首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Abstract

Zinc (Zn) deficiency is a widespread micronutrient disorder in crops grown in calcareous soils; therefore, we conducted a nutrient indexing of farmer‐grown rainfed wheat (Triticum aestivum, cv. Pak‐81) in 1.82 Mha Potohar plateau of Pakistan by sampling up to 30 cm tall whole shoots and associated soils. The crop was Zn deficient in more than 80% of the sampled fields, and a good agreement existed between plant Zn concentration and surface soil AB‐DTPA Zn content (r=0.52; p≤0.01). Contour maps of the sampled areas, prepared by geostatistical analysis techniques and computer graphics, delineated areas of Zn deficiency and, thus, would help focus future research and development. In two field experiments on rainfed wheat grown in alkaline Zn‐deficient Typic Haplustalfs (AB‐DTPA Zn, 0.49–0.52 mg kg?1), soil‐applied Zn increased grain yield up to 12% over control. Fertilizer requirement for near‐maximum wheat grain yield was 2.0 kg Zn ha?1, with a VCR of 4∶1. Zinc content in mature grain was a good indicator of soil Zn availability status, and plant tissue critical Zn concentration ranges appear to be 16–20 mg kg?1 in young whole shoots, 12–16 mg kg?1 in flag leaves, and 20–24 mg Zn kg?1 in mature grains.  相似文献   

2.
Zinc (Zn) deficiency in soils and field crops is widespread across the world, including India, resulting in severe reduction in yield. Hence, soil application of Zn fertilizers is recommended for ameliorating Zn deficiency in soil and for obtaining higher crop yield and better crop quality. Zinc sulfate is commonly used Zn fertilizer in India because of its solubility and less cost. However, good quality and adequate quantity of zinc sulfate is not available in the market round the year for farmers' use. Field experiments were therefore conducted during rainy season of 2010 and 2011 at research farm of Indian Institute of Soil Science, Bhopal, India to assess the influence of Zn application through zinc sulfate monohydrate (33% Zn), zinc polyphosphate (21% Zn) and Zn ethylenediaminetetraacetate (EDTA) (12% Zn) on yield and micronutrient concentration and uptake by maize (Zea mays L.). In both the years, grain and vegetative tissue (stover) yield of maize increased significantly with successive application of Zn up to 1 kg ha?1 added through zinc sulfate monohydrate and zinc polyphosphate. Addition of 2.5 kg Zn ha?1 did not increase yield further but resulted in highest stover Zn concentration. Zinc, copper (Cu), manganese (Mn), and iron (Fe) concentration in maize grain varied from 22.2 to 27.6, 1.6 to 2.5, 3.5 to 4.7 and 19.9 to 24.5 mg kg?1 respectively in both the years. Maize stover had 25.9 to 36.2, 7.9 to 9.8, 36.7 to 44.9 and 174 to 212 mg kg?1 Zn, Cu, Mn, and Fe, respectively. Zinc application did not influence Cu, Mn and Fe concentration in both grain and stover of maize. Transfer coefficients (TCs) of micronutrients varied from 0.72 to 0.95, 0.18 to 0.30, 0.08 to 0.13 and 0.10 to 0.15 for Zn, Cu, Mn, and Fe respectively. Total Zn uptake significantly increased with Zn application from 0.5 to 2.5 kg ha?1 supplied through zinc sulfate monohydrate and zinc polyphosphate. Recovery efficiency of Zn declined with increased Zn rates.  相似文献   

