首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Accurate estimation of the available potassium (K+) supplied by calcareous soils in arid and semi‐arid regions is becoming more important. Exchangeable K+, determined by ammonium acetate (NH4OAc), might not be the best predictor of the soil K+ available to crops in soils containing micaceous minerals. The effectiveness of different extraction methods for the prediction of K‐supplying capacities and quantity–intensity relationships was studied in 10 calcareous soils in western Iran. Total K+ uptake by wheat grown in the greenhouse was used to measure plant‐available soil K+. The following methods extracted increasingly higher average amounts of soil K+: 0.025 M H2SO4 (45 mg K+ kg?1), 1 M NaCl (92 mg K+ kg?1), 0.01 M CaCl2 (104 mg K+ kg?1), 0.1 M BaCl2 (126 mg K+ kg?1), and 1 M NH4OAc (312 mg K+ kg?1). Potassium extracted by 0.01 M CaCl2, 1 M NaCl, 0.1 M BaCl2, and 0.025 M H2SO4 showed higher correlation with K+ uptake by the crop (P < 0.01) than did NH4OAc (P < 0.05), which is used to extract K+ in the soils of the studied area. There were significant correlations among exchangeable K+ adsorbed on the planar surfaces of soils (labile K+) and K+ plant uptake and K+ extracted by all extractants. It would appear that both 0.01 M CaCl2 and 1 M NaCl extractants and labile K+ may provide the most useful prediction of K+ uptake by plants in these calcareous soils containing micaceous minerals.  相似文献   

2.
Precipitation chemistry was discussed from the viewpoint of potential sources for four rural sites where wet-only daily-basis measurement data sets were available during the period from April 1996 to March 1997 in Japan. Annual volume-weighted mean concentrations of nss-SO4 2? and NO3 ? ranged from 18.0 to 34.6 µeq L?1, and from 9.3 to 23.1 µeq L?1, respectively. The degree of neutralization of input acidity in terms of the concentration ratio, [H+] / ([nss-SO4 2?] + [NO3 ?]), ranged from 0.46 to 0.63. This suggests that about half of the input acidity due to H2SO4 and HNO3 was neutralized by NH4 + and nss-Ca2+ to produce the pH values of 4.46 to 4.82 for these sites. Maximum likelihood factor analysis was then performed on the logarithmically transformed daily wet deposition of major ions. Two factors successfully explained a total of about 80% of the variance in the data for each site. Interpreting varimax rotated factor loadings, we could identify two source types: (1) acid source with large loadings on ln(H+), ln(nss-SO4 2?), ln(NO3 ?) and ln(NH4 +), (2) sea-salt source with large loadings on ln(Na+), ln(Cl?), ln(Mg2+) and ln(K+). The rural wet deposition over Japan appears to have a similar structure in terms of the kinds of sources and their relative location.  相似文献   

3.
Weathering of piled material in the field is a popular method to treat spent mushroom substrate (SMS) before reuse. During the weathering process, rainfall and snowmelt pass through SMS piles and a large amount of solutes is released in the leachate. To investigate solute release patterns, the field weathering process was simulated under controlled conditions in the laboratory. Fresh SMS was packed in an acrylic column (20 cm i.d.) to 150 cm height and leached intermittently with a cumulative total of 230 cm of deionized water over 180 days. Leachate was collected and analyzed for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), electrical conductivity (EC), and inorganic salts. Solute release patterns were described using first order models, and total released solutes were calculated. The SMS leachate had DOC, DON and EC values ranging from 450 to 15,500 mg L?1, 50 to 1,700 mg L?1, and 3 to 50 dS m?1, respectively. The major inorganic cations were K+, Na+, Ca2+, Mg2+ and NH4+, and anions were Cl? and SO42?. Release of DOC, DON, and bivalent cations Ca2+ and Mg2+ were described by a first order Exponential Rise to Maximum model, while releases of monovalent ions Cl?, K+, Na+ and NH4+ were described as a first order Sigmoidal Logistic process, and SO42? release was best modeled by a Sigmoidal Chapman equation. Following six months and 230 cm applied water, 3.1 kg of DOC, 0.58 kg of dissolved N, and 8.6 kg of inorganic salts were leached per cubic meter of bulk SMS (220 kg oven dry mass). Weathering of SMS involves a significant removal of nutrients from the composted material, which can contribute to pollution of soil and groundwater.  相似文献   

