首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Decreasing winter pasture productivity in unlimed Ultisols has been associated with increased soil acidity due to fertilizer N application. The susceptibility of cool season grasses to soil acidity and associated infertility factors that result in reduced forage yield are not well understood. This field study was undertaken to evaluate the effects of factorial combinations of limestone and P applications on annual ryegrass (Lolium multiflorum Lam. ‘Marshall') dry matter production and tissue mineral concentrations on a strongly acid (pH 4.7), sandy soil. Limestone was applied to a Lilbert loamy fine sand (loamy, siliceous, thermic, arenic Plinthic Paleudult) at rates of 0, 672, or 3808 kg ha‐1. Phosphorus was applied to split plots at rates of 0, 30, 60, 90, 120, 240, or 480 kg P ha‐1. Over three harvest years, ryegrass yields increased 90 to 750% and 25 to 80% at the highest lime and P rates, respectively. In the second year, yield response to applied P was significantly less at the high lime rate which indicated that liming made soil P more plant available. Lime and applied P increased plant tissue P, Ca, and Mg concentrations. Yield was positively correlated with soil pH, P, Ca, and Mg and negatively related to soil K and Al. Clear relationships between individual soil test levels and leaf mineral concentrations with yield fluctuations could not be established because these variables were inextricably related to the lime and P rates. Nevertheless, excessive soil Al, coupled with inadequate P, Ca, and Mg availability, were indicated as important nutritional factors limiting annual ryegrass growth in unlimed soil.  相似文献   

2.
Abstract

This field study was conducted to evaluate nutrient availability and Coastal bermudagrass [Cynodon dactylon (L.) Pers.] yield response to factorial combinations of applied limestone and P in a strongly acid (pH 4.7), infertile soil. Limestone was applied at rates of 0, 672, and 3808 kg ha‐1 to a Lilbert loamy fine sand (loamy, siliceous, thermic, arenic Plinthic Paleudult). Phosphorus was applied at rates of 0, 30, 60, 90, 120, 240, and 480 kg P ha‐1. Soil pH in the surface 15 cm initially increased to 6.2 in response to the high limestone rate, but subsequently declined due to N fertilization. Lime increased soil test P, Ca, and Mg and decreased K and Al. The efficiency of increasing soil test P with fertilizer P was low, but improved as a consequence of liming. Coastal bermudagrass yield increased by as much as 37 percent from P application. Maximum yield coincided with 10 to 15 mg kg‐1 or greater soil test P and tissue P concentrations that ranged from 1.6 to 2.2 g kg‐1. Lime Increased tissue Ca and Mg, but had no effect on plant P concentrations. Yield was unaffected by lime despite its positive effect on soil P and an apparent K‐Mg antagonism. Plant nutrients obtained from deep rooting of the bermudagrass into an argiilic horizon may have precluded any positive effect of lime on Coastal bermudagrass yield.  相似文献   

3.
Abstract

Tall fescue (Festuca arundinacea) is assuming increasing importance as a pasture species in South Africa. Many of the soils on which fescue is grown are inherently high in exchangeable Al and are characterized by high P‐immobilization capacities. The responses of fescue to dolomitic lime and P were examined in a factorial field trial on a red clay (Kandiustalfic Eustrustox) having a pH(KCl) and acid saturation [100(Al+H)/(Al+H+Ca+Mg+K)] in the unlimed state of 4.1 and 48%, respectively. A significant, though very limited, dry‐matter yield response to lime was evident (yields in the absence of lime were approximately 80% of the yields obtained at high lime levels). This pattern in the response to lime remained consistent over the three seasons of experimentation, despite soil acidity levels being substantially increased through the periodic use of ammonium sulphate as the N source in the trial. A significant response to P was evident at the first harvest after establishment; thereafter, P treatments had no effect on yield. The lime and P response data obtained in this investigation indicate that tall fescue is much more tolerant of soil acidity and has substantially lower soil P requirements than other important crop and pasture species in this country, such as maize (Zea mays) and Italian ryegrass (Lolium multiflorum). Lime significantly increased herbage Mg levels yet, in general, did not influence Ca levels in the herbage. Concentrations of Mg in the herbage exceeded Ca concentrations at all lime rates. Luxury uptake of K resulted in the K/(Ca+Mg) equivalents ratio in the herbage frequently exceeding the tetany hazard threshold of 2.2.  相似文献   