3.
Runoff may cause losses of micronutrients from soils. This can result in environmental problems such as contaminant transfers to water or a decrease in soil fertility. Appropriate soil management may reduce these micronutrient losses. This study examined the effect of applying crop residues to the soil surface on iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) losses by runoff. Runoff and sediment yield were measured on 1-m2 plots using a rainfall simulator with constant 65 mm h?1 intensity. Eight successive rainfall applications were performed at 65 mm each. Corn (Zea mays L.) straw was applied to plots at rates ranging from 0 to 8 t ha?1. Both total and dissolved concentrations of the micronutrients studied were decreased by corn straw applications. After 520 mm cumulative rainfall, total soil losses ranged from 150 to 15354 kg ha?1 depending on the amount of corn straw applied. Total micronutrient concentrations in runoff were as follows: Fe from 14.98 to 611.12 mg L?1, Mn from 0.03 to 0.61 mg L?1, Cu from 0.10 to 1.43 mg L?1, and Zn from 0.21 to 5.45 mg L?1. The relative contribution of the dissolved fraction to the total micronutrient content loss was low, but varied depending on the nutrient, being less than 1 percent for Fe and Mn and almost 10 percent for Zn. Total and dissolved concentrations in runoff of the studied elements decreased exponentially as the rate of applied corn straw increased. In conclusion, the addition of corn straw to soil reduced micronutrient losses.  相似文献   

4.
Mining wastes may pose risk nearby urban and agricultural areas. We investigated a lettuce crop land close to a former capped mine tailing in order to determinate the metal uptake by crops. Soil plot sampling design within the crop area and two transects along the tailing were performed. In addition, lettuces (root and leaves) were analyzed after transplant and harvest. The results showed a pH of around 7–8 for all the soil samples. Total metal concentrations were as follows: 190–510 mg kg?1 Pb, 13–21 mg kg?1 Cu, and 210–910 mg kg?1 Zn. Diethylene triamine pentaacetic acid-extractable Pb was around 18% of the total Pb in some samples. Transects along the base and on the plateau of the tailing showed high metal concentrations of Pb (up to 5,800 mg kg?1) and Zn (up to 4,500 mg kg?1), indicating that capping layer had been eroded. Lettuce leaves showed Pb concentrations within standard for human health (<0.3 mg kg?1 in fresh weight). For essential micronutrients such as Cu and Zn, leaves had optimal content (10–28 mg kg?1 Cu, 60–85 mg kg?1 Zn). A continued monitoring in metal uptake is needed in crop lands close to mining wastes in order to prevent risks in food safety. Capped tailings must be monitored and rehabilitation works performed from time to time.  相似文献   

5.
Field experiments were conducted with four nitrogen fertilizer treatments to study the effects of controlled-release urea combined with conventional urea on the nitrogen uptake, root yield, and contents of protein, soluble sugar, saponin, zinc (Zn), iron (Fe), magnesium (Mg), and copper (Cu) in Platycodon grandiflorum. Field experiments were conducted with four nitrogen (N) fertilizer treatments: no N fertilization; conventional urea with N rate of 175 kg N ha?1; conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 135 kg N ha?1. The results showed that nitrogen application significantly increased the yield of P. grandiflorum compared with the control. Treatment with controlled-release urea combined with conventional urea at 160 kg N ha?1 provided the highest yield of 7329.58 kg ha?1. Nitrogen application also increased the contents of soluble sugar, total saponin, protein, Zn, Fe, and Mg but decreased Cu content. Protein, saponin, and Zn contents were significantly higher, but Cu content was lower in P. grandiflorum fertilized with controlled-release urea combined with conventional urea than those fertilized with conventional urea alone. The combination of controlled-release urea with conventional urea at 160 kg N ha?1 was the optimal treatment under the experimental condition investigated in this study.  相似文献   