4.
This study was carried out to evaluate acid depositions and to understand their effect. Wet precipitation has been collected at twenty-four sites in Korea for one year of 1999. The ion concentrations such as H+, Na+, K+, Mg2+, NH4 +, Ca2+, Cl?, NO3 ? and SO4 2? were chemically analyzed and determined. Precipitation had wide range of pH(3.5~8.5), and volume-weighted average was 5.2. The contribution amounts of Cl?, SO4 2? and NO3 ? in anion were shown to be 54%, 32%, and 14%, respectively and those of Na+ and NH4 + in cation were 32% and 25%. The ratios of Cl? and Mg2+ to Na+ in precipitation were similar to those of seawater, which imply that great amount of Cl? and Mg2+ in precipitation could be originated from seawater. The concentration of H+ is little related with SO4 2?, NO3 ? and Cl? ions, whereas nss?SO4 2? and NO3 ? are highly correlated with NH4 +, which could suggest that great amount of SO4 2? and NO3 ? exist in the form of ammonium associated salt. The annual wet deposition amounts (g m?2year?1) of SO4 2?, NO3 ?, Cl?, H+, NH4 +, Na+, K+, Ca2+ and Mg2+ were estimated as 0.88~4.89, 0.49~4.37, 0.30~9.80, 0.001~0.031, 0.06~2.15, 0.27~4.27, 0.10~3.81, 0.23~1.59 and 0.03~0.63.  相似文献   

5.
Abstract

This trial was carried out to establish an appropriate nutrient solution for Aglaonema commutatum and to investigate the nutritional effects generated by modifications in the solution. Six treatments were tested: control (T0; pH 6.5, E.C. 1.5 dS m?1, 6 mmol L?1 NO3 ?‐N, and 6 mmol L?1 K+); high nitrogen (N) level (T1; 9 mmol L?1 6:3 NO3 ?–NH4 +); N form (T2; 6 mmol L?1 N‐NH4 +); high K+ level (T3; 12 mmol L?1 K+); high electrical conductivity (T4; E.C. 4 dS m?1, 25 mmol L?1 NaCl), and basic pH (T5; pH 8). At the end of the cultivation, leaf, shoot, and root dry weights and elemental concentrations were determined. Nutrient contents and total plant uptake were calculated from the dry weights and nutrient concentrations. Plant K+ uptake increased with application of K+ or basic nutrient solution. The uptake and transport of calcium (Ca) were enhanced by the use of NO3 ?‐N and inhibited by the presence of other cations in the medium (NH4 +, K+, Na+) and by basic pH. Magnesium (Mg) uptake increased with NO3 ?‐N application and with pH. Sodium (Na) uptake was the highest in the saline treatment (T4), followed by the basic pH treatment. Sodium accumulation was detected in the roots (natrophobic plant), where the plant generated a physiological barrier to avoid damage. Dry weight did not differ significantly (p<0.05) among treatments except in the NaCl treatment. These results may help in the formulation of nutrient solutions that take into account the ionic composition of irrigation water and the physiological requirements of plants.  相似文献   

