首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
Abstract

A soil test for mineralizable soil N had been calibrated for winter wheat in the Willamette Valley of western Oregon. Seventy‐eight percent of the variation in spring N uptake by unfertilized wheat was explained by N mineralized from mid‐winter soil samples incubated anaerobically for 7 days at 40°C. Mineralizable N (Nmin) ranged from 10 to 30 mg N kg?1 and was used to predict N fertilizer needs. Recommended rates of N were correlated (R2=0.87) with maximum economic rates of N fertilizer. Subsequent farmer adoption of no‐till sowing and a high frequency of soil tests>30 mg N kg?1 prompted reevaluation of the soil test. Four N fertilizer rates [0, 56, G, and G+56 kg N ha?1] were compared in 12 m×150 m farmer‐managed plots. Grower's N rates (G) ranged from 90 to 180 kg N ha?1 and were based on Nmin and NH4‐N plus NO3‐N soil tests. Averaged across ten no‐till and five conventionally tilled sites, grain yield and crop N uptake were maximized at the recommended rate of N. Results demonstrate that N fertilizer needs for winter wheat can be predicted over a wide range of mineralizable soil N (10 to 75 mg N kg?1) and that the same soil test calibration can be used for conventionally sown and direct‐seeded winter wheat.  相似文献   

2.
Swine lagoon sludge is commonly applied to soil as a source of nitrogen (N) for crop production but the fate of applied N not recovered from the soil by the receiver crop has received little attention. The objectives of this study were to (1) assess the yield and N accumulation responses of corn (Zea mays L.) and wheat (Triticum aestivum) to different levels of N applied as swine lagoon sludge, (2) quantify recovery of residual N accumulation by the second and third crops after sludge application, and (3) evaluate the effect of different sludge N rates on nitrate (NO3-N) concentrations in the soil. Sludge N trials were conducted with wheat on two swine farms and with corn on one swine farm in the coastal plain of North Carolina. Agronomic optimum N rates for wheat grown at two locations was 360 kg total sludge N ha?1 and the optimum N rate for corn at one location was 327 kg total sludge N ha?1. Residual N recovered by subsequent wheat and corn crops following the corn crop that received lagoon sludge was 3 and 12 kg N ha?1, respectively, on a whole-plant basis and 2 and 10 kg N ha?1, respectively, on a grain basis at the agronomic optimum N rate for corn (327 kg sludge N ha?1). From the 327 kg ha?1 of sludge N applied to corn, 249 kg N ha?1 were not recovered after harvest of three crops for grain. Accumulation in recalcitrant soil organic N pools, ammonia (NH3) volatilization during sludge application, return of N in stover/straw to the soil, and leaching of NO3 from the root zone probably account for much of the nonutilized N. At the agronomic sludge N rate for corn (327 kg N ha?1), downward movement of NO3-N through the soil was similar to that for the 168 kg N ha?1 urea ammonium nitrate (UAN) treatment. Thus, potential N pollution of groundwater by land application of lagoon sludge would not exceed that caused by UAN application.  相似文献   

3.
It is important to develop integrated fertilization strategies for various crops that enhance the competitive ability of the crop, maximize crop production and reduce the risk of nonpoint source pollution from fertilizers. In order to study the effects of mineral nitrogen fertilization and biofertilizer inoculation on yield and some physiological traits of rapeseed (Brassica napus L.) under different levels of sulfur fertilizer, field experiments in factorial scheme based on randomized complete block design were conducted with three replications in 2012 and 2013. Experimental factors were: (1) four levels of chemical nitrogen fertilizer (0, 100, 150 and 200 kg N ha?1), (2) two levels of biofertilizer (with and without inoculation) consisting Azotobacter sp. and Azospirillum sp. and (3) two levels of sulfur application (0 and 50 kg S ha?1). Rapeseed yield, oil content of grains and studied physiological traits had a strong association with the N fertilization, biofertilizer inoculation and sulfur (S) application. Higher rates of N fertilization, biofertilizer inoculation and S application increased the grain yield of rapeseed. In the case of physiological traits, the highest value of relative water content (RWC) was recorded in 100 kg N ha?1 that was statistically in par with 150 kg N ha?1 application, while usage of 150 kg N ha?1 showed the maximum cell membrane stability (CMS). Inoculation with biofertilizer and S fertilization resulted in higher RWC and CMS in rapeseed plants. The chlorophyll content showed its maximum values in the highest level of N fertilization, biofertilizer inoculation and S application. The usage of 200 kg N ha?1 significantly decreased the oil content of rapeseed grains, but the highest grain oil content was obtained from the application of 150 kg N ha?1, Azotobacter sp. and Azospirillum sp. inoculation and S fertilization. It seems that moderate N rate (about 150 kg N ha?1) and S application (about 50 kg S ha?1) can prove to be beneficial in improving growth, development and total yield of inoculated rapeseed plants.  相似文献   