6.
Zinc (Zn) has emerged as the plant nutrient limiting rice growth in several parts of the world. About 50% of world soils are deficient in Zn and this is also true for India. An analysis of 0.233 million samples taken from different states showed that 47% of Indian soils are deficient in Zn. In India, Zn deficiency is widespread, especially in the rice–wheat cropping system belt of North India, which has high pH calcareous soils. Zinc is also now recognized as the fifth leading health risk factor is developing Asian countries, where rice is the staple food and Zn nutrition of humans and animals has recently received considerable attention. However, no reports are available on the effect of Zn fertilization on kernel quality of aromatic rices. The present study was therefore undertaken to study the effect of Zn fertilization on yield attributes, grain, and straw yield, Zn concentrations in grain and straw, Zn uptake, Zn use indices and kernel qualities of the aromatic rices. A field study at the Indian Agricultural Research Institute, New Delhi, India showed that Pusa Sugandh 4 (‘PS 4’) is a better than the earlier developed aromatic rice variety Pusa Basmati 1 (‘PB 1’) in terms of grain yield (4.08 tonnes ha?1), kernel quality, zinc (Zn) concentrations in grain and Zn uptake (1,396.9 g ha?1), recovery efficiency (5.2%), agronomic efficiency (122.7 kg grain increase kg?1 Zn applied), partial factor productivity (1,064.7 kg grain kg?1 Zn applied) and physiological efficiency (39,625 kg grain kg?1 Zn uptake) of applied Zn. From the grain yield (4.64 tonnes ha?1) viewpoint an application of 5 kg Zn ha?1 was found sufficient for the aromatic rices grown on ustochrepts of north Indian rice-wheat cropping system belt. Application of 7.5 kg Zn ha?1 increased Zn concentrations in the grain (37.0 mg kg?1 DM) and straw (117.3 mg kg?1 DM) of aromatic rices studied and this is important from the human and animal nutrition viewpoint under Indian conditions.  相似文献   

7.
The provision of farmers with proper and balanced fertilizer recommendations is becoming increasingly important, for reasons of crop productivity, food security, and sustainability. Phosphorus (P) response trials with wheat were conducted on Nitisols at 14 sites in the central Ethiopian highlands during the 2010 and 2011 cropping seasons. The treatments, comprising six levels of P fertilizer (0, 10, 20, 30, 40, and 50 kg P ha?1), were arranged in a randomized complete block design with three replicates. Based on a yield difference between the control and the P treatments, 90% of sites responded to P fertilizer. Application of P fertilizer increased wheat grain yield, up to 30% more than the control. Extractable soil P concentrations (Bray 2, 0–15 cm deep) 3 weeks after planting significantly responded to P fertilizer rate. The critical P concentration (for 90% relative yield) was 13.5 mg kg?1. Most sites tested had Bray 2 P values <10 mg kg?1. In the absence of a soil test, a recommendation of 40 kg P ha?1, resulting in the best response overall, could be made for the first year of application. We also recommend that to prevent a potential loss of wheat yield, a maintenance application of at least 5–12 kg P ha?1 be applied every year, irrespective of the calculated recommended rate, in order to replace P exported from the field in produce. Further field trials are required to determine interactions between P response and the effects of climate, soil properties, and other management practices.  相似文献   

8.
Abstract

Athyrium yokoscense, a type of fern that grows vigorously in mining areas in Japan, is well known as a Cd hyperaccumulator as well as a Cu, Pb and Zn tolerant plant. However, no information is available on As accumulation of A. yokoscense, although it often grows on soils containing high levels of both heavy metals and As. In this study, young ferns collected from a mine area were grown in media containing As-spiked soils or mine soil in a greenhouse for 21 weeks. Athyrium yokosense was highly tolerant to arsenate and survived in soils containing up to 500 mg As (V) kg?1. The addition of 100 mg As (V) kg?1 resulted in the highest fern biomass (1.95 g plant?1) among As-spiked soils. Although the As concentration of the fern was lower than other As hyperaccumulators, such as Pteris vittata, A. yokoscense could hyperaccumulate As in mature and old fronds. Arsenic was accumulated most efficiently in old fronds (922 mg kg?1) in the media containing 5 mg As (III) kg?1. Moreover, higher As accumulation was found in the roots of the ferns, with a range from 506 to 2,192 mg kg?1. In addition, in the mine soil with elevated concentrations of As and heavy metals, A. yokoscense not only hyperaccumulated As (242 mg As kg?1 in old fronds), but also accumulated Cd, Pb, Cu and Zn at concentrations much higher than those reported for other terrestrial plants. Athyrium yokoscense accumulated Cd mostly in fronds in high concentrations, up to 1095 mg kg?1, while it accumulated Cu, Zn and Pb mainly in the roots and the concentrations were 375, 2040 and 1165 mg kg?1, respectively.  相似文献   

