首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expansion of soybean [Glycine max (L.) Merrill] cultivated in Brazil to regions with low fertility soils gave rise to studies on the possibility of obtaining highly productive cultivars with high nutrient use efficiency. An experiment in greenhouse conditions was conducted to assess phosphorus (P) use efficiency (PUE) by 13 soybean genotypes. The genotypes were grown in an Ustoxix Quartzipsamment with two P rates [0 (no P application) and 150 mg P kg?1], whose source was monoammonium phosphate (MAP, P2O5 44%). Shoot dry weight (SDW), grain yield (GY), grain harvest index (GHI), relative yield (RY), and physiological components (photosynthetic rate, stomatal conductance, respiratory rate, and internal CO2 concentration) were influenced by soybean genotypes and P rates. Genotypes BMX Apolo RR, BRS 360RR, BRS 378RR, CD 219RR, DM 2302RR, TMG 7161RR, and Vtop RR were classified as non-efficient and non-responsive to P application, while BMX Potência RR, Vmax RR, FPS Solar RR, NA 5909RR, TMG 1066RR, and M 6210 IPRO were classified as efficient and responsive. Phosphorus application increased the values of physiological components, which was not observed for N, K, Ca, Mg, and S concentration in the leaves and grains. Soybean genotypes selection for increased P efficiency could help growers overcome the problem of soybean cultivation on new areas or degraded pastures.  相似文献   

2.
Soybean [Glycine max (L.) Merril] is the leading food crop worldwide, and selection of soybean genotypes for different levels of soil acidity may raise crop yield without the need to increase in planted area. An experiment in greenhouse conditions was conducted to determine the effects of two lime rates on soil chemical properties, grain yield (GY), yield components, nutritional status and physiological components of 15 soybean genotypes adapted to tropical and subtropical conditions. Genotypes BMX Apolo RR, BMX Potência RR, BRS 295RR, BRS 359RR, FPS Solar IPRO and TMG 716 IRR were the least responsive to soil acidity reduction, and BMX Turbo RR and BRS 360RR were the most responsive. Number of pods per pot, shoot dry weight yield, GY, photosynthesis, stomatal conductance, transpiration and chlorophyll increased significantly with increase in lime rate. Cultivar FPS Solar IPRO showed the highest foliar P, K, Ca and Mg concentrations in soybean, which was not observed in the grain, indicating the presence of genetic factors and the dilution effect on nutrient uptake.  相似文献   

3.
Glyphosate is a widely used nonselective herbicide for the control of agricultural weeds. It is being increasingly used in glyphosate resistant genetically modified plants. However, there are few studies on its effects on the nutritional status of soybean, particularly on the uptake of zinc (Zn). Two experiments were conducted under field conditions in a Typic Quartzipsamment and an Orthic Ferralsol to investigate the effect of glyphosate application × Zn interaction on soil fertility, yield components, seed yield (SY), shoot dry weight (SDW) yield, and nutritional status of soybean. The five Zn rates 0, 3, 6, 9, and 12 kg ha?1 were used in two soybean varieties [BRS 133 (conventional—NGM) and its essentially derived transgenic line BRS 245RR (GM), which was divided into: with (+Gly) and without (–Gly) glyphosate application. Only the P (phosphorus) and Zn available concentrations in the soil were impacted by Zn rates. However, the available P concentration only decreased in the soil planted with GM soybean. Mehlich 1 and diethylenetriaminepenta acetic acid–triethanolamine (DTPA–TEA), 7.3 extractants were effective to determine the available Zn. In the two crop sites, the number of pods per plant (NPP) and the SDW yield were affected by the interaction varieties × Zn. SY was influenced by the application of the herbicide, reducing a potential phytotoxic effect with the use of high rates. Regarding the nutrients, only the foliar calcium (Ca), boron (B), iron (Fe), and manganese (Mn) concentrations were negatively affected by glyphosate, and in the case of Zn, the difference occurred only between the varieties BRS 133 and BRS 245RR.  相似文献   