4.
Abstract

The cost and difficulty of applying lime on hilly pastures or small forage fields makes it appropriate to devote attention to efficiency of lime utilization. This study evaluated effects of calcitic and dolomitic lime on yield and mineral composition of 11 forage species grown on soil with a low base status of 0.46 cmolc as Ca and 0.18 cmolc as Mg kg‐1. Both lime types increased dry matter production, but only Lolium multiflorum responded more positively to dolomitic lime. The low Mg level in the soil was not a major factor limiting yield. Increase in yield was mainly attributed to the increase in pH with the concurrent decrease in Al level and to an increased Ca availability to plants. The species ranked as follows according to the magnitude of yield increase due to calcitic liming: Trifolium fragiferum > Trifolium pratense > Vicia sativa > Vicia villosa > Trifolium repens > Lolium perenne > Lolium multiflorum > Festuca arundinaceae = Lolium (multiflorum x perenne x perenne) > Trifolium subterraneum > Dactylis glomerata. The most responsive, Trifolium fragiferum, did not grow without lime. The least responsive, Dactylis glomerata, showed a yield increase of 36%. A similar ranking was obtained when all species were evaluated for Al tolerance using a 48 hour root elongation bioassay. In both unlimed soil and soil limed with calcitic lime, Mg concentrations of all species were relatively low. Although they were generally not low enough to have an effect on yield, they barely met the Mg nutritional requirement of cattle. By adding dolomitic lime, Mg content increased in grasses an average of 3.7 fold and in legumes by 2.4 fold. Grasses were similar in Ca, Mg, and K concentrations within a soil treatment. Legumes showed a greater range with the two vetches having the lowest Ca and Mg concentrations and red clover the highest.  相似文献   

5.
Soil properties were evaluated after 10 years of continuous non-tilled and conventionally tilled corn (Zea mays L.) production on a Maury silt loam (Typic Paleudalfs) soil, which had been in bluegrass (Poa pratensis L.) for 50 years. On limed and nonlimed plots soil samples from 0, 84, 168 and 336 kg/ha N treatments were taken in the 0–5, 5–15 and 15–30 cm layers for determination of organic C and N, soil pH, and exchangeable Al, Mn, Ca, Mg, K.Tillage treatments had no effect on soil bulk density in the 0–15 cm layer. In the 0–5 cm surface layer, organic C and N were approximately twice as high with no-tillage as with conventional tillage; N fertilizer induced a high level of both organic C and organic N. No-tillage decreased soil pH for unlimed plots as compared to conventional tillage, especially at high N-rates, which produced an increase in exchangeable Al and Mn and a decrease in exchangeable Ca down to the 30 cm depth. When lime was applied, the pH of the surface soil was slightly higher under no-tillage. On treatments receiving lime, exchangeable Al and Mn levels were very low with no significant difference in tillage systems. At low rates of N fertilization the 10-year average corn yield was higher for conventional tillage than for no-tillage, but at high rates of N fertilization it was equal or higher for no-tillage treatments receiving lime. Unlimed no-tillage treatments produced lower yields at all N levels during 1975–1979. Deterioration of soil physical properties was not observed.  相似文献   