9.
《Journal of plant nutrition》2013,36(8):1683-1696
Abstract

Soil acidity is one of the limiting factors affecting the production and sustainability of pastures and crops in many parts of the world. An on‐farm experiment was conducted in Australia to investigate the cultivar variation in alfalfa (lucerne) (Medicago sativa L.) with respect to soil acidity and response to applied lime. The experimental site was a brown sandy clay loam with a soil pH of 4.8 (1:5 calcium chloride). Ten cultivars (Hunter River, Hunterfield, Sceptre, Aurora, Genesis, Aquarius, Venus, PL90, PL55, and breeding line Y8804) were tested at two levels of lime (0 and 2 t ha?1). Lime application significantly increased the root growth, nodulation, leaf retention, leaf to stem ratio, herbage yield, and crude protein content of alfalfa. Liming had a significant effect on elemental composition of alfalfa shoots. Aluminum (Al) concentration was reduced from 93 mg kg?1 DM in nil lime treatment to 45 mg kg?1 DM in +lime treatment. Similarly, manganese (Mn) and iron (Fe) shoot concentrations were reduced from 74 mg kg?1 DM and 92 mg kg?1 DM to 59 mg kg?1 DM and 76 mg kg?1 DM, respectively. Liming significantly improved the calcium (Ca) concentration of shoots, while there was a little effect on phosphorus (P) and zinc (Zn) concentrations of alfalfa shoots. Cultivars had differential response to lime application. Response to lime application was greater in Y8804 and Aurora alfalfa where yield increased by 32% and 31%, while yield increase was 11–22% in other cultivars. Cultivars also differed significantly in root growth, nodulation, leaf drop, leaf to stem ratio, crude protein content, and elemental composition of shoots. Cultivars with better performance in no liming treatment had comparatively lower shoot Al, Mn, and Fe concentrations compared with other cultivars.  相似文献   

10.
ABSTRACT

An experiment was replicated simultaneously at two sites of floodplain soils of Bangladesh to find out the optimum application rate of zinc and boron fertilizers for crops under cauliflower-maize-transplant aus rice pattern. Randomized complete block design with three replications was used in the experimentation. The first crop of the pattern received four zinc levels (0, 2.0, 4.0, and 6.0 kg ha?1), and three boron levels (0, 1.5, and 3.0 kg ha?1). In second crop, two additional treatments receiving 2.0 kg Zn ha?1 and 2.0 kg Zn ha?1 + 1.5 B ha?1 were added; in the third crop, another four treatments were added by further application of 2 kg Zn ha?1 in each. Other nutrients viz. N, P, K, and S were used equally at recommended rates for all plots. In such a 3-crop pattern, application of 4.0 kg Zn ha?1 and 1.5 kg B ha?1 at a time to the first crop or 2.0 kg Zn ha?1 to each of the first two crops along with 1.5 kg B ha?1 to the first crop was sufficient to achieve satisfactory yield of the crops. Considering system productivity, nutrient uptake, and protein and Zn concentrations of crops, the aforesaid doses were found promising.  相似文献   

11.
In this study, 24 years (1990–2013) of data from a long-term experiment, in Stillwater, Oklahoma (OK), were used to determine the effect of beef manure on soil test phosphorus (STP), soil organic carbon (SOC), and winter wheat (Triticum aestivum L.) yield. Beef manure was applied every 4 years at a rate of 269 kg nitrogen (N) ha?1, while inorganic fertilizers were applied annually at 67 kg N ha?1, 14.6 kg phosphorus (P) ha?1, and 27.8 kg potassium (K) ha?1 for N, P, and K, respectively. Averaged across years, application of beef manure, and inorganic P maintained STP above 38 mg kg?1 of Mehlich-3 extractable P, a level that is far beyond crop requirements. A more rapid decline in SOC was observed in the check plot compared to the manure-treated plot. This study shows that the application of animal manure is a viable option to maintaining SOC levels, while also optimizing grain yield.  相似文献   