4.
Liming reduces acidity neutralizes aluminum (Al3+) and manganese (Mn2+) toxicities and increases calcium (Ca2+) and magnesium (Mg2+) concentrations in many acid soils of the world. However, it reduces the availability of other cationic micronutrients that are essential for plant growth. Therefore, an experiment was conducted in greenhouse conditions for assessing the effects of higher lime rates in foliar and grain boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) concentrations of 15 soybean genotypes [Glycine max (L) Merrill]. The lime rates were calculated to raise base saturation (V) to 40 and 70%. The soybean genotypes were classified as efficient and moderately efficient in lime-use, the most efficient cultivar was BRS 295RR, and the least efficient was TMG 7161RR and BMX Força RR. The lime rates × genotypes interaction was significant for foliar Cu. The grain the interactions were significant for B, Cu, Fe, and Mn concentrations. Foliar and grain B, Cu, Fe, Mn, and Zn concentrations varied significantly among the genotypes. The Ca and Mg concentrations in the leaf, grain, and soil showed a positive correlation with foliar B concentrations and a negative correlation with leaf and grain Cu, Mn, and Zn concentrations.  相似文献   

5.
The selection of varieties or species of plants with higher nutrient uptake efficiency and nutrient concentration for biofortification of food crops is a key tool to reduce malnutrition. Soybean (Glycine max L. Merr) is one of the most important food crops, because it is consumed directly or indirectly, in the form of seeds, processed (milk and/or derivatives), or used as a protein component of animal feed worldwide. In order to select plants with higher nutrients concentration in seeds, 24 soybean varieties for tropical and subtropical conditions and different general features were assessed. There was great variability in photosynthesis rate, chlorophyll content, seed yield (SY), and concentration and uptake of nutrients by seeds between the varieties. Not genetically modified (NGM) crops showed higher nitrogen (N), cooper (Cu), and manganese (Mn) concentration and higher N, potassium (K), Cu, iron (Fe), Mn, and zinc (Zn) uptake, while for genetically modified (GM) crops only calcium (Ca) concentrations were higher. Varieties BRS 284 and BMX Magna RR showed the highest nutrients concentrations in the group with the highest nutrient efficiency. The genetic variability observed among the varieties regarding uptake and translocation of nutrients into seeds allows selecting more promising materials to be used in the biofortification of nutrients in soybean seeds.  相似文献   

6.
Sulfur (S) is an essential nutrient in crop plants and one of the components of amino acids (AAs) and proteins. Studies about sulfur efficiency on soybean cultivars [Glycine max (L) Merril] adapted to the tropical and subtropical conditions are still incipient. In Brazil, one experiment under greenhouse conditions evaluated the S-efficiency from eight soybean cultivars. The plants cultivated in a Typic Quartzipsamment received two S rates (0 and 80 mg kg?1). The grain yield (GY), shoot dry weight (SDW), and the relative yield (RY) had influence from the S rates. The cultivars BRS 295RR and BRS 360RR were the most efficient in using the S application. The number of pods per plant (NPP), photosynthetic rate (A), nitrate reductase (N-NO2?), and chlorophyll significantly increased with de 80 mg kg?1 of S. By contrast, the internal concentration of carbon dioxide (CO2) (Ci) was reduced. Similarly, there were increases in the concentration of nitrogen (N), phosphorus (P), magnesium (Mg), and N:S ratio in the leaves and grain, but the K increased only in the leaves. Comparing the cultivars, only the N concentration in the leaves and the Mg in the grain had non-significant differences.  相似文献   

7.
Six cultivars of canola (Brassica napus L.) were grown with six levels of applied nitrogen (N) fertilizer (urea 46% N) at six locations in south Western Australia (SWA) during 2010 and 2011. The aim of the experiment was to determine if the seed yield (SY) increase (response) of the canola and associated herbicide technologies were different to applied N. Open pollinated (OP) and hybrid cultivars of associated herbicide technologies (Triazine Tolerant, TT; Roundup Ready, RR; Clearfield, CL) were used. Varieties had large SY differences with no N applied. Generally, RR hybrid of 2011 tended to have the highest SY, except for Katanning 2011 where several varieties obtained the same SY. The average amount of N required for 90% of the maximum SY was 113 kg N ha?1 and economic breakeven N rates were less than or equal to 100 kg applied N ha?1. The average rate of return on investment in fertilizer N was $1.60.