6.
The aim was to evaluate eight methods of boron (B) extraction in different soils from Córdoba and Sucre, Colombia. 37 samples were collected at a depth of 0–20 cm and carried to Soil and Water Laboratory of University of Córdoba for its chemical characterization. The available boron was extracted with the following methods: modified hot water, calcium chloride (CaCl2) 0.05, hydrochloric acid (HCl) 0.05, barium chloride (BaCl2) 0.006, manitol 0.05 + CaCl2 0.01, Ca(H2PO4)2H2O 0.008 in mol L?1, mehlich-1 and ammonium acetate (NH4OAc) (1.0 mol L?1, pH = 7.0). The major quantity of boron was extracted with mehlich-1, HCl 0.05 mol L?1 and hot water, extracting 0.36, 0.29 and 0.26 mg kg?1, respectively. The extracting solution that correlated with the hot water method was HCl 0.05 mol L?1 (r = 0.81); followed by Ca(H2PO4)2H2O 0.008 mol L?1 (r = 0.62) and mehlich-1 (r = 0.54). According to characteristic and heterogeneity of soils, we recommend HCl method to extract available boron.  相似文献   

7.
Precipitation chemistry and atmospheric element-deposition in an agroecosystem at the North-Sea Coast of Schleswig-Holstein The objective of this study was to examine the chemistry of bulk precipitation and atmospheric element inputs in an arable soil near the North Sea coast of Schleswig-Holstein, North Germany. Bulk precipitation was collected at weekly intervals from November 1989 to October 1991. Precipitation amount, pH, electrical conductivity, and concentrations of Na+, K+, NH4+, Mg2+, Ca2+, Cl?, NO3?, and SO42? were recorded. The average volume-weighted pH was 5.5 and the average EC was 92 μS cm?1. Sodium and Cl? were with 64% and 76% the dominant ions (equivalent concentration) in bulk precipitation indicating the influence of the North Sea. The contribution of marine alkalinity to neutralization reactions of bulk precipitation was negligible (1%). The neutralizing substances NH3 (63%) and Carbonate (36%) were more important. Deposition rates were in 1990 and 1991 97.0 and 51.7 kg Na+ ha?1, 6.2 and 4.0 kg K+ ha?1, 15.0 and 8.4 kg Mg2+ ha?1, 13.2 and 10.4 kg Ca2+ ha?1, 12.3 and 9.5 kg NH4+-N ha?1, 8.0 and 5.9 kg NO3?-N ha?1, 168 and 83.1 kg Cl? ha?1 and 19.1 and 12.7 kg SO42?-S ha?1. In 1990 both more westerly winds and stronger wind-forces occurred than in 1991 and resulted in higher inputs of marine origin. Calculated on Cl? basis 93% of Na+, 55% of K+, 74% of Mg2+, 24% of Ca2+, and 36% of SO42? were of marine origin. Atmospheric input of marine origin supplied 39–72% of Mg and 21–37% of S requirement for crop production. The North Sea is an important source providing significant amounts of these elements to agricultural crops.  相似文献   

8.
Aerobic incubations to estimate net nitrogen (N) mineralization typically involve periodic leaching of soil with 0.01 M calcium chloride (CaCl2), so as to remove mineral N that would otherwise be subject to immobilization. A study was conducted to evaluate the accuracy of leaching for analysis of exchangeable ammonium (NH4+)-N and nitrate + nitrite (NO3?+ NO2)-N, relative to conventional extractions using 2 M potassium chloride (KCl). Ten air-dried soils were used, five each from Illinois and Brazil, that had been amended with NH4+-N (1 g kg?1) and NO3-N (0.6 g kg?1). Both methods were in good agreement for inorganic N analysis of the Brazilian Oxisols, whereas leaching was significantly lower by 12–48% in recovering exchangeable NH4+-N from Illinois Alfisols, Mollisols, and Histosols. The potential for underestimating net N mineralization was confirmed by a 12-wk incubation experiment showing 9–86% of mineral N recoveries from three temperate soils as exchangeable NH4+.  相似文献   