12.
Re-application of zinc (Zn) sulfate for corn (Zea mays L.) production in rotation of wheat-corn has varied effects on yield of crops grown in Zn deficient soils. Therefore, this study was done as split plots in a complete randomized block design (CRBD) where the main plots were control with and without Zn application in wheat (Triticum aestivum L.) production. Sub-plots were of control, without Zn fertilizer, base application of 75 kg per hectare (kg Zn ha?1), 25% and 50% less than base application and as foliar spray in combination with the 4 soil Zn treatments for corn production. Effect of previous Zn application on grain Zn concentration of corn was significant (P < 0.01). Zinc concentrations in treatments of without previous Zn (nil Zn) application and with Zn application were 28.1 and 31.8 mg kg?1, respectively. Soil application of 75 kg ha?1 and foliar application of Zn sulfate gave the highest yield (8853 kg ha?1) showed an increase of 25 percent in compared with nil-Zn. Although re-application of Zn has small effect on yield, but resulted in was the highest grain concentration.  相似文献   

13.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

14.
Abstract

Phytotoxicity, due to chromium [Cr (VI)] additions from low to very high levels in a swell–shrink clayey soil (Haplustert), in maize and spinach was studied in a pot culture experiment. Six levels of Cr (VI) (0, 5, 10, 25, 50, and 75 mg kg?1 soil) for maize and five levels for spinach (0, 2, 5, 10, and 25 mg kg?1 soil) were applied singly and in combination with two doses (0 and 20 t ha?1) of city compost. At levels of more than 75 mg Cr (VI) kg?1 soil for maize there was virtually no growth after germination, whereas 25 mg Cr (VI) kg?1 soil hindered the germination of spinach crop. Initial symptoms of Cr (VI) toxicity appeared as severe wilting of the tops of treated plants. Maize plants suffering from severe Cr (VI) toxicity had smaller roots and narrow brownish red leaves covered with small necrotic spots. In spinach, severe chlorosis was observed in leaves. Higher levels of Cr (VI) inhibited the growth and dry‐matter yield of the crops. However, application of city compost alleviated the toxic effect of Cr (VI). The concentration of Cr (VI) in plant parts increased when Cr (VI) was applied singly but decreased considerably when used in combination with city compost. There was evidence of an antagonistic effect of Cr (VI) on other heavy‐metal (Mn, Cu, Zn, and Fe) concentrations in plant tops. Thus, when Cr (VI) concentration increases, the concentration of other beneficial metals decreases. Chromium (VI) concentration in maize roots ranged from traces (control) to 30 mg kg?1and were directly related to soil Cr (VI) concentration. At 25 mg Cr (VI) kg?1 soil, yield of maize was reduced to 41% of control plants, whereas in spinach, 10 mg Cr (VI) kg?1 soil caused a 33% yield reduction. Experimental results revealed that the maize top (cereal) is less effective in accumulating Cr (VI) than spinach (leafy vegetables). Laboratory studies were also conducted to know Cr (VI) sorption capacity of a swell–shrink clayey soil with and without city compost, and it was found that Cr (VI) sorption reaction was endothermic and spontaneous in nature.  相似文献   