In four out of six experiments RR hybrids had the highest oil concentration with no applied N. N decreased the oil concentration in all canola types, except at Gibson 2010. At Gibson in 2010, N application increased the oil concentration to about 100 kg N ha?1 with further additions of N decreasing the oil concentration. There was a linear relationship where N application decreased the oil concentration and increased protein concentration of the seed. In this study, the summation of oil percentage and protein concentration in the seed was on average 65%, with RR hybrids producing 67%.

In most aspects, RR hybrids outperformed RR, OP and other canola types; however, hybrid TT and hybrid CL canola did not consistently outperform their OP counterpart. We suggest that current N fertilizer recommendation models are useful for all canola types currently grown in SWA; however, adjustments should be made to take into account the higher SY and oil concentration potential of RR hybrids compared to TT canola at every rate of applied N.  相似文献   

8.
Extensive and semi-extensive pastures are the basis of Brazilian livestock production. However, much of it is degraded or in degradation process, with low stocking rate per area. Even with this problem, this management type is 60% and 50% of Australia’s and the United States’ production costs, respectively. In order to research alternatives for Urochloa decumbens degraded pasture recovery in an Oxisol, Stylosanthes (Stylosanthes spp.) “Campo Grande” cultivar was introduced and phosphate fertilization was applied. The experimental design was of randomized blocks, 7 × 2 × 2 factorial design, with four replicates, involving seven systems to introduction (U. decumbens control; partial desiccation with 1.5 L ha?1 glyphosate, total desiccation with 3.0 L ha?1 glyphosate; direct planting; scarification, harrowing, and plowing + harrowing), phosphate fertilizer presence or absence, and two evaluation periods. “Campo Grande” Stylosanthes legume introduction increased shoot dry weight (SDW) yield, except in direct planting. Phosphorus fertilization increased SDW yield only in the first period, and Stylosanthes introduction in the pasture has not changed soil chemical properties. Phosphorus (P) fertilization also provided available P and exchangeable calcium (Ca2+) content in the soil increase, in addition to sum of bases and cation exchange capacity increase.  相似文献   

9.
Application of glyphosate herbicide in genetically modified (GM) soybean [Glycine max (L.) Merrill] in soils with low zinc (Zn) concentration may interfere in the uptake of this and other nutrients, with negative impact on productivity. Thus, an experiment was conducted in greenhouse conditions on Ustoxix Quatzipsamment soil to investigate the effects of the interaction of glyphosate with Zn for the yield, photosynthesis, soil fertility and nutritional status of soybean. The treatments consisted of two soybean varieties [BRS 133 (conventional—NGM) and its essentially derived transgenic line BRS 245RR (GM) with and without glyphosate application] and five Zn rates (0, 5, 10, 20 and 40 mg kg?1, source zinc sulfate (ZnSO4)), with four replicates. Except for the copper (Cu) and iron (Fe) concentrations, the introduction of the herbicide-resistant gene is the predominant factor reducing nutrient uptake, photosynthetic (A) rate, stomatal conductance (Gs), leaf chlorophyll and ureide concentrations. The administration of Zn rates lowered the leaf phosphorus (P) concentration, and there was significant increase in Zn concentration in the soil and in the plant. Except for the 20 mg kg?1 of Zn rate, the use of the herbicide did not affect the shoot dry weight (SDW) and seed yield, and on average, the maximum seed yield was obtained with Zn concentrations of 26.4 and 18.7 mg kg?1 extracted by Mehlich 1 and diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), respectively.  相似文献   

