native soil N but becomes less labile with time.  相似文献   

15.
Purpose

To compare Cd removal from different soils with three washing agents recovered from sewage sludge (dissolved organic matter (DOM), soluble humic-like substances (HLS), soluble humic substances (SHS)). Also, to investigate how washing with these agents changes soil organic-matter composition (OM).

Materials and methods

Sandy clay loam (S1) and clay (S2) highly contaminated with Cd (300 mg kg?1) were washed with DOM, HLS, or SHS solutions at various pHs, and with various washing times and washing modes (single or double). Cd distribution and OM composition were determined (including content of humic substances (HS), fulvic fraction (FF), labile humic acids (L-HA), and stable humic acids (S-HA)).

Results and discussion

Cd removal proceeded with pseudo-second-order kinetics. Equilibrium was reached in 30 min (S1) and 60 min (S2). DOM, HLS, and SHS removed 75–82% of Cd from S1, and 80–87% from S2. The most mobile fraction of Cd was removed after one wash. S2 retained more OM, including HS, than S1. Although washing did not change the HA/FF ratio in most variants, washing with DOM and HLS increased the percentage of L-HA in both soils. Washing with SHS increased S-HA content in both soils, but the percent content of S-HA was similar to that in the unwashed soil.

Conclusions

DOM, HLS, and SHS derived from sewage sludge can effectively remediate clay and sandy clay soils highly contaminated with Cd. Washing with an SHS solution can increase the content of the most stable carbon forms (HA), which is beneficial for carbon sequestration in remediated soils.

  相似文献   

16.
Abstract

Humates are often used in agriculture as a source of organic matter. This study was conducted to characterize a commercial humate and to evaluate its chemical and decomposition characteristics. Characterization methods included fractionization of humic and fulvic acids of the humate, based on their alkali/acid insolubility; elemental analysis; acidic functional group analysis; and E4/E6 ratio determinations. The humate consisted of the following: 58% organic matter, 32% ash, and 10% moisture. Humic fraction was mostly humic acid (76%), with some fulvic acid (18%). Organic elemental composition [59% carbon (C), 5% hydrogen (H), and 36% oxygen (O)] also suggests a humic‐acid nature. Inorganic elemental content of this humate, which was primarily aluminum (Al) [4.9%] and iron (Fe) [0.46%], reflects its spodic origin. Much of the Al present, however, results from the flocculant (alum) used at the mining site to precipitate the humate. The relatively low total acidity of this humate (250 cmol/kg) suggests the blockage of some of its functional groups by Al, Fe, and associated clay minerals. After purification, total acidity increased to 510 cmol/kg and acidity associated with carboxyl groups increased to 280 cmol/kg. Results of E4/E6 determinations for the humate (2.5) and the humic‐acid fraction (4.8) also suggested that the organic fraction was predominately humic acid. Decomposition of the humate was estimated by measuring the quantity of carbon dioxide (CO2) evolved during a four‐week incubation. Results suggested a relative resistance to microbial degradation. However, results also suggested the presence of some readily decomposable C compounds associated with humate. Agricultural use of this humate reguires some modifications to produce a more reactive material. This may include a change of flocculant and a lowering of its ash content.  相似文献   

17.
A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base‐urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO‐acid) for the humin‐enriched clay separates. The extracts from base‐urea and DMSO‐acid would be regarded as ‘humin’ in the classical definitions. The fractions isolated from aqueous base, base‐urea and DMSO‐acid were characterized by solid and solution state NMR spectroscopy. The base‐urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base‐urea and DMSO‐acid solvents isolated ca. 93% of total organic carbon from the humin‐enriched fine clay fraction (<2 μm). Characterization of the humic fractions by solid‐state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base‐urea extract. Lignin‐derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char‐derived structures were contained in the fulvic acids and fulvic acids‐like material isolated from the base‐urea solvent. After extraction with base‐urea, the 0.5 m NaOH extract from the humin‐enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution‐state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO‐acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long‐chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids‐like material isolated in the base‐urea medium, indicating that urea can liberate char‐derived material hydrogen bonded or trapped within the humin matrix.  相似文献   

18.
Calcium-bound and iron- and aluminium-bound humus extracted from different soils collected from north to south of China were characterized by chemical and spectroscopic methods. Meaningful differences in the composition and structure between them were revealed by 13C NMR, visible spectroscopy and elemental analysis. Results showed that the contents of carbon, hydrogen and nitrogen were higher in iron- and aluminium-bound humus than in calcium-bound humus while oxygen content in calcium-bound humus was shown to be higher. The calcium-bound humus had higher C/N and O/C ratios than iron- and aluminium-bound humus. The calcium-bound humic acid (HA1) showed higher E4/E6 ratios than iron- and aluminum-bound humic acid (HA2) while iron- and aluminum-bound fulvic acid (FA2) showed higher E4/E6 ratios than calcium-bound fulvic acid (FA1). An inverse relationship between E4/E6 ratios and aromaticity as determined by 13C NMR spectra was observed for HA and FA from black soil. The 13C NMR spectroscopy revealed that HA2 was more aromatic than HA1. On the other hand, FA1 exhibited a higher aromaticity than FA2.  相似文献   

19.
Cyanide adsorption on sesquioxides, clay-minerals and humic substances The adsorption of cyanide (KCN) on sesquioxides, clay minerals, and humic substances at different pH-values was studied. Moreover we looked for the CN-adsorption on L-layers of the humus forms mull, moder and mor. Cyanide was only adsorbed by humic acid. The amount of CN adsorbed increased with increasing pH of the reaction solution. IR-spectroscopic investigations of CN treated humic acids revealed that the cyanide was adsorbed at low pH (<7) as HCN-molecules by formation of hydrogen bonds with COOH-, COH-, OH- and NH2-groups of the humic acid. At pH > 7 the cyanide was mainly adsorbed as CN? by charge transfer with acceptor-molecules such as chinones. The cyanide adsorption of L-layers of humus forms decreased in the order mor > mull > moder. It is surmised that the HCN-molecules were not only adsorbed by humic acids in these layers but also by oxidation products of lignin, pectin, protein, cellulose, and carbon-hydrates of fulvic acids. Solutions of K2HPO4 did not desorb cyanides from humic acids to any great extent.  相似文献   

20.
Soil organic matter was extracted by a mixture of O.IM Na4P2O: O.IM NaOH from a chronosequence of weakly weathered soils developed on aeolian sand, and fractionated into humin (non-extractable), humic acid, and fulvic acid. The mass of total organic carbon in the profiles, the 14C content and the 13C/12C ratios were also determined. The weight of total carbon increased rapidly at first and then gradually without attaining a steady state. This trend was also shown by the humin and fulvic acid fractions, but the humic acid fraction appeared to have reached a maximum after about 3000 years. The order of total weights of the organic fractions was humin > fulvic acid > humic acid. The evidence suggests that the proportions of the humic fractions formed by decomposition are related to soil differences but not to vegetation. The greater part of the plant material found in the soils appears in the humin and fulvic acid fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号