15.
Genetic differences among crop genotypes can be exploited for identification of genotypes more suited to a low‐input agricultural system. Twenty wheat (Triticum aestivum L.) genotypes were evaluated for their differential yield response, phosphorus (P) uptake in grain and straw, and P‐use efficiency at the zero‐P control and 52 kg P ha?1 rates. Substantial and significant differences were obvious among genotypes for both grain and straw yields at stress (8 mg P kg?1 soil, native soil P, no P addition) and adequate (52 kg P ha?1) P levels. Genotype 5039 produced maximum grain yield at both P levels. Relative reduction in grain yield due to P‐deficiency stress [i.e., P stress factor (PSF)] ranged between none and 32.4%, indicating differential P requirement of these genotypes. Pasban 90, Pitic 62, Rohtas 90, Punjab 85, and line 4943 did not respond to P application and exhibited high relative yield compared to those at adequate P level. FSD 83 exhibited the best response to P with maximum value for PSF (32.4%). Genotypes were distributed into nine groups on the basis of relationship between grain yield and total P uptake. Rohtas 90 and lines 4072 and 5039 exhibited high grain yield and medium P uptake (HGY‐MP). However, line 5039 with high total index score utilized less P (12.2 kg P ha?1) than line 4072 and Rohtas 90 (13.5 and 13.6 kg P ha?1, respectively). Moreover, this genotype also had greater P harvest index (PHI, %) and P physiological efficiency index (PPEI) at stress P level. Pasban 90, Pitic 62, and Pak 81 had the greatest total index score (21), mainly due to high total P uptake, but yielded less grain than lines 5039 and 4072 under low available P conditions. Line 6142 had minimum total index score (15) and also produced minimum grain yield. A wide range of significant differences in PPEI (211 to 365 kg grain kg?1 P absorbed at stress and 206 to 325 kg grain kg?1 P absorbed by aboveground plant material at adequate P) indicated differential utilization of absorbed P by these genotypes for grain production at both P levels. It is concluded from the results that wheat genotypes differed considerably in terms of their P requirements for growth and response to P application. The findings suggest that PSF, PHI, and PPEI parameters could be useful to determine P‐deficiency stress tolerance in wheat.  相似文献   

16.
Maize (Zea mays L.) is generally low in bioavailable zinc (Zn); however, agronomic biofortification can cure human Zn deficiency. In the present experiment, Zn was applied in pots as ZnSO4 · 7H2O to maize cultivar DK-6142 as foliar spray (0.5% w/v Zn sprayed 25 days after sowing and 0.25% w/v at tasseling), surface broadcasting (16 kg Zn ha?1), subsurface banding (16 kg Zn ha?1 at the depth of 15 cm), surface broadcasting + foliar and subsurface banding + foliar in comparison to an unfertilized control. As compared to control, all treatments significantly (P ≤ 0.05) increased growth, yield and nutritional attributes in maize. Grain Zn and protein concentrations were correlated and ranged from 22.3 to 41.9 mg kg?1 and 9 to 12 %, respectively. Zinc fertilization also significantly reduced grain phytate and increased grain Zn concentration. Zinc fertilization, especially broadcasting and subsurface banding combined with foliar spray decreased grain [phytate]:[Zn] ratio to 28 and 21 and increased Zn bioavailability by trivariate model of Zn absorption to 2.04 to 2.40, respectively. Conclusively, broadcasting and subsurface banding combined with foliar spray is suitable for optimal maize yield and agronomic Zn biofortification of maize grain. This would also be helpful to optimize Zn and protein concentration in maize grain.  相似文献   

17.
Field experiments show that wheat grown after oilseed rape (OSR) achieves higher yield levels, while the nitrogen (N) application is reduced. However, field experiment data are based on few locations with optimised management. We analysed a large dataset based on farm data to assess the true extent of break crop benefits (BCB) for yield and N fertilisation within German commercial farming.

Across all German states and years, average yield of wheat preceded by OSR was 0.56 Mg ha?1 higher than yield of wheat preceded by cereals (7.09 Mg ha?1), although considerable variation between regions was observed. Mean N application across all states to wheat after OSR was 5 kg ha?1 lower than to wheat after cereals. Choice of wheat types for different end uses (bread flour or animal feed) showed higher (0.77 Mg ha?1) or lower (0.44 Mg ha?1) BCB for yield of wheat cultivated after OSR compared with after cereals. The calculated BCB for yield and N fertilisation were lower than expected from dedicated field experiments and fertiliser recommendations. Thus the advantages of OSR as a preceding crop are generally utilised by commercial farmers in Germany but there is room for improvement.  相似文献   