10.
ABSTRACT

The growth of cotton (Gossypium hirsutum L.) was evaluated in a 6 × 5 factorial experiment with 6 boron (B) levels (0.0, 0.5, 1.0, 1.5, 2.0, and 3.0 mg dm?3), 5 cultivars (‘CNPA 8H’, ‘BRS Aroeira’, ‘BRS Antares’, ‘BRS Sucupira’, ‘BRS Ipe’), and 3 replications. As B increased in the soil, leaf B concentrations increased linearly in ‘BRS Aroeira’ and ‘CNPA 8H’, and quadratically in ‘BRS Ipe’ and ‘BRS Sucupira’. The concentrations of B in the leaves and in the soil increased with the B increasing in the soil. The agronomic characteristics evaluated showed ‘BRS Aroeira’ and ‘BRS Sucupira’ responding more and BRS responding less to the B doses applied. The variation in the effFiciency of B utilization was: ‘BRS Aroeira’ > ‘CNPA 8H’ = ‘BRS Antares’ > ‘BRS Sucupira’ > ‘BRS Ipe’. Cultivar ‘BRS Aroeira’ had the greatest potential to respond positively to the addition of B to the soil.  相似文献   

11.
Three cultivars of tomato (Lycopersicon esculentum Mill., cvs. Sera, 898, Rohaba) were grown under different levels of NaCl in nutrient solution to determine effects of salt stress on shoot and root dry matter (DM), plant height, water use efficiency (WUE, g DM kg‐1 water evapotranspired), shoot sodium (Na) and potassium (K) concentrations, and K versus Na selectivity (SK,Na). Increasing NaCl concentration in nutrient solution adversely affected shoot and root DM, plant height, WUE, K concentration, and K/Na ratio of all cultivars. Shoot Na concentrations increased with increasing NaCl concentration in the nutrient solution. Although increasing salt concentration in the solution adversely affected growth of all cultivars, the cultivar Sera had the highest shoot and root DM than the other two cultivars (898 and Rohaba). Shoot and root DM of cultivar 898 was most affected by salt, while cultivar Rohaba had an intermediate salt sensitivity. The cultivar Sera generally had higher WUE values, shoot K concentrations, and SK,Na, but had lower shoot Na concentrations than the other two cultivars when plants were grown under different salt levels. Greater Na exclusion, higher K uptake and shoot SK,Na are suggested as being plant strategies for salt tolerance.  相似文献   

12.
For 7 years (1997–2003), five nitrogen (N) rates (0, 60, 120, 180, and 240 kg N ha?1) were applied to sugar beets arranged in randomized complete block (RCB) design experiments with six replications and grown on light soils (sand content >50 g kg?1) in northern Greece. The aim of this work was to identify soil characteristics that affect yield, quality, and sugar beet response to N fertilization. Before sowing, soil analyses were conducted in control plots (0 kg N ha?1) at two depths (0–30 and 30–60 cm). Soils differed in their physical and chemical properties and especially in sand content, which ranged from 500 to 732 g kg?1. Quantitative (root number, RN; root yield, RY; and sugar yield, SY) and qualitative (percentage sucrose content in fresh root weight, SC; potassium, K; sodium, Na; and α-amino N) traits of control plots were used as soil fertility index. The RN was positively affected by clay content, and RY and SY were positively related with sand and negatively with silt content. The SC was negatively affected by soil (NO3)-N and sodium (Na) concentrations. Also, soil (NO3)-N concentration was positively related with root impurities (K, Na, α-amino N). In combined data over years, N rates had a negative effect on the RN. The RY was the only trait affected by years, N rates, and their interaction. The SC and SY differed significantly between years, and N rates affected significantly the former but not the latter. In combined data over years, N rates were curvilinearly related with Na concentration in roots, whereas a strong, linear relationship was found between α-amino N concentration and N rates. To study the significant years × N rates interaction evidenced for the RY, the relative response (RR) of the RY to N was introduced. Actually, the RR expresses the increase or decrease of the RY for a 150 kg N ha?1 rate compared to the control (0 kg N ha?1). The RR was strongly related with soil K concentration at the 0- to 30-cm depth (y = –0.00002x2 + 0.0082x + 0.5085, r2 = 0.92, P < 0.01, n = 7) and with total N concentration at the deeper layer (y = 1.8335x2 – 3.5312x + 2.6614, r2 = 0.88, P < 0.05, n = 6). Thus, the RY response to a rate of 150 kg N ha?1, which is the commonly applied to the sugar beet crop in Greece, can be predicted reliably by soil characteristics (K and total N concentration) determined before sowing. The strong relationship between soil K concentration and sugar beet response to N merits further research.  相似文献   