9.
ABSTRACT

We have synthesized a novel composite ambipolar resin membrane with a high water absorption capacity (150?200%) and superior ion adsorption properties. The ambipolar membrane was capable of adsorbing nitrate, ammonium, potassium and phosphorus simultaneously from aqueous solutions. The adsorption capacity of the membrane varied with ionic concentration and composition. Thus, from a mixed solution of 30 mmol…L? 1NH4 + and 10 mmol…L? 1 each of NO3 ?, K+, and H2PO4 ?, the synthetic membrane was able to take up 0.241 mmol NH4 +, 0.151 mmol NO3 ?, 0.120 mmol K+, and 0.046 mmol H2PO4 ? per g membrane. A large proportion (73.9?92.5%) of the adsorbed ions could be desorbed with dilute (5%) HCl. The rate of desorption is inversely related to the cross-linking density of the membrane. The competition between NO3 ?and H2PO4 ? as well as between K+ and NH4 + was also investigated.  相似文献   

10.
ABSTRACT

The interactions between salinity and different nitrogen (N) sources nitrate (NO3 ?), ammonium (NH4 +), and NO3 ? + NH4 + were investigated on Indian mustard (Brassica juncea cv. RH30). Treatments were added to observe the combined effect of two salinity levels (8 and 12 ds m? 1) and three nitrogen sources (NO3 ?, NH4 +, and NO3 ? + NH4 +) on different growth parameters and mineral composition in different plant parts, i.e., leaves, stem, and root. Salinity has been known to affect the uptake and assimilation of various essential nutrients required for normal growth and development. Different growth parameters, i.e., leaf area, dry weight of different plant parts, absolute growth rate (AGR), relative growth rate (RGR), and net assimilation rate (NAR) declined markedly by salinity at pre-flowering and flowering stages. All growth indices were less sensitive to salinity (12 d s m? 1) with the nitrate form of nitrogen. It is pertinent mention that a high dose (120 kg ha? 1) of nitrogen in ammonium form NH4 +, acted synergistically with salinity in inhibiting growth. Plants fed with combined nitrogen (NO3 ? + NH4 +) had an edge over individual forms in ameliorating the adverse effects of salinity on growth and yield. Under salt stress, different nutrient elements such as N, phosphorus (P), potassium (K+), and magnesium (Mg2 +) were decreased in different plant parts (leaves, stem, and root). The maximum and minimum reduction was observed with ammoniacal and combined form of nitrogen, respectively, while the reverse was true of calcium (Ca2 +), sodium (Na+), chloride (Cl?), and sulfate (SO4 2?) at harvest. Nitrogen application (120 Kg ha? 1) in combined form had been found to maintain highest concentrations of N, P, Mg2 +, and Ca2 + along with reduced concentrations of Na+, Cl?, and SO4 2 ?. However, reverse was true with ammoniacal form of nitrogen.  相似文献   

11.
Abstract

To assess soil-to-plant transfer of various elements more precisely, the concentrations of the elements extracted from soil samples using eight chemical solutions were compared with the results of a pot cultivation experiment of komatsuna (Brassica rapa L. var. perviridis) or buckwheat (Fagopyrum esculentum M.) using the soils. From agricultural fields in Aomori, Japan, 16 soil samples were collected. Elements in the samples were extracted using acids (1 mol L?1 HNO3, 0.1 mol L?1 HNO3, 0.01 mol L?1 HNO3), chelating agents (0.05 mol L?1 EDTA), neutral salt solutions (1 mol L?1 NH4OAc, 1 mol L?1 NH4NO3, 0.01 mol L?1 CaCl2) and pure water. The 28 elements in the extracted solutions and plant samples were determined. The extractability of many metals was higher in 1 mol L?1 HNO3, 0.1 mol L?1 HNO3 and the 0.05 mol L?1 EDTA solutions than in the other extractants. Higher extractability using the NH4OAc solution than the NH4NO3 solution was observed for some elements, in particular U. Extractability by pure water was not always lowest among these methods, probably because of dispersion of colloidal substances in the extracted solution. The pot cultivation experiment showed that the concentrations in soil and in the extracted fraction using 1 mol L?1 HNO3, 0.1 mol L?1 HNO3 or the EDTA solution did not correlate with the concentration in plant samples for most elements. Plant uptake of Zn, Y and La by komatsuna correlated well with their concentrations in extracts with neutral salt solutions or 0.01 mol L?1 HNO3. Concentrations of Al, Cu and Cd in buckwheat were also correlated with the concentrations in the extracts.  相似文献   