18.
Abstract

A pot experiment was conducted under glasshouse conditions during 2004 at the Central Institute of Medicinal and Aromatic Plants (CIMAP) in Lucknow. The study presented here was aimed at evaluating the response of Mentha arvensis (cv. Kushal), an essential oil–bearing plant, to different concentrations of zinc (Zn) and iron (Fe) supply with respect to their influence on biomass, oil yield, and oil quality. Suckers of Japanese mint were grown with four graded levels each of Fe and Zn (viz. 0, 5.0, 10.0, 25.0 mg Fe kg?1 and 0, 2.5, 5.0, 15.0 mg Zn kg?1) and a combination of both the elements. The results indicated that the fresh weight, oil content, and chlorophyll content increased significantly with increase in Fe supply; the optimum level was recorded as 10 mg Fe kg?1. Iron uptake increased significantly with increases in its supply. Zinc, when applied singly, showed enhancement in growth parameters, but the effects were nonsignificant. The optimal levels of supply for Zn and Fe in M. arvensis was evaluated to be 5 mg Zn kg?1 and 10 mg Fe kg?1, respectively.  相似文献   

19.
A pot experiment evaluated the growth of lettuce (Lactuca sativa L.) and barley (Hordeum vulgar) and accumulation of molybdenum (Mo) in plants and soils following amendments of Mo compost (1.0 g kg?1) to a Truro sandy loam. The treatments consisted of 0 (control), 12.5, 25, and 50% Mo compost by volume. The Mo compost did not affect dry‐matter yield (DMY) up to 25% compost, but DMY decreased at the 50% compost treatment. The 50% compost treatments increased the soil pH an average of 0.5 units and increased the nitric acid (HNO3)–extractable Mo to 150 mg kg?1 and diethylenetriaminepentaacetic acid (DTPA)–extractable Mo to 100 mg kg?1 in the growth medium; the same treatment increased tissue Mo concentration to 569 and 478 mg kg?1 in the lettuce and barley, respectively. Plants grown in the 25% compost produced about 55 mg kg?1 of total Mo in the growth medium; this resulted in tissue Mo concentration of 348 mg kg?1 in lettuce and 274 mg kg?1 in barley without any phytotoxicity. Our results suggested that 55 mg Mo kg?1 soil would be an appropriate limit for Mo loading of soil developed from compost additions, a value which is presently greater than the Canadian Council for Ministers of the Environment (CCME) Guidelines for the use of type B compost in Canada.  相似文献   

20.
Deficiency of micronutrients increasing in field crops, including upland rice in recent years. The objective of this study was to determine requirement of zinc (Zn), copper (Cu) boron (B) and iron (Fe) for upland rice grown on a Brazilian Oxisol. The levels used were: Zn (0, 10, 20, 40, and 80 mg kg?1), Cu (0, 5, 10, 20 and 40 mg kg?1), B (0, 5, 10, 20 and 40 mg kg?1) and Fe (0, 250, 500, 1000, and 2000 mg kg?1). Plant height, straw yield, grain yield, panicle number and grain harvest index (GHI) were significantly improved with the addition of these micronutrients. Root growth was also improved with the application of micronutrients, except with the addition of B. Maximum grain yield was obtained with the addition of 51 mg Zn, 24 mg Cu, 5 mg B kg?1, and 283 mg Fe kg?1 soil. Similarly, maximum straw yield was obtained with the addition of 38 mg Zn, 17 mg Cu, 6 mg B kg?1, and 1500 mg Fe kg?1 soil. Maximum plant height was obtained with the addition of 54 mg Zn, 10 mg B kg?1, and 1197 mg Fe kg?1 soil. Copper did not affect plant height significantly. Maximum panicle number was obtained with the addition of 22 mg Cu kg?1, 3 mg B kg?1, and 1100 mg Fe kg?1 soil. Zinc did not affect panicle number significantly. Maximum GHI was obtained with the addition of 61 mg Zn kg?1, and 8 mg B kg?1. Zinc was had a linear increase in GHI in the range of 0 to 80 mg kg?1, and Fe showed a negative relationship with GHI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号