首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Essential oil of rosemary (Rosmarinus officinalis L.) possesses good olfactory properties and is suitable for use in perfumes, soaps, and fragrances. Field experiments were conducted for 2 years (2003?2005) in an area experiencing a semi-arid tropical climate to study the influence of vermicompost and chemical fertilizer on growth, herb, oil yield, nutrient uptake, soil fertility, and oil quality of rosemary. Results from the experiment revealed that among the seven treatments, the application of vermicompost (8 t ha?1) + fertilizer nitrogen (N)?phosphorus (P)??potassium (K) (150:25:25 kg ha?1) produced optimum herbage and oil yield of rosemary compared with control (no fertilizer) and was found to be on par with application of fertilizer NPK 300:50:50 kg ha?1. Content and quality of oil were not influenced by vermicompost and chemical fertilizers. Furthermore, it was noticed that available N and P were greater in postharvest soils that received vermicompost alone or in combination with inorganic fertilizers than control (no fertilizer) and inorganic fertilizer?treated soil. This study indicates that combined application of vermicompost and chemical fertilizer helps to increase crop productivity and sustain the soil fertility.  相似文献   

2.
甘泉峰  黄婷  李媛  杭慧娴  苏愉程  赵耕毛 《土壤》2023,55(2):262-271
以蚯蚓粪和无机复合肥为材料,设置CK(不施肥)、T1(无机复合肥300kg/hm2)、T2(无机复合肥600kg/hm2)、T3(蚯蚓粪7.5 t/hm2)、T4(蚯蚓粪7.5 t/hm2、无机复合肥300 kg/hm2)、T5(蚯蚓粪7.5 t/hm2、无机复合肥600 kg/hm2)、T6(蚯蚓粪15 t/hm2)、T7(蚯蚓粪15 t/hm2、无机复合肥300 kg/hm2)、T8(蚯蚓粪15 t/hm2、无机复合肥600 kg/hm2)共计9个处理,研究了蚯蚓粪和无机复合肥配施下滨海脱盐土土壤性质的变化,栽培菊芋生长特性及养分吸收规律,以确立滨海脱盐土菊芋高效栽培最适有机无机肥配施方案。结果表明:随菊芋生育进程推进,土壤可溶性盐含量下降,T6处理幼苗期和开花期的可溶性盐含量均最低,分别为0.28和0.29 g/kg,较...  相似文献   

3.
A field study was carried out to analyze the short-term impacts of replacing mineral by organic fertilizers on the microbial and biochemical parameters relevant for soil fertility and crop yield. Three types of fertilization regimes were compared: (1) conventional fertilizer regime with inorganic fertilizer, and combined integrated fertilizer regimes in which 25 % of the nutrients were supplied by either (2) rabbit manure or (3) vermicompost. The effects on microbial community structure and function (phospholipid fatty acid [PLFA] profiles, bacterial growth, fungal growth, basal respiration, β-glucosidase, protease and phosphomonoesterase activities), soil biochemical properties (total C, dissolved organic carbon [DOC], N-NH4 +, N-NO3 ?, PO4, total K) and crop yield were investigated in the samples collected from the experimental soil at harvest, 3 months after addition of fertilizer. The integrated fertilizer regimes stimulated microbial growth, altered the structure of soil microbial community and increased enzyme activity relative to inorganic fertilization. Bacterial growth was particularly influenced by the type of fertilizer regime supplied, while fungal growth only responded to the amount of fertilizer provided. The use of manure produced a fast increase in the abundance of PLFA biomarkers for Gram-negative bacteria as compared to inorganic fertilizer. Nutrient supply and crop yield with organic fertilizers were maintained at similar levels to those obtained with inorganic fertilizer. The effects of the organic amendments were observed even when they involved a small portion of the total amount of nutrients supplied; thereby confirming that some of the beneficial effects of integrated fertilizer strategies may occur in the short term.  相似文献   