4.
Abstract

Field experiments were designed to quantify N2O emissions from corn fields after the application of different types of nitrogen fertilizers. Plots were established in South Kalimantan, Indonesia, and given either urea (200 kg ha?1), urea (170 kg ha?1) + dicyandiamide ([DCD] 20 kg ha?1) or controlled-release fertilizer LP-30 (214 kg ha?1) prior to the plantation of corn seeds (variety BISI 2). Each fertilizer treatment was equivalent to 90 kg N ha?1. Plots without chemical N fertilizer were also prepared as a control. The field was designed to have three replicates for each treatment with a randomized block design. Nitrous oxide fluxes were measured at 4, 8, 12, 21, 31, 41, 51, 72 and 92 days after fertilizer application (DAFA). Total N2O emission was the highest from the urea plots, followed by the LP-30 plots. The emissions from the urea + DCD plots did not differ from those from the control plots. The N2O emission from the urea + DCD plots was approximately one thirtieth of that from the urea treatment. However, fertilizer type had no effect on grain yield. Thus, the use of urea + DCD is considered to be the best mitigation option among the tested fertilizer applications for N2O emission from corn fields in Kalimantan, Indonesia.  相似文献   

5.
This study provides current data on plant nitrogen (N) uptake required for maximum sugar yield (PNUpmax) and the corresponding fertilizer N dose (ND) (optimum N dose [NDopt]) for high-yielding beet crops (sugar yield up to 20 Mg ha?1). In 2010 and 2011, field experiments were conducted with four cultivars from Beta genus differing in dry matter composition, and six mineral NDs (0–200 kg N ha?1) at three sites (The Netherlands, Germany, Denmark). Differences between cultivars in PNUpmax and NDopt were small; however, environments (defined as combination of site and year) substantially differed from each other: highest PNUpmax and lowest NDopt occurred at environments supplying high amounts of N from soil resources, and vice versa. The level of maximum sugar yield (SYmax) was related neither to PNUpmax (200–270 kg N ha?1) nor to NDopt. However, N dose and plant N uptake required for 95% of maximum sugar yield was 50–80 kg N ha?1 lower than for maximum sugar yield. To conclude, accepting a slight reduction in sugar yield might allow for a substantial decrease in the ND. Cultivar choice and yield level need not to be taken into account at present.  相似文献   

6.
Winter wheat (Triticum aestivum L.) production in northwestern China as a monoculture is hampered by unfertile soil and drought. With the fast-developing Chinese chemical fertilizer industry, many farmers now use more nitrogen (N) fertilizer as topdressing for winter wheat in early spring, in addition to a basal dose of N fertilizer applied in the previous autumn at seeding time. The objective of this study was to evaluate the increase in grain yield of dryland winter wheat by early spring N fertilizer topdressing, and its relationship to soil moisture, available N, phosphorus (P) and potassium (K). Field experiments with no N fertilizer topdressing (Fb) and N fertilizer topdressing (Fb+t) treatments were carried out over two growing seasons at 54 site-years to assess the relationship between increase in winter wheat grain yield by early spring N fertilizer topdressing and soil moisture, available N, P and K in Changwu county, Shaanxi province, China. Compared to Fb treatment, the Fb+t treatment produced grain yields lower at 10 site-years, and increased by <10% at 21 site-years and by >10% at 23 site-years. The results indicated that topdressing N fertilizer could increase wheat grain yield when soil nitrate-N accumulation in the 0–20, 20–40 and 40–60 cm depths was less than 121.7, 36.4 and 24.1 kg N ha?1, and soil moisture content in the 40–60, 60–80 and 80–100 cm depths was more than 15.7%, 16.7% and 16.9%, respectively. The findings also suggested that it is not necessary to analyze soil for ammonium-N, available P and K before topdressing N fertilizer. It is necessary to analyze 0–60 cm soil profile for nitrate-N and 40–100 cm depth for soil moisture before topdressing N fertilizer for winter wheat in dryland areas of northwestern China.  相似文献   