6.
Abstract

Since ryegrass (Lolium sp.) is a widely grown cool‐season forage grass, its magnesium concentration is of special interest to ruminant livestock producers. This study was conducted to investigate the effect of calcitic or dolomitic lime addition on dry matter yield and mineral composition of hybrid ryegrass, Lolium (multiflorum x perenne x perenne) grown in eight acidic soils. Each soil received two levels of calcitic or dolomitic lime, L(C1) and L(C2) or L(D1) and L(D2), which raised pH to approximately 5.3, and 6.0. Dry matter yield response was obtained only in soils having an initial % Al saturation ≥59, % Mg saturation ≤10 and % Ca saturation ≤21. Only in one soil, which had an initial exchangeable Mg level of 0.05 cmolc/kg of soil, was response to dolomitic lime higher than that obtained with calcitic lime. Magnesium concentration in dry matter was increased by both levels of dolomitic lime with the increase dependent on the rate used and on the initial level of exchangeable Mg. The average Mg concentration increased from 0.8 to 3.9 g/kg, from 1.6 to 3.6 g/kg, and from 2.6 to 3.9 g/kg, when ryegrass was grown in soils having low, medium, and high initial exchangeable Mg levels, respectively. Mg concentration in the ryegrass tended to be lower in the unlimed soils than when calcitic lime was used, 1.1 vs. 1.4 g/kg, when the soils had low to medium exchangeable Mg levels. The results suggest that if ryegrass is to be grown in acidic soils containing low to medium levels of exchangeable Mg, the use of dolomitic lime is desirable, even if no yield response to applied Mg is expected, to decrease the probability of the Mg deficiency disease, hypomagnesemia, in ruminant animals.  相似文献   

7.
Abstract

Surface mineable coal is abundant beneath many farmland areas in Missouri. Presently, 90% of the electricity generated in the state is by coal powered plants. Surface strip‐mining laws now require reclamation of these lands after drastic disturbance. Tall fescue (Festuca arundinancea Schreb) cultivars and breeding lines have been evaluated for yield, nutrient composition and quality on undisturbed lands, but not for these qualities and for adaptability to revegetate drastically disturbed lands.

Six breeding lines and 2 cultivars of tall fescue were evaluated for yield, nutrient composition, crude protein and IVDMD on limed and unlisted minesoils in west‐central Missouri. The experimental design was a randomized split‐block with lime treatment the split‐block, 3‐replications, with individual plots 1.21 × 3.05 m. Agriculture lime with ENM index of 291 at rate of 19 mt/ha was incorporated, fescue seeded and the experimental area mulched during August‐September, 1978. The 1979 harvest samples were composited for crude protein, nutrient and IVDMD analyses and the 1980 harvest samples were analyzed for individual plots.

The 1979 yield was not significantly different between genetic materials, but mean yield from limed minesoil was significantly higher than from unlimed minesoil. Yield data evaluation suggest Kenny, WG3B, HMR to yield highest on unlimed minesoil and WG2B, LMR and HMR highest on limed minesoil, with MO‐96 lowest in yield limed or unlimed. The calculated K/(Ca+Mg) ratio of HMR and Kenhy was interpreted to be borderline for potential occurrence of grass tetany under limed environment. Differential divalent cation accumulation capacities of the breeding lines LMR and HMR was expressed on both the limed and unlimed minesoil. Potassium was not judged to reach a sufficiently high or Mg sufficiently low level to suggest potential problem of hypomagnesaema.

Lime increased IVDMD, but not crude protein. Crude protein varied by year, but IVDMD remained nearly constant. The genetic materials MO‐96 and H‐I accumulated higher quantities of Mg upon liming, but had lower IVDMD. Differences in yield were not significantly related to cation accumulation or forage quality on this minesoil, limed or unlimed.  相似文献   

8.
Abstract

Surface mineable coal is abundant beneath many farmland areas in Missouri. Presently, 90% of the electricity generated in the state is by coal powered plants. Surface strip‐mining laws now require reclamation of these lands after drastic disturbance. Tall fescue (Festuca arundinancea Schreb) cultivars and breeding lines have been evaluated for yield, nutrient composition and quality on undisturbed lands, but not for these qualities and for adaptability to revegetate drastically disturbed lands.

Six breeding lines and 2 cultivars of tall fescue were evaluated for yield, nutrient composition, crude protein and IVDMD on limed and unlimed minesoils in west‐central Missouri. The experimental dersign was a randomized split‐block with lime treatment the split‐block, 3‐replications, with individual plots 1.21 x 3.05 m. Agriculture lime with ENM index of 291 at rate of 19 mt/ha was incorporated, fescue seeded and the experimental area mulched during August‐September, 1978. The 1979 harvest samples were composited for crude protein, nutrient and IVDMD analyses and the 1980 harvest samples were analyzed for individual plots.