12.
To develop phosphorus-based agronomic application rates of phytase-diet, bisulfate-amended Delmarva poultry litter in conservation tillage systems, nutrient release dynamics of the organic fertilizer under local weather conditions were investigated. Delmarva poultry litter was placed in polyvinyl chloride columns to a depth of 5 cm and weathered in the field for 570 days. Leachate from the columns was collected and measured for concentrations of various nutrients. Cumulative release of the nutrients as a function of weathering time was modeled, and the nutrient supply capacity was determined. Poultry litter leachate contained high contents of dissolved organic carbon (15–31,500 mg L?1), nitrogen (N 5–7,070 mg L?1), phosphorus (P 5–230 mg L?1), potassium (K+ 2–7,140 mg L?1), and other nutrients. Release of most nutrients occurred principally in the first 100 days, but for P and calcium (Ca2+), it would last for years. The release kinetics of N followed a logarithm equation, while P and K demonstrated a sigmoidal logistic pattern. The nutrient supply capacity of surface-applied Delmarva poultry litter was predicted at 10.9 kg N Mg?1, 6.5 kg P Mg?1, 34.7 kg K+ Mg?1, 5.4 kg Ca2+ Mg?1, and 14.0 kg SO 4 2? Mg?1. The results suggest that Delmarva poultry litter should be applied to conservation tillage systems at 6.6 Mg ha?1 that would furnish 25 kg P ha?1 and 63 kg N ha?1 to seasonal crops. In repeated annual applications, the rate should be reduced to 5.2 Mg ha?1, with supplemental N fertilization to meet crop N requirements.  相似文献   

13.
Abstract

In this paper, we proposed a new approach for on-site colorimetric analysis of ferrous ions (Fe2+) and ammonium-nitrogen (NH4 +-N) using a soil color meter as an alternative method to conventional spectrophotometry. The soil color meter we used can express solution color numerically on the basis of L*a*b* color space. After coloring of water by the 1, 10 phenanthroline method and the Indophenol blue method, the color of solution was measured by the soil color meter. A linear relationship between Fe2+ and a* or b* values, and systematic change of NH4 +-N with L* value, enable us to make a calibration curve. The Fe2+ and NH4 +-N concentrations in groundwater samples (Fe2+: 0.3–1.3 mg L?1; NH4 +-N: 0.02–0.62 mg L?1) determined by the proposed method agreed well with those determined by conventional spectrophotometry with the difference being ± 0.05 mg L?1 and ± 0.02 mg L?1, respectively. Since a similar apparatus is widely used in the soil science field, this technique would facilitate field surveys.  相似文献   

14.
In order to reduce nutrient wastes to the environment the supply should be in accordance to the demand for these. Two experiments were conducted to study and quantify the effect of temperature, irradiance, and plant age on the uptake of nitrate (NO3?), ammonium (NH4+), dihydrogen phosphate ion (H2PO4?), potassium (K+), calcium (Ca2+), magnesium (Mg2+), and sulfate (SO42). In the first experiment, various levels of temperature and irradiance were applied to plants in a growth chamber, while in the second experiment the uptake was studied along the crop season under greenhouse conditions. The uptake rates were calculated at 2-hour intervals through sampling the nutrient solution and analyzing it by inductively coupled plasma atomic emission spectrometry (ICP-AES). Increasing light and temperature enhance the uptake rates, while the rates decrease with plant age. Nitrogen absorption was similar during the day as during the night. No differences were found in the absorption of H2PO4?, K+, Ca2+, Mg2+, and SO42? between day and night. Nitrate absorption was found to have a positive correlation with the absorption of all the ions except for NH4+.  相似文献   