7.
Abstract

The single‐year response of soil inorganic nitrogen (N) content and indices of red raspberry (Rubus ideaus L.) yield, vigor, and N status to rate and source of fertilizer N were determined. Twenty‐nine trials were conducted in commercial plantings from 1994 to 1996. Treatments were 0, 55, or 110 kg N ha?1 as ammonium nitrate or 55 kg N ha?1 as a slow‐release fertilizer product containing 60% polycoated sulfur‐coated urea and 40% urea. Soil nitrate (NO3) content frequently increased during the growing season, indicating that soil N supply was nonlimiting. The plant indices were generally insensitive to fertilizer‐N rate under these high‐N fertility conditions. Soil nitrate content measured after berry harvest was frequently excessive even at the recommended N rate and can be used to identify fields with excess N fertility. The slow‐release N fertilizer provided limited benefits compared with use of ammonium nitrate.  相似文献   

8.
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   

9.
Abstract

To study the response of inorganic and organic nitrogen (N) sources both alone and in conjunction and their influence on soil quality, a field experiment was conducted during kharif and rabi seasons using sunflower (MSFH‐8) as test crop. The experimental site soil was Typic Haplustalf situated at Hayatnagar Research Farm of Central Research Institute of Dryland Agriculture, Hyderabad, India, at 17° 18′ N latitude, 78° 36′ E longitude. The experiment design was a simple randomized block design with 11 treatments replicated four times. Among all the treatments, vermicompost (VC)+Fert at 25+25 kg N ha?1 recorded the highest grain yields of 1878 and 2160 kg ha?1 during both kharif and rabi seasons, respectively, which were 43.9 and 85.1% higher than their respective control plots. Apparent N recovery varied from as little as 38.30% (FYM at 50 kg N ha?1) to 62.16 (25 kg N ha?1) during kharif and 49.65 (75 kg ha?1) to 83.28% (VC+Fert at 25+25 kg N ha?1) during rabi season. Conjunctive nutrient treatments proved quite superior to other set of treatments in improving the uptake of N, phosphorus (P), potassium (K), sulfur (S), and micronutrients in sunflower and their buildup in the soil. Highest relative soil quality indexes (RSQI) were observed under VC+Fert at 25+25 kg N ha?1 (1.00) followed by VC+Gly at 25+25 kg N ha?1 (0.87). Considering the yield and relative soil quality indices (RSQI), conjunctive applications of VC with either inorganic fertilizer, FYM, or Gly at 25+25 kg N ha?1 could be a successful and sustainable soil nutrient management practice in semi‐arid tropical Alfisols. Besides this, the fertilizer N demand could be reduced up to 50%.  相似文献   

10.
《Journal of plant nutrition》2013,36(8):1561-1580
Abstract

The Magruder plots are the oldest continuous soil fertility wheat research plots in the Great Plains region, and are one of the oldest continuous soil fertility wheat plots in the world. They were initiated in 1892 by Alexander C. Magruder who was interested in the productivity of native prairie soils when sown continuously to winter wheat. This study reports on a simple estimate of nitrogen (N) balance in the Magruder plots, accounting for N applied, N removed in the grain, plant N loss, denitrification, non‐symbiotic N fixation, nitrate (NO3 ?) leaching, N applied in the rainfall, estimated total soil N (0–30 cm) at the beginning of the experiment and that measured in 2001. In the Manure plots, total soil N decreased from 6890 kg N ha?1 in the surface 0–30 cm in 1892, to 3198 kg N ha?1 in 2002. In the Check plots (no nutrients applied for 109 years) only 2411 kg N ha?1 or 35% of the original total soil organic N remains. Nitrogen removed in the grain averaged 38.4 kg N ha?1 yr?1 and N additions (manure, N in rainfall, N via symbiotic N fixation) averaged 44.5 kg N ha?1 yr?1 in the Manure plots. Following 109 years, unaccounted N ranged from 229 to 1395 kg N ha?1. On a by year basis, this would translate into 2–13 kg N ha?1 yr?1 that were unaccounted for, increasing with increased N application. For the Manure plots, the estimate of nitrogen use efficiency (NUE) (N removed in the grain, minus N removed in the grain of the Check plots, divided by the rate of N applied) was 32.8%, similar to the 33% NUE for world cereal production reported in 1999.  相似文献   