4.
A 2-year field study was conducted to evaluate the effect of two organics, farmyard manure and vermicompost, each at three rates (0, 5, 10 t ha?1 and 0, 1, 2 t ha?1, respectively), along with two levels of mineral fertilizer (75% and 100% of recommended dose), on crops yields and soil properties under a wheat–fodder maize cropping sequence. Individual addition of organics at a higher level increased yields of wheat and subsequent maize. Soil microbial biomass carbon was enhanced as both a direct and residual effect with the addition of farmyard manure followed by vermicompost and fertilizer treatments, and also by combined addition of manure with either vermicompost or mineral fertilizer. Farmyard manure increased the availability of soil macro- and micronutrients, whereas vermicompost influenced only the availability of micronutrients at wheat harvest. A residual effect of farmyard manure and mineral fertilizers was found for available N. Meanwhile, the residual status of micronutrients in the soil was either maintained or significantly improved due to organic amendments (Mn and Zn with farmyard manure; Fe and Zn with vermicompost). Interaction of farmyard manure and vermicompost at a higher level benefited the next crop by increasing the yield of fodder maize and improving the availability of P and metals in soil.  相似文献   

5.
A field experiment was conducted to evaluate the effect of organic amendments on grain yield, leaf chlorophyll content, and some morphological characteristics of three soybean cultivars in Mazandaran province located at north of Iran in 2006. Chemical fertilizer (75 kg ha?1 potassium sulfate and triple superphosphate), two levels of municipal solid waste, vermicompost and sewage sludge biosolid (20 and 40 Mg ha?1) enriched with%50 chemical fertilizers needed by soil were applied to soybean cultivars (‘032’ and ‘033’ promising lines and ‘JK’ cultivar). The experiment was carried out in split plot based on randomized complete block design with three replications. Some important plant characters such as grain yield, leaf chlorophyll content, number of branches, number of nodes on the main stem, length of internodes, stem diameter, first pod height and plant height were determined. Results showed that application of 40 Mg ha?1 sewage sludge enriched with chemical fertilizers increased plant grain yield and stem diameter and application of 40 Mg ha?1 vermicompost enriched with half chemical fertilizer increased the number of nodes on the main stem, significantly. The maximum length of internodes, first pod height and plant height were obtained when the 40 Mg ha?1 sewage sludge and vermicompost enriched with half chemical fertilizer in ‘032’ line was used. Biomass, number of branches, stem diameter, number of nodes on the main stem of soybean cultivars had a positive and significant correlation with grain yield.  相似文献   

6.
A long-term experiment was carried out on a Vertisol from 1986 to 1992 to examine the combined effects of NPK fertilizers on yield using sorghum (Sorghum bicolor L. Moench cv. CSH 5) and short-duration pigeonpea (Cajanus cajan L. Millsp. cv. ICPL 87). The fertilizer treatments were as follows: 0 (no fertilization), N (150 kg N ha-1 ), P (65.5 kg P2O5 ha-1), K (124.5 kg K2O ha-1), and all possible combinations (NP, NK, PK, and NPK). In this study we continued this experiment during the period 1993 to 1994 and analyzed the crop yield response to fertilizers and the N balance. The amount of N derived from the atmosphere and fertilizer was estimated by the 15N natural abundance method and l5N isotope dilution method, respectively. A combined application of Nand P fertilizers gave the highest grain yield for the two crops under the 8th and 9th continuous croppings, unlike the application of K fertilizer. The values of total N for the two crops were significantly higher in the NP and NPK plots. These crops took up N mainly from soil. There was a significant positive relationship between the uptake of Ndff and Ndfs by each crop. Pigeonpea or sorghum took up more N from the soil in the N fertilizer plots than in the plots without N, suggesting that soil N fertility was enhanced and the amount of N supplied from soil increased in the plots with consecutive application of N fertilizer for 7 y. Even pigeonpea, which fixes atmospheric N inherently, needed N fertilizer to achieve high grain yield, suggesting that N fixation by the nodules was not always sufficient to meet the N requirements of the crop under these conditions. Although fertilizer N exerted a beneficial effect on plant growth and yield in the two crops, the values of fertilizer N recovery (FNR) by the two crops were considerably low. Therefore, it is suggested that the development of N fertilizer management which could maximize FNR of each crop should be promoted.  相似文献   