15.
A constructed wetland composed of a pond- and a marsh-type wetland was employed to remove nitrogen (N) and phosphorus (P) from effluent of a secondary wastewater treatment plant in Korea. Nutrient concentrations in inflow water and outflow water were monitored around 50 times over a 1-year period. To simulate N and P dynamics in a pond- and a marsh-type wetland, mesocosm experiments were conducted. In the field monitoring, ammonium (NH 4 + ) decreased from 4.6 to 1.7 mg L?1, nitrate (NO 3 ? ) decreased from 6.8 to 5.3 mg L?1, total N (TN) decreased from 14.6 to 10.1 mg L?1, and total P (TP) decreased from 1.6 to 1.1 mg L?1. Average removal efficiencies (loading basis) for NO 3 ? , NH 4 + , TN, and TP were over 70%. Of the environmental variables we considered, water temperature exhibited significant positive correlations with removal rates for the nutrients except for NH 4 + . Results from mesocosm experiments indicated that NH 4 + was removed similarly in both pond- and marsh-type mesocosms within 1 day, but that NO 3 ? was removed more efficiently in marsh-type mesocosms, which required a longer retention time (2?C4 days). Phosphorus was significantly removed similarly in both pond- and marsh-type mesocosms within 1 day. Based on the results, we infer that wetland system composed of a pond- and a marsh-type wetland consecutively can enhance nutrient removal efficiency compared with mono-type wetland. The reason is that removal of NH 4 + and P can be maximized in the pond while NO 3 ? requiring longer retention time can be removed through both pond and marsh. Overall results of this study suggest that a constructed wetland composed of a pond- and a marsh-type wetland is highly effective for the removal of N and P from effluents of a secondary wastewater treatment plant.  相似文献   

16.
The effectiveness of lime-ammonium-nitrate (LAN) as a nitrogen (N) fertilizer in weathered soils depends on the respective selectivity for ammonium (NH4) and calcium (Ca) by the soils. The study assessed Ca2+/NH4+ exchange selectivity of two benchmark soils from Botswana and examined the soil fertility management implications. Surface horizons (0–20 cm) of Pellustert and Haplustalf were equilibrated with 50 ml stock solution containing variable concentrations of Ca2+ and NH4+. The Ca2+/NH4+ exchange data were fitted into the Vanselow (KV), Gaines and Thomas (KGT), Davies (KD), and the regular solution (KRS) equations. The selectivity coefficients for the Ca2+/NH4+ exchange reactions varied widely with the soil exchanger composition except for the relatively stable KRS. The selectivity coefficients indicated strong preference for NH4+ to Ca2+. The thermodynamic exchange constant, Kex, was 5.75 ± 1.24 in the Pellustert, indicating preferential adsorption of NH4+, but not in the Haplustalf with Kex = 0.92 ± 0.27. The free energy for Ca2+/NH4+ exchange (ΔG°ex) was negative (?4.26 ± 0.59 kJ mol?1) in the Pellustert but slightly positive in the Haplustalf (0.34 ± 0.87 kJ mol?1). In conclusion, the soil-NH4 complex was more stable than soil-Ca complex in the Pellustert, indicating LAN as a N fertilizer would have greater potential effectiveness in the Pellustert than in the Haplustalf.  相似文献   