The 1979 yield was not significantly different between genetic materials, but mean yield from limed minesoil was significantly higher than from unlimed minesoil. Yield data evaluation suggest Kenhy, WG3B, HMR to yield highest on unlimed minesoil and WG2B, LMR and HMR highest on limed minesoil, with MO‐96 lowest in yield limed or unlimed. The calculated K/(Ca+Mg) ratio of HMR and Kenhy was interpreted to be borderline for potential occurrence of grass tetany under limed environment. Differential divalent cation accumulation capacities of the breeding lines LMR and HMR was expressed on both the limed and unlimed minesoil. Potassium was not judged to reach a sufficiently high or Mg sufficiently low level to suggest potential problem of hypomagnesaema.

Lime increased IVDMD, but not crude protein. Crude protein varied by year, but IVDMD remained nearly constant. The genetic materials MO‐96 and H‐I accumulated higher quantities of Mg upon liming, but had lower IVDMD. Differences in yield were not significantly related to cation accumulation or forage quality on this minesoil, limed or unlimed.  相似文献   

9.
In a ten‐year study of potassium (K) and lime application to a Kalmia sandy loam (fine‐loamy, siliceous, thermic Typic Hapludult), a soil high in nonexchangeable K, corn (Zea mays L.) and soybean [Glycine max (L.) Herr.] have not responded to applied K. The objectives of this study were to determine if a high K‐requiring crop such as tomato (Lycocersicon esculentum Mill. cv. Redpak) would respond to KCl fertilizer rate or lime type (dolomitic, calcitic, and mixed) and rate on such a soil. Potassium was applied at 0, 56, and 112 kg K/ha every year for ten years. Lime was applied at 0, 2, and 9 Mg/ha in calcitic, mixed, and dolomitic forms twice in ten years (1970 and 1973). In 1980, the tenth year of the study, tomato fruit was harvested by hand once‐over to simulate machine harvest and divided into four maturity groups by color. Soil pH was higher with dolomitic than calcitic lime. Soil K saturation was not influenced by lime rate or type. Fruit yield and leaf phosphorus (P), calcium (Ca), and magnesium (Mg) concentrations increased with increasing lime rates. Leaf K, manganese (Mn), iron (Fe), boron (B), copper (Cu), zinc (Zn), barium (Ba), strontium (Sr), and aluminum (Al) concentrations decreased with increasing lime rate. Leaf Mn, Ba, and Sr concentrations were lower with dolomitic than with calcitic lime. Lime type had no effect on tomato yield. Wide ranges in basic cation saturation ratios had little effect on yield. Soil K saturation and leaf K, Zn, and Ba concentrations increased with increasing K rate. Soil Ca and leaf Ca, Mg, and Al concentrations decreased with increasing K rate. Applied K had no effect on total yield but onceover marketable yield increased linearly with increasing K rate. Marketable yield increased 14% with an increase in K rate from 0 to 56 kg/ha. Thus, fruit maturity was apparently hastened by K fertilization.  相似文献   

10.
Abstract

We studied the effects of liming on dry matter production, nutrient composition, and grain yields of wheat in field experiments conducted on two soil types at three locations during the 1976–77 and 1977–78 growing seasons. Lime sources were commercial agricultural lime, finely divided stack dust, and dolomitic limestone (which contained 10.6% Mg). Lime applied at 2,800 kg/ha in the 1976–77 and 10,750 kg/ha in the 1977–78 experiments provided Mg from the dolomite at rates of 300 and 1,140 kg/ha, respectively.

Soil pH was significantly increased by liming, but Mg saturation percentages were significantly greater only at the 1,140 kg/ha rate. Forage dry matter and grain yields were not increased by lime applied at the lower rate, but significant increases were found in dry‐matter production in the late fall and spring samplings of the 1977–78 experiment. Those increases in plant growth and dry matter production were probably due to reductions in the soluble Mn and Al concentrations in the soil. Forage N and P concentrations were generally not influenced by liming. Potassium concentrations in forage from the limed plots were usually equal to or greater than those in forage from unlimed plots. Calcitic limestone sources generally increased forage Ca concentrations, but liming with dolomite more often than not depressed Ca concentrations below levels found in the check plots. Dolomite, when applied at the 1,140 kg/ha rate, effectively increased the forage Mg concentration, although the concentration exceeded 0.2% only during the early growth stages. Liming generally showed no significant reduction in the tetany potential of the wheat forage as predicted by the equivalent ratio K/(Ca + Mg).  相似文献   