13.
《Journal of plant nutrition》2013,36(11):1953-1962
Abstract

Zinc (Zn) deficiency is a yield limiting constraint for wheat production in central Iran. A field experiment was conducted for two consecutive years (1999/2000 and 2000/2001) to study Zn use efficiency of five wheat cultivars. Two Zn rates were used, i.e., 0 and 40 kg Zn ha?1 applied as zinc sulfate. Significant variation was found among wheat cultivars in relation to grain yield, straw yield, Zn use efficiency and yield components. Based on grain yield and Zn use efficiency across two years, cultivar Cross was most efficient and Dur-3 was most inefficient for Zn use efficiency. Cultivars Kavir, Falat, and Rushan were intermediate in Zn use efficiency. Zinc concentration and uptake were higher in the zinc efficient cultivar Cross, while these values were lowest in the Zn inefficient cultivar Dur-3.  相似文献   

14.
Abstract: A study of soil physicochemical characteristics and mineral nutrition of four cultivars of Leucospermum cordifolium (‘Scarlett Ribbon,’ ‘High Gold,’ ‘Veldifre,’ ‘Sunrise’) and Leucospermum patersonii species was carried out along 2 years in commercial protea plantations, distributed throughout a subtropical region (La Palma Island, Canarian Archipelago). Soils presented a slightly acid pH range, whereas organic matter showed suitable values. Generally, available soil phosphorus (P) contents were less than 25 mg kg?1, with high available potassium (K) and calcium (Ca) levels, though the ratio of Ca of the sum of available cations was usually appropriate. Despite the high electrical conductivity (EC) levels (4.31–8.87 dS m?1) determined in some soils, no salinity symptoms were ever detected. Distribution and behavior of foliar nutrients nitrogen (N), P, K, Ca, magnesium (Mg), and sodium (Na) along time showed that nutritional needs varied in some cases among cultivars and species. L. patersonii presented the least N concentration, whereas ‘High Gold’ and ‘Veldfire’ had the greatest levels. Data denoted that P requirements were larger in younger plants, during the recovery after pruning, and while new buds developed. ‘Sunrise’ cultivar stood out for its large foliar levels of P, whereas ‘Scarlett Ribbon’ and ‘Veldfire’ had the least K contents. As a general pattern, K decreased in winter samplings. L. patersonii species and the cultivar ‘Sunrise’ exhibited the highest Ca values, and the same was true for Mg only in the species. A special need for Na appeared in all the cultivars and species studied. L. patersonii and the cultivar ‘Sunrise’ showed the greatest Na levels. A general stabilization of nutrient concentrations was observed in the fourth, fifth, and/or sixth samplings, so that November is recommended for taking samples for current foliar analysis. In this context, foliar ranges for the studied nutrients are suggested.  相似文献   

15.
有机物料对污染土壤上水稻重金属吸收的调控效应   总被引:7,自引:1,他引:6  
周利强  尹斌  吴龙华  骆永明 《土壤》2013,45(2):227-232
采用重金属污染水稻土开展盆栽试验,研究施用有机碳源、菜籽饼和猪粪对不同水稻(汕优63,简称“SY63”;中浙优1号,简称“ZZY1”)重金属吸收的调控效应.结果表明,在重金属污染土壤上ZZY1具有一定的耐性,相同处理时ZZY1糙米、砻糠、秸秆中重金属含量均低于SY63品种,糙米中Cd含量较SY63低57.5% ~ 83.8%,Cu含量低37.8% ~ 69.1%,Zn含量低0.88% ~ 31.7%,食物链风险较SY63品种低.3种有机物料中,施用菜籽饼使两水稻品种糙米中重金属含量明显低于其他处理;与对照相比,施用菜籽饼使SY63糙米中Cd、Cu和Zn含量降低73.5%、52.6%和32.1%,ZZY1糙米Cd含量降低30.5%.在供试重金属污染土壤上可选择具有一定重金属耐性的水稻品种ZZY1进行粮食生产,同时施用适量的菜籽饼以增强其抵御重金属毒害的能力,降低糙米中Cd、Cu和Zn含量及其食物链污染风险.  相似文献   