17.
Chemical and Statistical Analysis of Precipitation in Singapore   总被引:1,自引:0,他引:1  
The results of chemical analyses of precipitation samples collected in Singapore between August 1997 and July 1998 are presented. Major inorganic and organic ions were determined in 169 rain samples collected using an automated wet-only sampler. The daily sample pH values ranged from 3.49 to 6.54 with a volume-weighted mean of 4.50, and about 88% of the samples had pH values less than 5.0 Nss-SO4 2? accounted for about 53 % of the sum of anions in rain, whereas chloride, nitrate, formate, and acetate accounted for the remainder. Rain chemistry data were analyzed using principal component analysis to find possible sources of the measured chemical species. Three components that accounted for 83.5% of the total variance were extracted: sea-spray (Na+, Cl? and and Mg2+) and soil particles (Ca2+ and K+), acid factor (nss-SO4 2?, NO3 ?, NH4 +, and H+), and biomass burning (HCOO? and CH3COOO?).  相似文献   

18.
The phytotoxicity of salts in composted sewage sludge (CSS) was evaluated. Concentrations of sodium (Na+), chloride (Cl?1), calcium (Ca2+), and magnesium (Mg2+) were present at levels that would induce salt stress in plants. Nutrient imbalances were also found that would adversely affect the use of CSS as a growth medium. To further understand the phytotoxic nature of these salts, sodium chloride (NaCl), calcium nitrate [Ca(NO3)2] and magnesium nitrate [Mg(NO3)2] solutions were used to simulate the composition of salts found in CSS in an investigation of radish (Raphanus sativus L.) seed germination. High concentrations of Ca2+ (92.1 mmol.L?1) and Mg2+ (27.4 mmol.L?1) inhibited seed germination to an equal extent as did Na+ (40.6 mmol.L?1). The lower concentration of Ca2+ (10 mmol.L?1), however, significantly relieved the stress caused by NaCl. These results indicated that the composition and total amount of Na+, Cl?1, Ca2+, and Mg2+ in CSS should be carefully monitored before it is used as a soil amendment or growth medium.  相似文献   

19.
In order to study the effects of salinity and water stress on growth and macronutrients concentration of pomegranate plant leaves, a factorial experiment was conducted based on completely randomized design with 0, 30, and 60 mM of salinity levels of sodium chloride and calcium chloride (1:1) and three irrigation intervals (2, 4, and 6 days) with 3 replications on ‘Rabab’ and ‘Shishegap’ cultivars of pomegranate. The results of the shoot and root analysis indicated that the salinity and drought affected the concentration and distribution of sodium (Na+), potassium (K+), chloride (Cl?), calcium (Ca2+), magnesium (Mg2+), and phosphorus (P+) in pomegranate leaves. Mineral concentrations of sodium (Na+), chloride (Cl-), potassium (K+), in shoots and roots were increased with increasing salinity. Drought treatments increased the concentration of Cl?, Na+, and Mg2+ in the shoot. Both cultivars showed significant differences in the concentrations of elements, however the most accumulation of Na+ and Cl? was observed in ‘Rabab,’ while the ‘Shishegap’ cultivar had the most absorption of K+. ‘Shishegap’ cultivar showed higher tolerance to salinity than ‘Rabab’ through maintaining the vegetative growth and lower chloride transport to the shoot, and improvement of potassium transport to shoot.  相似文献   

20.
Nitrogen (N) and potassium (K) fertilization play a key role in forage crops and can significantly increase yields of ‘Marandu’ palisadegrass [Brachiaria brizantha (Hochst. exA. Rich.) Stapf.], one of the most important forage crops in Brazil. This study aimed to identify the concentrations of total N and K, nitrate (NO3?), and ammonium (NH4+), chlorophyll meter readings (SPAD), and nitrate reductase activity (At-RNA) required to maximize yield. Plants were grown in quartz substrate and treated with nutrient solutions that ranged from 2 to 33 mmol L?1 for N and 0.5 to 11 mmol L?1 for K. Dry matter production and At-RNA increased with increasing N and K supplies. SPAD readings correlated strongly with N leaf concentration and dry matter production and can be used to assess the N status of this species. The supply of N and K in the fertilization promoted high yield and adequate N and K concentration for plant metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号