11.
Abstract

Surface liming will prevent the formation of an ‘acid roof’ on the surface of soil cropped in no‐till corn (Zea mays L.). A study was begun in 1985 to determine the effectiveness of unincorporated liming in raising pH in no‐till soil which had developed significant acidity throughout the upper 15 cm. Lime was applied at 0, 3.36, 6.72 and 10.08 Mg ha‐1. All lime was applied on 26 April 1985 and was not incorporated. The pre‐liming pH at 0‐5 cm below the surface was 4.5; after two months the pH was raised to 5.6, 5.8, and 6.0 by 3.36, 6.72 and 10.08 Mg ha‐1 of lime, respectively. After 19 months soil‐pH was raised to 6.0, 6.4 and 6.6 by liming at 3.36, 6.72 and 10.08 Mg ha‐1 respectively. Soil‐pH below 5 cm was not affected by any rate of lime during the first 19 months after liming. Tissue analysis of corn ear leaves indicated that calcium uptake was increased significantly by lime in 1985, while manganese uptake was significantly reduced. In 1986, increases in calcium were greater than in 1985 and addtional significant reduction in manganese uptake was accompanied by significantly reduced zinc and copper uptake. In both 1985 and 1986, a trend toward lower average corn grain yield in unlimed plots than in limed plots was noted, but the yield increases due to lime were not statistically significant in either year. This study will be continued as a long term investigation of lime penetration into no‐till soil and response of corn to soil‐pH changes.  相似文献   

12.
Effects of watershed liming on the biomass and tissue chemistry of planted Picea rubens Sarg. (red spruce) seedlings were investigated for two growing seasons after two subcatchments in a forested Adirondack, New York (U.S.A.) watershed were limed aerially with 6.89 t ha-1 of calcitic limestone (CaCO3). Picea rubens has been the focus of numerous atmospheric deposition research studies, but less well investigated for responses to amelioration. Picea rubens seedlings were planted in limed and reference subcatchments and harvested the first and second growing season after liming to measure total, foliar, and stem (i.e., branch) biomass, and concentrations of Ca, Mg, K, Al, Na, and P in the annual growth increment of foliage and branches. In the second year after liming, both foliage and stem biomass of seedlings from reference plots were at least 50% greater than seedling biomass from limed plots. Seedlings in limed areas had significantly greater foliar concentrations of Mg and P in the first year after liming, but not in the second year. Foliar Ca was not significantly different in limed than reference seedlings. Foliar Al concentrations were greater in reference than limed seedlings, but still below documented toxicity levels. Stem concentrations of Mg, K, and P in seedlings from limed areas decreased significantly between the first and second growing season after liming, while reference seedling stem concentrations either increased or declined only slightly. Correlations among foliar nutrients and foliar biomass from limed plots were negative and suggest an inverse dilution effect. Foliar Al concentrations were negatively correlated with Ca, Mg, K, and P in seedlings from reference plots, but positively correlated in limed plots. The adverse response of P. rubens seedlings to lime may reflect changes in nutrient availability associated with changes in soil pH.  相似文献   

13.
Paper mill residuals may beneficially be used to improve the fertility of tropical acid soils. The effects of paper pulp on soil pH, exchangeable Al and soil solution composition of three acid tropical soils were compared with the effects of equivalent rates of lime in two batch experiments. Paper pulp was more effective than lime in increasing soil pH. However, both amendments were equally effective in decreasing exchangeable Al. Paper pulp and lime similarly influenced the composition of the soil solution by increasing soil solution pH, dissolved organic carbon, inorganic carbon, NO3, SO4, Ca and Mg. The supply of nitrate by the soil, however, was reduced in paper pulp treatments compared to lime treatments. Nitrate had a major role in controlling nutrient concentrations in the soil solution. Reduced NO3 concentrations in paper pulp treated soils compared to limed soils could therefore result in lower nutrient availability and limited losses by leaching.  相似文献   

