首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The essential trace elements Fe, Mn, Zn, Cu, and B in high concentrations can produce phytotoxicities. Iron toxicity resulted from 5 × 10‐4 M and 10‐3 M FeSO4, but not from equivalent amounts of FeEDDHA (ferric ethylenediamine di (o‐hydroxyphenylacetic acid) ). Leaf concentrations in bush beans of 465 μg Mn/g, 291 μg B/g, and 321 μg Zn/g all on the dry weight basis resulted in 27%, 45%, and 34% reduction in yields of leaves, respectively. Zinc was concentrated in roots while Mn and B concentrated in leaves. Solution concentrations of MnS04 of 10‐3 and 10‐2 M depressed leaf yields of bush beans by 63% and 83%, respectively, with 5140 and 10780 μg Mn/g dry weight of leaves. Copper concentrations were simultaneously increased and those of Ca were decreased. Bush bean plants grown in Yolo loam soil with 200 μg Cu/g soil had a depression in leaf yield of 26% (with 28. 8 μg Cu/g leaf); plants failed to grow with 500 μg Cu/g soil. A level of 10‐3 M H2MoO4 was toxic to bush beans grown in solution culture. Leaves, stems, and roots, respectively, contained 710, and 1054, and 5920 μg Mo/g dry weight.  相似文献   

2.
Abstract

An experiment was conducted in Yolo loam soil with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with single and combination treatments of moderately high levels of Cd, Li, Cu, and Ni to test whether or not effects could be additive or synergistic. Copper and Ni together were more toxic than either alone. Copper, Ni, and Cd were more toxic together than any one alone. These effects were probably additive and may be related to a 0.2 pH change caused by Cu which increased uptake of Ni and Mn. Synergistic effects were observed in the Cd and Ni concentrations, especially in the stems of the plants. Because of these interactions, the effects were then tested in solution culture. In solution culture with bush beans Cu and Ni when applied together had synergistic effects on plant concentrations of P, Zn, and Fe (all were decreased) and on the Ni concentration in roots. Also, in solution culture with (2.5 × 10‐5 M) Zn, Cu, and Cd added singly, in pairs, and together, Zn and Cu additively decreased Cd concentrations in roots. Synergistic effects on yield depressions were observed in solution culture for 5 × 10‐5 M Zn + 3 × 10‐5 M Cu+ 2 x10‐5 M Ni. An additive effect on yield depression was observed for 2 × 10‐4 MCd + 2 × 10‐5 M Ni. There were many complex interactions among the trace metal concentrations in these plants.  相似文献   

3.
Abstract

The major purpose of these experiments was to determine if Pb uptake by plants was significantly increased by chelating agents used in plant nutrition. The interaction of Pb with some other elements in barley plants (Hordeum vulgare L. C.V. Atlas 57) and bush bean (Phaseolus vulgaris L. C.V. Improved Tendergreen) was studied in a glasshouse with different rates of Pb in solution culture and in amended (control, S, CaCO3, MgCO3) Yolo loam soil with and without the chelating agent DTPA (diethylene triamine pentaacetic acid). In a solution culture experiment, 10‐3 M Pb significantly decreased bush bean yields in both control and DTPA treatments. The CaCO3 added to nutrient solution decreased the concentration of Pb in leaves, stems, and roots and prevented the toxicity of 10‐3 M Pb++. At high Pb levels, interactions between Pb and Mn and Pb and Fe were observed, except with CaCO3. In the soil experiment, the yields of barley and bush bean were influenced only slightly by Pb. The Pb concentration in barley shoots and bush bean leaves and stems was increased considerably in the presence of DTPA, however. In the absence of DTPA, the effect of added Pb was very small in the control and S amended soil treatments and almost negligible in the CaCO3 and MgCO3 amended soil treatments. Application of DTPA facilitated the translocation of Pb, Fe, Mn, Cu, and Zn to shoots. The effect was dependent upon soil pH. Particularly, the Fe was increased by DTPA at low pH while the effect was negligible at high pH. This was opposite the effect on Pb. The DTPA resulted in considerable Pb transport to leaves and stems at high soil pH. The uptake pattern of Zn and Cu was similar to that of Pb. It can be expected that chelating agents can increase the migration of Pb to plants andincrease its uptake by plants, and hence, entry into food chains.  相似文献   