16.
Manganese (Mn) deficiency in soybean has occurred mainly in soils with surface dolomite lime application, which increases pH and the magnesium (Mg) concentration in the surface layer. The objective of this study was to investigate the influence of Mg on the Mn uptake in four soybean cultivars with different nutritional requirements. The experiment was conducted under greenhouse conditions in a completely randomized design, in 4 × 2 × 4 factorial scheme [four soybean cultivars, two Mg rates (0.1 and 1.0 mmol L?1) and four Mn rates (0.0, 1.0, 2.0, and 5.0 µmol L?1)], with four replicates. The cultivars used in the experiment were: IAC 17 and FT Estrela (for soils fertility or high nutritional demand) and IAC 15–1 and DM Nobre (for soils partially corrected or medium nutritional demand). The root dry weight (RDW), shoot dry weight (SDW), SDW/RDW ratio, chlorophyll content, seed yield and foliar concentrations of nitrogen (N), phosphorus (P), potassium (K), Mg, calcium (Ca), iron (Fe), Mn, and zinc (Zn) were determined. The application of the highest Mg rate increased seed yield. This was also observed with a Mn rate up to 3.0 μmol L?1. There was an interaction of Mg and Mn in the plant, and it was found that the IAC 17 cultivar was the most sensitive to Mn, while FT Estrela had the lowest performance. N, P, K, and Zn concentrations were significantly influenced by Mn rates. The Mg and Mn rates had a significant effect on Mg foliar concentrations. The rate of 1.0 mmol L?1 of Mg provided the lowest levels of nutrients to the plant and increased SDW and seed yield, regardless of the nutritional requirement of each cultivar.  相似文献   

17.
Book Reviews     
Growth, yield, and chemical composition responses of two faba bean cultivars due to foliar application of 28-homobrassinolide (HBR) and 24-epibrassinolide (EBR) were studied in two field experiments conducted at the Experimental Farm of Faculty of Agriculture, Cairo University at Giza, Egypt, during 2003/2004 and 2004/2005. The application of 0.10 mg l?1 EBR improved the growth characters and yield of the two cultivars over the control. Treatment with 0.05 mg l?1 EBR and 0.50 mg l?1 HBR stimulated plant growth and productivity but less effectively than treatment with 0.10 mg l?1 EBR. This increment was more pronounced in Sakha 1 cultivar as compared with Giza 40 cultivar. Application of 0.10 mg l?1 EBR gave, along with a 28% rise in productivity of Sakha 1 cultivar and 21.8% rise in productivity of Giza 40 cultivar, a better quality of yield with regard to an enhancement in the concentration of N, P, K, Fe, Zn, Mn, Cu, protein, and total carbohydrates. These considerable effects of EBR and HBR on plant development and yield promotion, together with the environmentally safe aspects of these compounds, would mark a major development in the field of plant growth regulators, and would minimize the risks associated with agrochemicals by reducing environmental contamination.  相似文献   

18.
Abstract

In the last decades, soybean (Glycine max (L.) Merrill) was the crop with the highest acreage in Brazil. Soybean has been cropped under unfertile soils as sandy soils and those under pasture decaying where applying high fertilizer levels have significant responses. The presence of calcium (Ca) and magnesium (Mg) concentration in the upper layers promotes ions imbalanced concentration in soil solution because the soil acidity correction reduces the uptake of other cations as zinc (Zn). The objective of this study was to evaluate under nutritive solution conditions, the Mg influence in Zn distribution and mobilization into plants from four soybean cultivars with different nutritional requirements. The experimental design was complete randomized blocks in factorial scheme 4?×?2?×?4 being with four soybean cultivars (FT Estrela, DM Nobre, IAC 17, and IAC 15-1), two Mg rates (0.1 and 1.0?mmol?L?1), four Zn rates (0, 1, 2, and 5?µmol?L?1), and four replicates. The IAC 17 and FT Estrela cultivars with determinate growth and high nutritional requirements, and the IAC 15-1 and DM Nobre with tolerance to soils partially corrected, average fertility, or both were investigated. In the highest Mg rates, we verified increase in grain yield (GY) as well as in the Zn rates up to 2.0?µmol?L?1. The Mg?×?Zn interaction was significant and the IAC 17 cultivar was the most responsive to Zn under nutritive solution. The foliar nutrient concentration was significantly modified by Mg rates. The Mg at 1.0?mmol?L?1 presented the lowest nutrient concentration in soybean plants and increased the shoot dry weight yield (SDWY) in plant and grain no matter the nutritional requirement from every cultivar.  相似文献   