14.
Abstract

Changes in the chemistry of the acidic Chilean Andisols in response to various ameliorant treatments (gypsum, dolomitic, and calcitic limestone) and their effects on ryegrass (Lolium perenne) production were studied in laboratory incubation and greenhouse experiments. Dolomitic and calcitic limestone alone and in combination with gypsum increased pH significantly and, at the same time, decreased exchangeable aluminum (Al) concentration to low concentrations. Gypsum alone increased pH slightly and reduced Al concentration by 50%, but its effect on ryegrass yield was similar to calcitic and dolomitic limestone. The Al/calcium (Ca) ratio was not a good predictor of the Al toxicity for plant growth but the Al/sulfur (S) ratio in the soil showed a good relationship with dry matter yield. The Ca + magnesium (Mg) + potassium (K) content in shoots was highly correlated with dry matter yield.  相似文献   

15.
A greenhouse study was conducted to assess the effects of soil-applied beryllium (Be) on the growth and Be content of soybeans [Glycine max (L.) Merr.], grown on acid southeastern soils under limed and unlimed conditions. This study was conducted using a factorial design, with two soil types varying in clay content (Blanton sand, a loamy, siliceous, thermic Grossarenic Paleudult; and Orangeburg loamy sand, a loamy, siliceous, thermic Typic Paleudult), two soil treatments (limed and unlimed) and five Be concentrations (0, 25, 50, 100, and 150 mg Be kg?1 t soil). Addition of Be to unlimed Blanton soil had the most toxic effects of all treatment combinations; at the 150 mg Be kg?1 treatment plant biomass was reduced as much as 90% and plant Be concentration was as high as 226 mg Be kg?1. Beryllium concentrations were greater in plants grown in a soil low in clay (Blanton soil). Liming of soils treated with Be resulted in lowered tissue Be concentrations in plants grown on either soil type.  相似文献   

16.
Soybean is one of the most important legume crops in the world. Two greenhouse experiments were conducted to determine the influence of liming and gypsum application on yield and yield components of soybean and changes in soil chemical properties of an Oxisol. Lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. Gypsum rates applied were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1 soil. Lime as well as gypsum significantly increased grain yield in a quadratic fashion. Maximum grain yield was achieved with the application of 1.57 g lime per kg soil, whereas the gypsum requirement for maximum grain yield was 1.43 g per kg of soil. Lime significantly improved soil pH, exchangeable soil calcium (Ca) and magnesium (Mg) contents, base saturation, and effective cation exchange capacity (ECEC). However, lime application significantly decreased total acidity [hydrogen (H) + aluminum (Al)], zinc (Zn), and iron (Fe) contents of the soil. The decrease in these soil properties was associated with increase in soil pH. Gypsum application significantly increased exchangeable soil Ca, base saturation, and ECEC. However, gypsum did not change pH and total acidity (H + Al) significantly. Adequate soil acidity indices established for maximum grain yield with the application of lime were pH 5.5, Ca 1.8 cmolc kg?1, Mg 0.66 cmolc kg?1, base saturation 53%, Ca saturation 35%, and Mg saturation 13%. Soybean plants tolerated acidity (H + Al) up to 2.26 cmolc kg?1 soil. In the case of gypsum, maximum grain yield was obtained at exchangeable Ca content of 2.12 cmolc kg?1, base saturation of 56%, and Ca saturation of 41%.  相似文献   