4.
Abstract

Plants were grown in solution culture with different levels of Ca to further evaluate Ca relationships to trace metal uptake and to toxicity of trace metals. When tomato plants (Lycopersicon esculentum L., Tropic) were grown at a low level of Ca, the Zn, Cu, Fe, Mn, Al, and Ti concentrations of leaves, stems, and roots were considerably increased. The use of an excess of CaCO3 which increased pH did not influence the trace metal concentrations of plants any more than did Ca++. In a factorial experiment with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with Ca (10‐4,10‐2, 10‐2 N) and Ni (0, 2 × 10‐6 M, 2 X10‐5 M), Ni phytotoxicity and Ni uptake were decreased somewhat at the highest Ca level. High Ni tended to decrease the Ca concentration in leaves. High Ca and Ni both tended to decrease Fe, Cu, Zn, and Mn concentrations in leaves. The Ni had some interactions on the P concentrations of shoots.  相似文献   

5.
Abstract

The main objective of this study was to ascertain effects of some edaphic factors on the uptake and influence of Ni on plant growth sinee Ni is a common trace element contaminant as well as an important component of serpentine soils. Corn (Zea mays L. inbred Ys1/Ys1) was rown in Yolo loam soil amended to give soil pH values of 4.2, 5.6, 7.5, and 8.2. A level of 100 μg Ni/g soil was not toxic to the corn. Shoot concentrations of Ni increased as soil pH decreased for both application rates of Ni. A level of 250 μg Ni/g soil decreased yields more at soil pH below 7 than above 7. Iron, Zn, and Mn levels in shoots did not appear to be directly related to the Ni applications although Fe levels tended to increase as a result of smaller plant size. PI54619–5–1 soybeans (Glycine max L. ) were grown in soil at two different pH values (with and without CaCO3) and with and without a level of 1000 μg Ni/g added as the sulfate and thoroughly mixed with the soil and equilibrated for 1 month prior to transplanting the soybeans with and without application of a chelating agent, DTPA (diethylene triamine pentaacetic acid), commonly used to correct Fe deficiency in plants. Plants were killed in the soil of pH 6.2 when the 1000 μg Ni/g soil was added. The pH 7.2 soil decreased the toxicity of Ni. The DTPA had little effect on yields, but increased the amount of Ni in plants. Nickel decreased the Fe, Zn, Cu, and Mn concentrations of the plants. Stems contained less Ni than did leaves. In another experiment, EDTA (ethylenediamine tetraacetate) greatly increased Ni concentrations in bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) and in barley (Hordeum vulgare L.C.V. Atlas 57) grown in Yolo loam soil, and simultaneously increased Fe concentrations. Lime (CaCO3 or MgCO3) decreased toxicity of Ni in bush beans. DTPA increased Ni transport in bush beans and increased the ratio of Ni in leaves to that in stems at soil pH 7.5 and 8.2, but not at pH 4.0 and 5.8.  相似文献   

6.
Abstract

General agreement does not exist as to the most appropriate method to estimate plant available Mn in soils. In the current investigation soil and soil solution Mn were measured in limed and unlimed treatments of 11 acidic subsoil horizons and related to plant Mn concentrations, Mn uptake and growth of subterranean clover (Trifolium subterraneum L. cv. Mt. Barker) and switchgrass (Panicum virgatum cv. Cave‐in‐Rock). Manganese measurements were taken at planting and harvest and included: Mn extracted by 1M NH4OAc (pH 7), 0.01M CaCl2, 0.05M CaCl2, 0.033M H3PO4, 0.005M DTPA, 0.2% hydroquinone in 1M NH4OAc (pH 7), 0.01M NH2 OH.HCl 4 2 in 0.01M HNO3, total soil solution Mn and concentrations and 2+ activities of Mn2+ calculated from the GEOCHEM program. Measured and calculated values of soil solution Mn generally gave the best correlations with subterranean clover and switchgrass Mn concentrations and Mn uptake. Root Mn concentrations were highly correlated with soil solution Mn measurements taken at harvest with r=0.97 and r=0.95 (p<0.01) for subterranean clover and switchgrass respectively. The Mn extracted by 0.01M CaCl was also significantly correlated (p<0.01) with plant Mn concentrations and Mn uptake and proved to be better than the other extractants in estimating plant available Mn. Although Mn concentrations as high as 1769 mg/kg (shoots) and 8489 rag/kg (roots) were found in subterranean clover, Mn did not appear to be the major factor limiting growth. Measures of soil and soil solution Mn were not strongly correlated with yield. Both Al toxicities and Ca deficiencies seemed to be more important than Mn toxicities in limiting growth of subterranean clover and switchgrass in these horizons.  相似文献   