11.
The interaction between water availability in the soil and fertilizer application rates often strongly affects crop growth. In the current study, the quality of fresh fruit and antioxidant enzymes of tomato crops (Lycopersicon esculentum Mill) were investigated under different irrigation (low water content [Wl]: 50 ~ 60% field moisture capacity (FMC); moderate [Wm]: 70 ~ 80% FMC; and high [Wh]: 90 ~ 100% FMC) and fertilizer conditions (deficit fertilizer [Fl]: 195 kg ha?1 nitrogen (N) + 47 kg ha?1 phosphorus pentoxide (P2O5) and moderate [Fm]: 278 kg ha?1 N + 67 kg ha?1 P2O5) in a solar greenhouse. The results showed that the quality of fresh fruits and the antioxidant enzyme activities in the leaves and fruits were related to the water content in the soil. Deficit irrigation improved the fruit quality and 50 ~ 60% FMC combined with fertilizer application rates of 195 kg ha?1 N + 47 kg ha?1 P2O5 is recommended for tomato crop cultivation under greenhouse conditions.  相似文献   

12.
Water scarcity and nitrate contamination have caused considerable attention to environmental matters. Water and nitrogen interactions have critical impacts on their use efficiency, plant growth, and quality. In a field experiment, a combination of three water treatments and three nitrogen rates was applied to determine their interactive effects on the growth of spinach. Soil water supply that was too low [W3N1 (the combination of water treatment 3 and nitrogen treatment 1), W3N2] could cause an increase in nitrate content. Oxalate contents would increase when water and nitrogen were either inadequate (W3N0, W3N1) or too high (W2N2). The most profit from spinach was obtained in plots that received water treatment 2 and nitrogen fertilizer 78 kg N ha?1. However, considering nitrogen treatments could affect the nitrate and oxalic acid, application of water treatment 2 and 39 kg N ha?1 nitrogen fertilizer could get better spinach quality.  相似文献   

13.
Wheat (Triticum aestivum L.) residues and nitrogen (N) management are the major problems in the southern part of Iran where irrigated wheat–cotton (Gossypium hirsutum L.)–wheat rotation is a common practice. A 2-year (2009–2011) field experiment was conducted as a split plot design with four replications at a cotton field (Darab), Fars Province, Iran, to determine the influence of different rates of wheat residue (0%, 25%, 50%, and 75%) incorporation and N rates (150, 200, 300, and 400 kg ha?1) on weed suppression, yield, and yield components of cotton. Results showed that a higher residue incorporation and a lower N rate improved weed suppression in both years. For treatments receiving 150 kg N ha?1 and 75% of wheat residues (2250 kg ha?1), weed biomass and density were significantly lower compared to treatments receiving 400 kg N ha?1. The highest cotton lint yield (about 2400–2700 kg ha?1) was obtained by 300 kg N ha?1 in the absence of residue application, in both years. Incorporation of 25% of wheat residue (750 kg ha?1) and application of 300 kg N ha?1 are recommended to guarantee an optimum level of cotton lint yield and weed suppression in a wheat–cotton–wheat rotation in this region.  相似文献   