7.
The aim of this investigation was to prepare and evaluate organic manures (vermicompost, compost and FYM) and mineral fertilizers on crop productivity and changes in soil organic carbon (SOC) and fertility under a four-year-old maize-wheat cropping system. The results demonstrated that yields and nutrient uptake by crops increased significantly in plots receiving manures and mineral fertilizers either alone or in combination than unfertilized control. Application of manures and fertilizers also enhanced SOC, mineral N, Olsen-P and ammonium acetate-extractable K (NH4OAc-K) after both the crops. Surface soil maintained greater build-up in SOC, mineral N, Olsen-P and NH4OAc-K than sub-surface soil. Plots amended with manures at 5 t ha?1 and 50% recommended dose of fertilizer (RDF) had pronounced impact on improving SOC and fertility after both the crops indicating that integrated use of manures and mineral fertilizers could be followed to improve and maintain soil fertility, increase crop productivity under intensive cropping system.  相似文献   

8.
One goal in the face of deficit water conditions is to increase growth and yield. Agro-industrial production frequently causes environmental pollution by using chemical fertilizers. In recent decades, bio-fertilizers such as vermicompost have been used as a safe alternative to chemical fertilizer. The present study considered the response of the chickpea to different combinations of vermicompost and water deficit stress in a greenhouse environment. Plant response was determined by measuring a range of morpho-physiologic parameters. The treatments were addition of 0%, 10%, 20%, and 30% of vermicompost to soil, and water deficit stress at the following levels: non-stress (100% of field capacity), moderate water stress (75% of field capacity), and severe water stress (25% of field capacity). The results showed that vermicompost had a significant effect on all traits under stress and non-stress conditions. The vermicompost treatments under non-stress conditions significantly increased plant height, number of pods, leaf area, stem and leaf dry weight, pod dry weight, chlorophyll a, carotenoid, total chlorophyll content, CO2 assimilation rate, internal CO2 concentration, and water-use efficiency over that of the control condition. The addition of 30% vermicompost under moderate and severe water stress conditions significantly increased plant height, number of pods, leaf area, leaf dry weight, carotenoids, and water-use efficiency over that of the control level. This study confirmed that vermicompost improved the morphological features, soil biological activity, and quality of the chickpea, but did not positively influence the physiological features under moderate and severe water deficit stress.  相似文献   

9.

Purpose

We examined the effects of vermicompost application as a basal fertilizer on the properties of a sandy loam soil used for growing cucumbers under continuous cropping conditions when compared to inorganic or organic fertilizers.

Materials and methods

A commercial cucumber (Cucumis sativus L.) variety was grown on sandy loam soil under four soil amendment conditions: inorganic compound fertilizer (750 kg/ha,), replacement of 150 kg/ha of inorganic compound fertilizer with 3000 kg/ha of organic fertilizer or vermicompost, and untreated control. Experiments were conducted in a greenhouse for 4 years, and continuous planting resulted in seven cucumber crops. The yield and quality of cucumber fruits, basic physical and chemical properties of soil, soil nutrient characteristics, and the soil fungal community structure were measured and evaluated.

Results and discussion

Continuous cucumber cropping decreased soil pH and increased electrical conductivity. However, application of vermicompost significantly improved several soil characteristics and induced a significant change in the rhizosphere soil fungal community compared to the other treatments. Notably, the vermicompost amendments resulted in an increase in the relative abundance of Ascomycota, Chytridiomycota, Sordariomycetes, Eurotiomycetes, and Saccharomycetes, and a decrease in Glomeromycota, Zygomycota, Dothideomycetes, Agaricomycetes, and Incertae sedis. Compared to the organic fertilizer treatment, vermicompost amendment increased the relative abundance of beneficial fungi and decreased those of pathogenic fungi. Cucumber fruit yield decreased yearly under continuous cropping conditions, but both inorganic and organic fertilizer amendments increased yields. Vermicompost amendment maintained higher fruit yield and quality under continuous cropping conditions.