7.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

8.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

9.
Cadmium (Cd) accumulation and distribution was studied in sunflower (Helianthus annuus L., public line HA‐89) plant. From an uncontaminated sandy loam brown forest soil with 162 μg kg‐1 HNO3/H2O2 extractable Cd the HA‐89 sunflower public line accumulated 114 ug kg‐1 Cd in its kernels under open field conditions. This value is rather low as compared to data found by others. Sandy loam brown forest soil was treated with 0, 1 or 10 mg kg‐1 of Cd to study the interaction of this heavy metal with young sunflower plants in a greenhouse pot experiment. The fresh weight and dry matter accumulation of sunflower plant organs (roots, shoots, leaves or heads) was unaffected by cadmium treatment of soil. The nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), or zinc (Zn) uptake of sunflower plant organs was not influenced by lower or higher Cd‐doses, except sunflower heads where 10 mg kg‐1 of Cd treatment of soil significantly reduced the uptake of Ca, Fe, and Mn. Although Cd reduced the Zn uptake of roots, its rate was statistically not significant. Cadmium was accumulated prevalently in roots (1.21 mg kg‐1,4.97 mg kg‐1, or 13.69 mg kg‐1 depending on Cd‐dose), and its concentration increased also in shoots or leaves. In spite of the short interaction time, elevated concentrations of cadmium (0.78 mg kg‐1, 1.34 mg kg‐1, or 3.02 mg kg‐1 depending on Cd‐dose) were detected in just emerged generative organs (heads) of young sunflower plants.  相似文献   

10.
Abstract

Uptake of Co by corn (Zea mays) and bush beans (Phaseolus vulgaris) seedlings was affected by plant species, soil type and soil amendment. Bean leaves preferentially accumulated 60Co in comparison with corn leaves. Both the DTPA and (lime and DTPA) treatments enhanced 60Co uptake by both plant species, notably in the Troup soil which had lower cation exchange capacity (CEC) and lower soil fertility in comparison with Dothan soil. Conversely, soils with lime but without the chelating agent suppressed 60Co uptake. This dictates that farming practices should be closely evaluated if crops for livestock and human consumption are to be raised in fields contaminated by radionuclides.  相似文献   

11.
High Cd and Ni concentrations in sandy soils were built up in a field experiment, receiving an unusually metal-polluted sewage sludge between 1976 and 1980, at Bordeaux, France. The study evaluates the availability of metals and their after effects on maize at one point in time, the 8th year following termination of sludge application (1988). Plant parts (leaves, stalks, roots, grains) and soil samples were collected from plots which received 0 (Control), 50 (S1) and 300 Mg sludge DW ha?1 (S2) as cumulative inputs. Dry-matter yield, plant metal concentrations, total, and extractable metals in soils were determined. Metal inputs resulted in a marked increase in total and extractable metals in soils, except for extractable Mn and Cu with either 0.1 N Ca(NO3)2 or 0.1 N CaCl2. Total metal contents in the metal-loaded topsoils (0–20 cm depth) were very often lower, especially for Cd, Zn, and Ni, than the expected values. Explanation was partly given by the increases of metal contents below the plow layer, particularly for Cd at the low metal loading rate, and for Cd, Ni, and Cu at the high one (Gomez et al., 1992). In a control plot beside a highly metal- polluted plot, Cd, Zn, and Ni concentration in soil increased whereas the concentration of other metals was unchanged; lateral movement, especially with soil water, is plausible. Yield of leaves for plants from the S2 plot was reduced by 27%, but no toxicity symptoms developed on shoots. Yields of stalks for plants in both sludge-treated plots numerically were less than the controls but the decrease was not statistically significant. Cd and Ni concentrations increased in all plant parts with metal loading rate while Mn concentrations decreased. Leaf Cd concentration in plants from sludge-treated plots (i.e. 44 and 69 mg Cd kg?1 DM for S1 and S2) was above its upper critical level (i.e. dry matter yield reduced by 10%: 25μg Cd g?1 DM in corn leaves, Macnicol and Beckett, 1985). Yield reduction at the high metal-loading rate was probably due to 3 main factors: Mn deficiency in leaves, the accumulation of Ni especially in roots, and the increase of Cd in leaves. The amount of metal taken up by plants from the control plot ranked in the following order (mole ha?1): Fe(22)? Mn(7)>Zn (5.6)?Cu (0.7), Ni (0.6), Cd (0.4). For sludge-treated plots, the order was (values for S1 and S2 in mole ha ?1): Fe (16, 15)>Zn (7.9, 7.7)>Ni (4.3, 4.7)>Cd (1.9, 2.1)>Cu (1.0,1.2), Mn (1.5, 1.1). Zn and Cd had the greatest offtake percent from the soil to the above ground plant parts. Cd or Ni uptake by maize were correlated with extractable metals by unbuffered salts (i.e. 0.1 N Ca(NO3)2 and 0.1 N CaCl2). It is concluded that part of the sludge-borne Cd and Ni can remain bioavailable in this sandy soil for a long period of time (e.g. 8 yr) after the termination of metal-polluted sludge application.  相似文献   