14.
Relative control of soil moisture [30, 60, and 80 percent water-holding capacity (WHC)] on nitrous oxide (N2O) emissions from Fargo-Ryan soil, treated with urea at 0, 150, and 250 kg N ha?1 with and without nitrapyrin [2-chloro-(6-trichloromethyl) pyridine] (NP), was measured under laboratory condition for 140 days. Soil N2O emissions significantly increased with increasing nitrogen (N) rates and WHC levels. Urea applied at 250 kg N ha?1 produced the greatest cumulative N2O emissions and averaged 560, 3919, and 15894 µg kg?1 at 30, 60, and 80 percent WHC, respectively. At WHC ≤ 60 percent, addition of NP to urea significantly reduced N2O losses by 2.6- to 4.8-fold. Additions of NP to urea reduced N2O emission at rates similar to the control (0 N) until 48 days for 30 percent WHC and 35 days for 60 and 80 percent WHC. These results can help devise urea-N fertilizer management strategies in reducing N2O emissions from silty-clay soils.  相似文献   

15.
Because limited information is available about the validated use of a chlorophyll meter for predicting nitrogen requirements for optimum growth and yield of wheat after application of herbicides, field experiments were carried out in the winter seasons of 2011/2012 and 2012/2013 under different weed and N fertilization treatments. Five weeded treatments, application of herbicides 25 days after sowing (DAS), hand pulling once at 55 DAS and a weedy check were combined with four N application rates. Weeds were completely absent in the non-fertilized plots, either with metribuzin or hand pulling as well as in isoproturon-treated plots fertilized with 190 or 285 kg N ha?1. The grain yield was similar in the treatments of isoproturon × 190 kg N ha?1, isoproturon + diflufenican × conditional N treatment (113.9) or 190 kg N ha?1, hand pulling × conditional N treatment (104.8) or 285 kg N ha?1 and metribuzin × 190 kg N ha?1. Under weeded practices, conditional N treatment recorded the maximum nitrogen use efficiency and almost equaled the grain protein content of the 190 kg N ha?1 application rate. N application based on SPAD readings saved about 40.0% and 44.8% N with isoproturon + diflufenican or hand pulling, respectively, compared to the recommended rate (190 kg N ha?1) without noticeable yield loss.  相似文献   

16.
Abstract

Nitrogen (N) and potassium (K) fertility management of maize (Zea mays L.) in the humid subtropical Mississippi Delta may differ from a temperate climate because of its use in rotation with cotton (Gossypium hirsutum L.), soil temperatures rarely falling to 0°C, and heavy winter rains that facilitate nutrient losses. An experiment to determine the [N] (concentration=[ ]), phosphorus [P], [K], calcium [Ca], magnesium [Mg], iron [Fe], manganese [Mn], zinc [Zn], and copper [Cu] and their total contents plant?1 of maize grown in rotation with cotton, using N fertility levels of (134, 179, 224, 269, and 314 kg N ha?1) in combination with K fertility levels of (0, 45, 90, and 134 kg K ha?1) was conducted in 2000 and 2001 at Tribbett, MS. Ear leaves, immature ears, and husks collected at growth stage R2 and grain and stover collected 21 days after R6 were dried, weighed, and analyzed for nutrient concentration. Plots were also harvested for yield, kernel weight, grain bulk density, and harvest index (HI). Increased [N] values of about 1.3 mg g?1 occurred in all organs except the stover between 134 and 314 kg N ha?1 N fertility. Stover [N] increased approximately 3.0 mg g?1 within the same N fertility range. Total N content of ear leaves, grain, and stover increased by about 11.0, 550.0, and 730.0 mg plant?1, respectively, with N fertility increased from 134 to 314 kg N ha?1. Yields, kernel weights, grain bulk densities, and harvest indices also increased with added N fertility. Several micronutrient concentrations and contents increased as N fertility increased. Increased K fertility had only limited influence on concentrations of most nutrient elements. The nutrient contents of most elements in the stover increased with added K fertility compared with plots that received no supplemental K fertilizer. These data showed between 139 and 265 kg N ha?1 was permanently removed by grain harvest and suggest that N fertility recommendations for the Mississippi Delta may be low for maize yield goals above 10 Mg ha?1. Added K fertilizer has minimal benefit to maize when soil test levels are adequate but are important to succeeding cotton crops where K uptake during fruiting can exceed the soil's ability to release K for uptake.  相似文献   