Conclusions

Continuous cropping decreased cucumber yield in a greenhouse, but basic fertilizer amendment reduced this decline. Moreover, basal fertilizer amendment decreased beneficial and pathogenic fungi, and the use of vermicompost amendment in the basic fertilizer had a positive effect on the health of the soil fungal community.
  相似文献   

10.
The study assessed the impact of continuous application of vermicompost and chemical fertilizers nitrogen, phosphorus and potassium (NPK) on arecanut in India. Key parameters examined were biomass production, nutrient uptake, yield, soil fertility and net benefit. Pooled analysis of 8-year data revealed that nutrient application registered significantly higher yield (2585–3331 kg ha?1) than no nutrition (1827 kg ha?1). Yields in organic nutrition were around 85% of the yields obtained in inorganic NPK. The concentrations of leaf N and K were significantly higher with NPK than with vermicompost. Vermicompost significantly increased soil organic carbon and the availability of calcium (Ca), magnesium (Mg), manganese (Mn) and copper (Cu), but reduced exchangeable K in soil. The total uptake of K and Ca together contributed positively to 75% variability in total biomass production. Nutrient removal of iron (Fe), P, K and Cu positively influenced the yield with about 81% variability. Biomass partitioning and nutrient uptake pattern are important for fertilization program of arecanut.  相似文献   

11.
The scarcity of non-renewable fertilizers resources and the consequences of climate change can dramatically influence the food security of future generation. Introduction of high yielding varieties, intensive cropping sequence and increasing demand of food grains day-by-day, application of recommended dose of fertilizers could not fulfill our targets due to outdated fertilizers recommendations are yet in practice. It not only alters soil quality, nutrient balance, microbial and enzymatic ecology but also affected productivity and sustainability of rice in Gangetic alluvial soils of India. The effect of fertilizers application based on “fertilizing the soil versus fertilizing the crop” which insure real balance between the applied and available soil nutrient is urgently needed. Hence, the present study was conducted during three consecutive crop seasons (2010, 2011, and 2012) to assess the effect of imbalance and balance fertilization based on initial soil test values and targeted yields, and to determine the effect of farmyard manure (FYM) when superimposed with balanced fertilizers on identification of minimum data set for the development soil quality, nutrient acquisition, and grain yield of rice. The six fertilizer treatments were laid out in a randomized block design with three replications. The treatments were: T1-control (no fertilization), T2-farmyard manure @ 5 t ha?1, T3-farmers practice (60:30:30 kg N:P2O5:K2O ha?1), T4-precise application of mineral fertilizers based on initial soil test values (77:24:46 kg N:P2O5:K2O ha?1) for targeted grain yield of 4.0 t ha?1, T5-precise application of mineral fertilizers based on initial soil test values (74:23:43 kg N:P2O5:K2O ha?1) plus FYM (5 t ha?1) for targeted grain yield of 4.0 t ha?1 and T6-precise application of mineral fertilizers based on initial soil test values (135:34:65 kg N:P2O5:K2O ha?1) for targeted rice grain yield of 5.0 t ha?1. Result revealed that the targeted rice grain yield of 4.0 and 5.0 t ha?1 was achieved in T4 and T6 treatments with 1.59% (4.06 t ha?1) and –3.40% (4.83 t ha?1) deviations, respectively. T4, T5, and T6 significantly increased crop growth, nutrient uptake, available P (Pa) and K (Ka) and augmented rice grain yield by 10.6, 20.2 and 31.6%, respectively, over T3. Microbial biomass carbon, soil respiration and enzymatic activity were enhanced significantly in T5 as compared to T6. Highest soil quality index was found in T5 (0.95) followed by T6 (0.90) and, lowest was in T1 (0.63). The contribution of minimum data set (MDS) toward the SQI was in the descending order of ALP (30.6%) > SOC (21.5%) > Ka (11.3%) > PSM (9.68%) > Na (8.51%). Overall, rice yield and soil quality was improved by using balance fertilization based on fertilizing the crop Vs fertilizing the soil in alluvial soils of India.  相似文献   