12.
Abstract

Onion (Allium cepa) and fenugreek (Trigonella poenum‐graceum) growth was measured in glasshouse on a slightly alkaline clay‐loam soil from Northern India. Cadmium, Ni, Pb and Zn were applied at the rate of 0, 50, 100, 200 and 400 mg/kg of soil. The fresh and dry weights of onion and fenugreek were drastically reduced even at the 50 mg/kg soil addition of Cd and decreased further at higher applied levels. There was a slight decrease in the yield of both of the vegetables at 50 mg Ni/kg soil but at 100 mg Ni/kg soil and above yield decrease was significant. No growth was observed at 400 mg Ni/kg soil. The application of 50 mg Zn/kg soil slightly increased the yield of both of the vegetables, but the yield decreased at higher levels of applied Zn and more so for fenugreek. The threshold concentration, toxicity index and loading rate to produce ten percent yield reduction were also calculated. These values suggested that the toxicity of heavy metals varied with crop species. The concentrations of the elements in onion bulb and fenugreek root and leaves increased linearally with increasing levels of applied elements. The uptake of Zn was highest, followed by Cd, Ni and then Pb. The roots accumulated higher amounts of these elements than the leaves. Tissue concentrations of Cd, Ni, Pb and Zn associated with ten percent yield reduction for onion were 6, 3.2, 8 and 75 ppm, respectively, and for fenugreek, the concentrations were 1.5, 7.8, 11.5 and 54.5 ppm, respectively. In general, phytotoxicities were found to be in the order: Cd > Ni > Pb > Zn. The DTPA extractable elements in soil, after the harvest of crops, increased with increasing levels of applied elements in soil.  相似文献   

13.
The effect of elemental sulphur (S) and S containing waste applications on soil pH treated with 0–2,000 kg ha‐l elemental S, and 0–100 tons ha‐1 of waste was determined in the field and the pots. Sorghum (Sorghum bicolor L.) was grown in a Lithic Xerorthent soil which was taken from where the field experiment was conducted in pots receiving 5 kg soil. Plants were harvested 20 weeks after planting or 30 weeks after the applications for determination of dry matter yield and phosphorus (P), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) uptake by shoots. EC, NaHCO3‐extractable P, and DTPA‐extractable Fe, Zn, Mn, Cu also were measured in pot soil at the 5th, 10th, and 30th weeks. All treatments led to a decrease in soil pH though pH tended to increase again during course of time in both field and pot experiments. The both elemental S and waste applications in pot experiment caused an increase in dry matter yield and P, Fe, zinc (Zn), Mn and Cu uptake (mg pot‐1) by shoots in sorghum plant. There was also an increase in EC of soil due to both applications of S. The concentration of available P extracted by NaHCO3 in the pot soil, though not significantly different, was slightly higher compared with the control. Waste applications increased DTPA‐extractable Fe content of the soil, DTPA‐extractable Mn and DTPA‐extractable Cu. DTPA‐extractable Zn content, however, was reduced by the same applications.  相似文献   