17.
Crop response to fertilization and liming was investigated in field and pot trials on sandy loam Dystric Albeluvisols (pH 4.2–4.3). Treatments in the field trial were: 1, no fertilizer; 2, PK; 3, NK; 4, NP; 5, NPK; 6, lime; 7, lime+PK; 8, lime+NK; 9, lime+NP; 10, lime+NPK. In the pot trial, they were: 1, no fertilizer; 2, N; 3, P; 4, K; 5, NP; 6, NK; 7, PK; and 8, NPK applied to unlimed and limed soils. All treatments were in four replicates. Crops sensitive to soil acidity (winter wheat, fodder beet, spring barley and clover-timothy ley) and the less acid-sensitive winter rye, potatoes, oats and lupins and oats mixture were sown in the field trial. In the pot trial, the acid-sensitive spring barley and red clover, and the less acid-sensitive oats and lupin-oats served as the test crops. Combined application of fertilizers (NPK) increased yields of crops sensitive to soil acidity in plots receiving lime by 23%, and those of crops less sensitive to soil acidity by 18% in comparison to crops grown on unlimed soils. The results of pot experiments corroborated the field results. When N was applied alone, crop yields were always higher than those recorded for P or K treatments on both the unlimed and limed treatments. N application proved to be a prerequisite for high crop yields in the soils investigated. Thus, the efficiency of P and K fertilizers increased in the order NK<NP<NPK, with the effects being accentuated more in the limed than in the unlimed treatments. The results demonstrated the importance of multi-nutrient (NPK) fertilization in combination with liming for enhancement of high crop productivity in the unlimed soil investigated. N applied alone in combination with liming produced relatively good yields; hence, where resources are limited for the purchase of P and K fertilizers, applying N and lime can be a viable option in the short term.  相似文献   

18.
Abstract

Changes in surface reactivity produced by different types of liming in a Chilean Andisol were determined. Barros Aranas soil with 53% aluminum (Al) saturation and 4.8 pH was incubated with different amounts of calcitic and dolomitic lime. Each cmol of calcitic or dolomitic lime applied per kg of soil increased the pH with 0.13 and 0.16 units, respectively. Consequently, the decrease in Al saturation was higher with dolomitic than with calcitic liming material. The zero point of charge (ZPC) increased from 4.2 in unlimed soil to 4.6 and 4.8 in limed soil, while the point of zero salt effect (PZSE) decreased from 4.5 to 4.0 and 3.5 with calcitic and dolomitic lime, indicating an increase in negative charge. But, isoelectric point (IEP) values measured by electrophoretic migration suggested that the external charge only changed by treatment with calcitic liming materials. In both treatments, the acidity constant decreased, and consequently phosphorus (P) adsorption capacity also decreased.  相似文献   

19.
Molybdenum (Mo) is a critical micronutrient for nitrogen (N) fixation in legumes. Low pH limits the availability of Mo, thereby reducing nodulation and N fixation. This study investigates the effect of Mo supplementation on alfalfa nodulation and its correlation with root and shoot biomass in low-pH soil. Three experiments were conducted in the greenhouse, involving 14 genotypes of alfalfa subjected to four different treatments, unlimed low-pH soil (5.2) with Mo applied (lithium (Li)?Mo+), low-pH soil (5.2) without Mo (Li?Mo?), limed soil (pH 7.3) with Mo applied (Li+Mo+), and limed soil (pH 7.3) without Mo (Li+Mo?). Foliar application of Mo resulted in a significant increase in nodule counts in the 14 alfalfa cultivars grown in low-pH soil (5.2) even though to a lesser extent than in limed soil with neutral pH (7.3). The increase in number of nodules correlated positively with plant root weight and upper plant biomass.  相似文献   

20.
Abstract

Six legume species and several varieties within the species were grown in a greenhouse pot experiment using the Bt horizon of a Lily (Typic Hapludult) soil. Lime treatments were 0 and 2.2 g Ca(OH)2/kg soil. Liming increased the soil pH from 4.6 to 6.2. The species and varieties responded differentially to lime. Both shoot and root growth of legumes showed a significant species and lime interaction effect. Based on tolerance index groups for shoot growth, alfalfa varieties were classified as very sensitive, red clovers and white clovers as sensitive and Essex soybean and Carroll birdsfoot trefoil as tolerant to the acid soil. The remaining legumes were grouped as moderately tolerant to the acid soil. Liming increased shoot concentrations of Ca in all the legumes and reduced concentration of Mg, K, and Zn. Species and varieties within species differed significantly in concentrations of all mineral elements studied except Mg. Further significant differences in elemental composition were observed due to both lime and lime species interactions. In the limed soil, the Ca concentration of the shoots increased as the tolerance index decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号