17.
Abstract

Up to 50% of nitrogen (N) fertilizer can remain in soil after crop harvest in dryland farming. Understanding the fate of this residual fertilizer N in soil is important for evaluating its overall use efficiency and environmental effect. Nitrogen-15 (15N)-labeled urea (165 kg N ha?1) was applied to winter wheat (Triticum aestivum L.) growing in three different fertilized soils (no fertilizer, No-F; inorganic nitrogen, phosphorus and potassium fertilization, NPK; and manure plus inorganic NPK fertilization, MNPK) from a long-term trial (19 years) on the south of the Loess Plateau, China. The fate of residual fertilizer N in soils over summer fallow and the second winter wheat growing season was examined. The amount of the residual fertilizer N was highest in the No-F soil (116 kg ha?1), and next was NPK soil (60 kg ha?1), then the MNPK soil (43 kg ha?1) after the first winter wheat harvest. The residual fertilizer N in the No-F soil was mainly in mineral form (43% of the residual 15N), and for the NPK and MNPK soils, it was mainly in organic form. The loss rate of residual 15N in No-F soil over summer fallow was as high as 48%, and significantly (P < 0.05) higher than that in the NPK soil (22%) and MNPK soil (19%). The residual 15N use efficiency (RNUE) by the second winter wheat was 13% in the No-F soil, 6% in the NPK soil and 8% in the MNPK soil. These were equivalent to 9.0, 2.0 and 2.2% of applied 15N. The total 15N recovery (15N uptake by crops and residual in 0–100 cm soil layer) in the MNPK and NPK soils (84.5% and 86.6%, respectively) were both significantly higher than that in the No-F soil (59%) after two growing seasons. The 15N uptake by wheat in two growing seasons was higher in the MNPK soil than in NPK soil. Therefore, we conclude that a high proportion of the residual 15N was lost during the summer fallow under different land management in dryland farming, and that long-term combined application of manure with inorganic fertilizer could increase the fertilizer N uptake and decrease N loss.  相似文献   

18.
Over the years, a scarcity of information on nutrient gains or losses has led to overemphasis being placed on crop yields and economic income as the direct benefits from fertilizer micro-dosing technology. There is increasing concern about the sustainability of this technology in smallholder Sahelian cropping systems. This study was designed in the 2013 and 2014 cropping seasons to establish nutrient balances under fertilizer micro-dosing technology and their implications on soil nutrient stocks. Two fertilizer micro-dosing treatments [2 g hill?1 of diammonium phosphate (DAP) and 6 g hill?1 of compound fertilizer Nitrogen-Phosphorus-Potassium (NPK) (15-15-15)] and three rates of manure (100 g hill?1, 200 g hill?1 and 300 g hill?1) and the relevant control treatments were arranged in a factorial experiment organized in a randomized complete block design with three replications. On average, millet (Pennisetum glaucum (L.) R.Br.) grain yield increased by 39 and 72% for the plots that received the fertilizer micro-dosing of 6 g NPK hill?1 and 2 g DAP hill?1, respectively, in comparison with the unfertilized control plots. The average partial nutrients balances for the two cropping seasons were ?37 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?34 kg K ha?1yr?1 in plots that received the application of 2 g DAP hill?1, and ?31 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?27 kg K ha?1yr?1 for 6 g NPK hill?1. The transfer of straw yields accounted for 66% N, 55% P and 89% K for removal. The average full nutrient balances for the two cropping seasons in fertilizer micro-dosing treatments were ?47.8 kg N ha?1 yr?1, ?6.8 kg P ha?1 yr?1 and ?21.3 kg K ha?1 yr?1 which represent 7.8, 24.1 and 9.4% of N, P and K stocks, respectively. The nutrient stock to balance ratio (NSB) for N decreased from 13 to 11 and from 15 to 12 for the plots that received the application of 2 g DAP hill?1 and 6 g NPK hill?1, respectively. The average NSB for P did not exceed 5 for the same plots. It was concluded that fertilizer micro-dosing increases the risk of soil nutrient depletion in the Sahelian low-input cropping system. These results have important implications for developing an agro-ecological approach to addressing sustainable food production in the Sahelian smallholder cropping system.  相似文献   

19.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

20.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号