14.
Abstract

The toxicity of Li to three plant species was studied to determine if there were interactions with other elements and to determine if a chelating agent modified Li toxicity. Bush beans (Phaseolus vulgarls L. C.V. Improved Tendergreen), grown in solution culture, were sensitive to 0.5 X10‐3Li which resulted in 10 μg/g in leaves, 48 in stems, and 24 in roots. Higher concentrations of Li produced marked reductions in plant yield accompanied by increased Li concentrations in leaf, stem, and root tissues. For most treatments, root concentrations of Li were lower than those in shoots, but those in stems were higher than those in leaves. Higher levels of Li decreased Zn in leaves, increased Ca in stems, and generally increased Fe and Mn in all plant tissues. Ethylenediamine tetraacetic acid (EDTA) resulted in slightly increased Ii levels in leaves, stems, and roots. Bush bean plants were injured slightly with 25 μg Li/g of Yolo loam soil applied as LiCl; 50 μg Li/g soil caused more severe injury. Leaf concentrations of about 200 μg Li/g resulted in significant yield reduction and around 600 μg//g of leaves resulted in severe toxicity. There were some interactions of Li with other elements which resulted in an increase of them in both leaf and stem tissues. Barley plants (Hordeum vulgare L. C.V. Atlas 57) were severely stunted when grown with 500 and 1000 μg Li/g soil as Li oxalate. Increasing the soil pH even further with lime and decreasing it with S had no influence on the toxicity. Shoot concentrations of Li ranged from 800 to over 2000 in the various treatments resulting in severe disruption of the Ca and K balance. Leaf concentrations of Li were higher than those for stems in cotton (Gossypium hirsutum L. C.V. Acala 442). Cotton was tolerant of a leaf concentration of 587 μg Li/g. High levels of Li increased concentrations of several elements in cotton leaves and in stems. Cotton leaves accumulated more Li than did bush beans.  相似文献   

15.
Abstract

Earlirose rice (Oryza sativa L. ) and Hawkeye soybeans (Glycine max L.) were grown in solution culture with A12(SO4)3 in concentrations of 0, 10‐6, 10‐5, 10‐4, 10‐3 M. Only at 10‐4 (slightly) and at 10‐3 M were there yield depressions due to Al. The threshold concentration of Al for toxicity was about 20 μg/g in rice shoots and about 30 μg/g in soybean leaves. The solution level necessary for these concentrations was 8 μg Al/ml. Plant concentrations which caused severe toxicity were 70 μg Al/g plant with 81 μg Al/ml solution. Most Al remained in roots, but leaves contained more than did stems of soybeans. The high Al decreased Fe, Cu, and Mn concentrations in shoots of rice and decreased Fe, Cu, and Zn in roots of rice. The high Al resulted in decreased Fe and Zn in leaves of soybeans. No Fe deficiency symptoms were present due to the high Al.  相似文献   

16.
Heavy metal accumulation in reclaimed soils is increasing rapidly in developing countries where the use of saline waters for irrigation is a common practice, even though salinity-heavy metal interactions are not fully understood. An example for this development is the Bangar area of Egypt where the application of contaminated amendments during the last 30 years has increased the Cd and Zn concentrations in topsoils from 0.08 to 0.76 mg · kg—1 and from 17 to 73 mg · kg—1 respectively. This work aimed at evaluating the uptake of Cd and Zn by Leucaena leucocephala, a leguminous tree cropped for fodder and green manure, as affected by the addition of 10 mM NaCl to irrigation water. During a 6 month field experiment, salinized and control plots were compared with respect to soil solution composition and root development as well as the uptake of Cd and Zn and their translocation to the leaves. NaCl treatment raised the concentration of organic carbon, Cd and Zn in soil solution and enhanced the uptake of Cd and Zn significantly. Salinized plants showed shorter roots, reduced retention of Cd and Zn in roots and stems and considerable translocation of both elements to the leaves. This work demonstrates that NaCl salinity affects not only the bioavailability of soil Cd and Zn but also modifies plant functions related to their acquisition and translocation to the leaves. The results provide evidence that the risk of transfer of heavy metals to the food chain and their leachability to the ground water may be greater under saline conditions than generally assumed.  相似文献   