12.
A pot trial with acid yellow-brown soil was conducted to investigate the effects of molybdenum (Mo) and phosphorus (P) fertilizers on cold resistances of winter wheat. Molybdenum was applied at two rates (0 and 0.15 mg Mo kg?1 soil) and P at four rates [0, 100, 200, and 300 mg phosphorus pentoxide (P2O5) kg?1 soil] in experiment 1. Both Mo and P fertilizers were applied at two rates (0 and 0.15 mg Mo kg?1 soil; 0, 150 mg P2O5 kg?1 soil) in experiment 2. Seed yield, soluble sugar, water-soluble protein, ascorbic acid (AsA), malondialdehyde (MDA), and abscisic acid (ABA) concentrations were studied. The results indicated that Mo and P fertilizer increased seed yield, soluble sugar, water-soluble protein, and AsA but decreased the MDA. It implied that appropriate Mo applied with P application had beneficial effects on increasing seed yield and enhancing the cold resistance ability through changing biological substances concentration in winter wheat.  相似文献   

13.
Abstract

To investigate the effect of some biological and chemical fertilizers on the root physiological and growth indexes and also Sorghum grain yield, this study was carried out in randomized complete block design with three replicates. The treatments of the study included (1) arbuscular mycorrhizal fungus Glomus mosseae?+?vermicompost, (2) mycorrhiza fungus?+?Nitroxin, (3) mycorrhiza fungus+ Rhizobium sp., (4) mycorrhiza fungus?+?NPK chemical fertilizer (40-40-20), (5) mycorrhiza fungus, and (6) control treatment. The highest root colonization rate and specific root length were observed in the co-inoculation with mycorrhiza?+?Nitroxin treatment. The other root growth parameters were observed at the mycorrhiza?+?vermicompost treatment. Also the highest rate of Sorghum physiological growth indexes root such as root area index and net assimilation rate were belonged to the co-inoculation of mycorrhiza?+?Nitroxin treatment. The highest root growth rate and root relative growth rate were obtained in the mycorrhiza?+?vermicompost treatment. So it can be concluded that biological fertilizers can be used as an appropriate alternative for chemical fertilizers in sustainable agriculture system.  相似文献   

14.
ABSTRACT

A long-term field experiment was performed to assess the effects of fertilization regimes on greenhouse gas emissions, soil properties, soil denitrifies, and maize (Zea mays) grain yield on Mollisols of Northeastern China. Chemical nitrogen (N), phosphorus (P), and potassium (K) fertilizers plus pig manure (MNPK) treatment significantly increased soil N2O emissions by 29.9–226.4% and global warming potential (GWP) by 29.8–230.7% compared to unfertilized control (CK), chemical N fertilizer only (N), chemical N, P, and K fertilizers (NPK) and chemical N, P, and K fertilizers plus corn straw (SNPK) treatments. However, the MNPK treatment yielded similar greenhouse gas intensity (GHGI) as compared with other treatments, mainly due to higher maize grain yield. There were also higher gene copy numbers of nirK, nirS, and nosZ in topsoil (0–20 cm depth) under MNPK treatment. Automatic linear modeling analysis indicated that main factors influencing soil N2O emissions were soil organic carbon (SOC), NO3? content, and nirK gene abundance. Although the application of chemical fertilizers plus organic manure increases N2O emissions due to higher N and C availability and nirK gene activity in the soil, this is still a promising fertilizer management due to its notable enhancement of maize grain yield and SOC content.  相似文献   

15.
施肥对青岛市设施蔬菜产量、净产值及土壤环境的影响   总被引:5,自引:0,他引:5  
为进一步提高设施蔬菜的施肥效率, 减少肥料成本和对环境的污染, 对青岛市设施蔬菜施肥状况及其对产量、净产值和土壤环境的影响进行了研究。结果表明, 设施黄瓜和番茄氮、磷、钾肥施用均明显过量。黄瓜N、P2O5、K2O年施用量分别为1 841.5 kg·hm-2、864.0 kg·hm-2和1 978.7 kg·hm-2, 番茄N、P2O5、K2O年施用量分别为1 436.7 kg·hm-2、833.6 kg·hm-2和1 643.7 kg·hm-2。施肥中有机/无机肥料养分比例较为合理, 重视了有机肥的施用。年度施用N、P2O5、K2O量及其总量对年度蔬菜产量、净产值有明显影响, 存在着线性方程关系。随着年度施氮量的增加, 土壤NO3--N含量明显增加, 31.4%的农户设施蔬菜田土壤NO3--N含量居高和较高水平。土壤速效磷含量随年度施磷量的增加而增加, 74.3%的农户设施蔬菜田土壤速效磷为高水平。68.6%的农户设施蔬菜田土壤为酸性和微酸性, 有向酸性发展的趋势。生产中应适量减少氮、磷和钾肥投入, 推广测土配方施肥、水肥一体化、秸秆生物处理等技术, 促进青岛市设施蔬菜生产的可持续发展。  相似文献   