19.
《Journal of plant nutrition》2013,36(8):1683-1696
Abstract

Soil acidity is one of the limiting factors affecting the production and sustainability of pastures and crops in many parts of the world. An on‐farm experiment was conducted in Australia to investigate the cultivar variation in alfalfa (lucerne) (Medicago sativa L.) with respect to soil acidity and response to applied lime. The experimental site was a brown sandy clay loam with a soil pH of 4.8 (1:5 calcium chloride). Ten cultivars (Hunter River, Hunterfield, Sceptre, Aurora, Genesis, Aquarius, Venus, PL90, PL55, and breeding line Y8804) were tested at two levels of lime (0 and 2 t ha?1). Lime application significantly increased the root growth, nodulation, leaf retention, leaf to stem ratio, herbage yield, and crude protein content of alfalfa. Liming had a significant effect on elemental composition of alfalfa shoots. Aluminum (Al) concentration was reduced from 93 mg kg?1 DM in nil lime treatment to 45 mg kg?1 DM in +lime treatment. Similarly, manganese (Mn) and iron (Fe) shoot concentrations were reduced from 74 mg kg?1 DM and 92 mg kg?1 DM to 59 mg kg?1 DM and 76 mg kg?1 DM, respectively. Liming significantly improved the calcium (Ca) concentration of shoots, while there was a little effect on phosphorus (P) and zinc (Zn) concentrations of alfalfa shoots. Cultivars had differential response to lime application. Response to lime application was greater in Y8804 and Aurora alfalfa where yield increased by 32% and 31%, while yield increase was 11–22% in other cultivars. Cultivars also differed significantly in root growth, nodulation, leaf drop, leaf to stem ratio, crude protein content, and elemental composition of shoots. Cultivars with better performance in no liming treatment had comparatively lower shoot Al, Mn, and Fe concentrations compared with other cultivars.  相似文献   

20.
Field trials were conducted to study the responses of grain yield and nitrogen (N) use efficiency at five input rates (N0, N82.5, N165, N247.5, and N330 kg ha?1) in a set of nine of the most representative rice cultivars. Grain yields of rice across the nine cultivars were increased significantly by N level. All the cultivars contained a significant linear plus plateau or quadratic relationship between N levels and grain yields.The minimum yields (means of 2 years) at N0, N82.5, N165, N247.5, and N330 level all occurred in No. 2 cultivar. Compared with the grain yield of No. 2 at different N levels, those of the maximum cultivars increased by 37.1 (No. 8), 39.1 (No. 7), 48.4 (No.3), 43.3 (No. 4), and 43.9% (No. 3), respectively. In 2011, the highest average apparent nitrogen recovery efficiency (ANRE) in grain of the 4 N levels occurred in No. 3 cultivar (45.9%), followed by No. 4, No. 6, and No. 1, and the highest average agronomic efficiency (AE) in grain of the 4 N levels occurred in No. 9 cultivar [29.0 kg (kg N)?1], followed by No. 3, No. 1, and No. 4. For the second-season planting, the highest average ANRE occurred in No. 4 cultivar (28.4%), followed by No. 3, No. 5, and No. 6, and the highest average AE occurred in No. 5 cultivar [18.1 kg (kg N)?1], followed by No. 4, No. 3, and No. 7. Overall, No. 3 and No. 4 cultivars were the ideal ones that not only increased the grain yield but also improved the N use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号