17.
Abstract

The phytotoxicity of five nonessential elements (Co, V, Ti, Ag, Cr) to higher plants was studied in solution culture experiments with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen). All, but in varying degrees, tended to concentrate in roots with a decreasing gradient to stems and leaves. Cobalt was one of the more mobile of the five trace metals. Its toxicity was expressed as severe chlorosis; 43 (with 10‐5 M) and 142 (with 10‐4 M) μg Co/g dry weight in leaves resulted in severe chlorosis. Vanadium as 10‐4 M vanadate resulted in smaller plants but not in chlorosis. Leaf, stem, and root V, respectively, were 13, 8, and 881 μg/g dry weight. Titanium was somewhat mobile with considerable yield decrease at 10‐4 M; leaf, stem, and root Ti concentrations, respectively, were 202, 48, and 2420 μg/g. Symptoms were chlorosis, necrotic spots on leaves, and stunting. Silver was very lethal at 10‐4 M AgNO3; at 10‐5 M yields were greatly decreased, but plants were grown without symptoms. Leaf, stem, and root concentrations of Ag for this treatment, respectively, were 5.8, 5.1, and 1760 μg/g dry weight. Plants grown with 10‐5 N Cr2O7 were decreased in yield by about 25% with or without EDTA (ethylenediamine tetraacetic acid) while the same level of Cr2(SO4)3 was essentially without effect. For the two salts, the leaf, stem, root concentrations for Cr, respectively were 2.2 and 1.3, 0.7 and 0. 7, and 140 and 104 μg/g. Most of the trace metals studied here had interactions in the uptake and/or distribution of other elements.  相似文献   

18.
Effect of light intensity on Mn‐induced chlorosiss was investigated with bush bean (Phaseolus vulgaris L.) and corn (Zea mays L.) seedlings. The seedlings were grown in nutrient solutions containing different concentrations of Mn in enclosures which transmitted different percentages of the total solar radiation. At high levels of Mn in nutrient solution, the increase in light intensity increased the Mn uptake by the plant and resulted in a decrease in the chlorophyll content of the leaves. Even at similar levels of Mn concentrations within the leaves, high light intensity increased the severity of Mn‐induced chlorosis.

Photobleaching experiments were carried out with isolated chloroplasts suspended in media containing 0, 10‐4 , 10‐3,10‐2 and 10‐1 M Mn2+. Addition of Mn2+ to the medium decreased the extent of photobleacing of chlorophyll with increaing Mn2+ concentration up to 10‐3 M . In concentrations of Mn2+ higher than 10‐3 M, the extent of bleaching was increased again, accompanied by precipitation of oxidized manganese in the medium.

It is suggested that high light intensity stimulates not only the Mn uptake by the plant but also the destruction of chlorophyll when Mn in excess.  相似文献   

19.
Cadmium (Cd) is a non‐essential toxic element, which is highly accumulated by tobacco leaves and is transferred to tobacco smoke thus contributing substantially to the permitted level of Cd intake by humans. Therefore, measures to reduce Cd accumulation by tobacco are of significant importance. The purpose of the present study was to investigate the influence of soil liming on Cd uptake by tobacco plants in high Cd exposure. A pot experiment was conducted with Nicotiana tabacum L. Samsun 53 on an acid Typic Haploxeralf amended with refuse sugarbeet lime to obtain a pH range from 5.3 to 7.0 and contaminated with 20 mg kg‐1 Cd applied as CdCl2. Tobacco was grown in pots for three months under natural conditions, harvested in four cuts and Cd uptake by leaves was estimated. In soil samples selected, pH, Cd extracted by DTPA method, and Cd fractions such as exchangeable, organically bound, carbonate and residual were determined. The results showed that Cd uptake influenced negatively tobacco yield. Soil liming decreased Cd uptake by tobacco plants. The DTPA method was not a good indicator for Cd availability in tobacco. A very strong relationship was recorded between exchangeable Cd and total Cd uptake showing that this Cd fraction is available to tobacco plants. Soil pH was correlated strongly in a negative way with this Cd fraction suggesting that this soil factor is very important in controlling Cd accumulation by tobacco.  相似文献   

20.
Abstract

Two cultivars of cotton (Gossypium spp.) were grown in solution culture in a glasshouse to determine phytotoxicity effects of excesses of Ni and Cd. Leaf yield was depressed 94% by 10‐4 M NiSO4(with 198μg Ni/g leaf) in Acala SJ‐2 and 93% (with 167μg Ni/g) in Plma PS‐5. The Ni gradient was roots > stems > leaves in both cultivars. At 10‐5 M, CdSO4 gave more phytotoxicity than NiSO4. The 10‐4 M CdSO4 resulted in about the same amount of phytotoxicity as did the Ni for both cultivars. The Pima PS‐5 plant parts, however, contained less Cd than did the Acala SJ‐2 at the highest Cd concentration. At 10‐5 M CdSO4 the reverse held in leaves and stems. Interactions held for both metals but the inverse effect between Cd and Mn was less pronounced than for other species. Many other interactions were present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号