16.
采用田间试验研究了内蒙古巴彦淖尔市河套灌区甜瓜一次性施肥、覆膜后灌水淋洗排盐传统种植模式下不同施肥对土壤养分及甜瓜产量、品质和养分利用的效应,不同施肥处理包括不施肥(CK)、常规施肥(CF,N 445.5 kg/hm~2,P_2O_5 399 kg/hm~2,K_2O 54 kg/hm~2)、优化减量施肥(RF,N 240 kg/hm~2,P_2O_5 150 kg/hm~2,K_2O 120 kg/hm~2)、控释肥(RSF,控释尿素N 240 kg/hm~2,P_2O_5 150 kg/hm~2,K_2O 120 kg/hm~2)、优化减量施肥+有机肥(RF+OM,增加有机肥15 t/hm~2)、控释肥+有机肥(RSF+OM)6个处理。结果表明:RSF在甜瓜生育期维持较高的土壤氮素水平,与单施化肥相比,RF+OM、RSF+OM处理可以维持土壤有机质含量,培肥土壤。各施肥处理与CK相比,甜瓜产量均显著增加(P0.05),RSF+OM处理产量显著高于CF处理,RF、RSF及RF+OM处理与CF处理相比产量和品质提高,但差异不显著。RF、RSF处理氮素利用效率比CF处理分别提高15.1,21.5个百分点,磷素利用效率分别提高20.4,18.8个百分点。化肥减施及施用控释肥对减少河套地区甜瓜农田灌溉退水中氮素汇入乌梁素海引起的面源污染具有重要的生态环境意义。  相似文献   

17.
We assessed the effects of organic fertilization on the response of biochemical and physiological indicators and the yield of saladette-type tomato (Solanum lycopersicum L.) grown under greenhouse conditions. Five fertilization forms [sand + inorganic nutrient solution (F1); sand + vermicompost tea (F2); a mixture of sand, compost, + vermicompost tea (F3); a mixture of sand, vermicompost, + vermicompost tea (F4); and a mixture of sand, compost, vermicompost, + vermicompost (F5)] and two genotypes (Cuauhtémoc and El Cid) were evaluated. The parameters analyzed were leaf pigments, enzymatic activity of nitrate reductase (NR) in vivo, and yield. A fertilizer source of sand + vermicompost tea resulted in the best assimilation of nitrate (NO3-), the greatest NR endogenous activity, the second highest foliar concentration of organic nitrogen (N), and the second best yield. In conclusion, for improved tomato cultivation during organic production, treatment F2 produced the maximum organic yield and resulted in more efficient N utilization.  相似文献   

18.
The integrated nutrient management with organic manure and chemical fertilizers can improve rice (Oryza sativa L.) production, soil health, and fertility. Hence, this study aimed to evaluate the combined effects of organic manures and chemical fertilizers on the yield and nutrient content of wetland rice under field conditions. It was conducted in northern Iran in two consecutive years, 2015 and 2016 as a factorial experiment based on a randomized complete blocks design (RCBD) with three replications. Two local rice cultivars, Tarom Hashemi and Tarom Mahalli, were chosen as the first factor; mineral fertilizers in four levels: 100% recommended nitrogen-phosphorus-potassium (NPK), 75% recommended nitrogen with 100% phosphorus-potassium (PK), 75% recommended phosphorus with 100% nitrogen-potassium (NK), and 75% recommended potassium with 100% nitrogen-phosphorus (NP), were selected based on soil analysis and were arranged as the second factor; and three levels of organic manures, namely zero and eight tons of vermicompost per hectare, and 10 tons of rotted manure per hectare was the third factor. Results revealed that the highest paddy yield occurs with vermicompost and manure consumption for both cultivars. Moreover, the highest paddy yield (3962 kg ha?1) occurs with 100% recommended NPK and vermicompost consumption. For both cultivars, the most chlorophyll a and chlorophyll ab content was produced with application of 100% recommended NPK. The most grain nitrogen content, grain nitrogen uptake, protein content, and protein yield were observed with 100% recommended NPK applied with 10 tons of rotted manure and eight tons of vermicompost usage per hectare. Therefore, in view of the ever-increasing use of chemical fertilizers and irreversible damage thereby, the additional use of these compounds can benefit the environment and human health. The global attention to sustainable agricultural concepts and organic manure can, in addition to producing reasonable yields, be considered as an appropriate alternative to chemical fertilizers.  相似文献   

19.
The promotion of organic farming involves curtailing extensive use of mineral fertilizers. The present study was aimed to compare the effects of vermicompost (10 Mg ha–1), commercial mineral fertilizer (NPK—100:80:80), and their combination on (1) the growth of a major cash crop “onion” (Allium cepa L.) and (2) the changes that may have occurred in the amended soil. The experiment was a randomized complete block design with four replications during the crop‐growing season of 2008/09. Results showed significantly higher plant growth in the combined/mix treatment of vermicompost and NPK, as measured by the vegetative growth of bulbs, number and length of tillers per bulb, and fresh weight of bulbs and by the biochemical characteristics of the onion tillers/leaves (total chlorophyll, caretenoids, protein, and total sugar contents). Comparison of the mixed treatment as compared to the control showed increases in bulb size (54%), total number of bulbs per bed (52%), and fresh weight of all bulbs (198%). The chemical properties and enzyme activity of the amended soil also improved significantly in the combined treatment as compared to the application of vermicompost or the mineral fertilizer alone. Total organic C, microbial biomass C, and sulfate content were significantly higher in the mix treatment, with increases of 60%, 127%, and 126%, respectively, as compared to those of the chemical‐fertilizer‐alone treatment. Similarly, β‐glucosidase, alkaline phosphatase, and dehydrogenase were significantly higher by 145%, 91%, 71%, respectively, in the mix treatment as compared to those of fertilizer‐alone application. This study indicates that application of a combination of mineral fertilizer and vermicompost in the field can positively influence the biological properties and fertility of soils, and support better plant growth, when compared to the application of mineral fertilizer or vermicompost alone. The study suggests that this combined application can reduce the quantity and cost of mineral‐fertilizers application for bulbous‐crop cultivation by 50%, while also sustaining soil biological activity of tropical and subtropical soils.  相似文献   

20.
A 2-year field experiment was conducted in wheat ecosystem to assess the key soil biological characteristics in inceptisols of northeastern region of India. Nine treatments using organic inputs (farmyard manure and vermicompost) and mineral fertilizers were applied by modulating the doses of organics and mineral N fertilizer. Soil enzymes (urease, phosphatase, dehydrogenase, fluorescein diacetate (FDA) and arylsulphatase), microbial biomass carbon (MBC), bacteria and fungi populations were measured before seed sowing (GS1), at flowering stage (GS2) and after harvest (GS3) of wheat, whereas total organic carbon (TOC) was studied at GS3. GS2 recorded significantly higher soil enzyme activities, except FDA, which increased considerably at GS3. Enzyme activities, available N and TOC significantly (p ≤ 0.05) enhanced with application of organic inputs even with reduced (50%) mineral N. Except urease and phosphatase, other enzymes did not respond significantly to mineral fertilization. Vermicompost application increased mean enzyme activities, MBC, microbial growth and TOC fractions (particulate organic carbon, humic acid and fulvic acid carbon) than farmyard manure. Significant (p ≤ 0.05) positive correlations (r = 0.61–0.87) were obtained between TOC and its fractions with studied soil enzymes. Thus, in conclusion, 5 t ha1 organics incorporation (especially vermicompost) in wheat fertility programme can uphold soil biological health, reduce (50%) N application and would be a sustainable option for wheat grown in inceptisols of northeastern region of India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号