首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar beet (Beta vulgaris L.) growers in Nebraska, U.S.A. have been convinced by equipment manufacturers in the past 10 years that chisel tillage is needed on their soils to remove compaction zones. No data were available to assess the reality of their conviction that chiseling was an essential part of their tillage systems. The experiments discussed here were designed to test the impact and need for chiseling to depths up to 30 cm in systems where moldboard plowing to a depth of 20 cm is the most common primary tillage. Various degrees of soil compactness were created artificially in soil of the same type (Typic Haplustoll) in 3 different fields. Combinations of moldboard plowing and chiseling were then imposed on them. The relationships of water infiltration rates and resistance to penetration as measured by a penetrometer to the tillage treatments and to ultimate sucrose yield were determined. In all but the severest compaction treatment, either chiseling or moldboard plowing had equivalent impacts on yield restoration. In the most severely compacted soil chiseling was totally ineffective in 1 year and equal to plowing in another year. Combination plowing and chiselinng did not have an additive effect beyond plowing or chiseling along under any compaction condition. Even though the implements were equally effective in restoring yield potential, neither of them, alone nor in combination restored yields to levels achieved on non-compacted soil. Penetrometer resistance measurements indicated that compacted soil below 30 cm was the problem. The data indicated that it may be possible for a given soil type, to relate penetrometer resistance to the need for tillage to remove compaction. On these experiments each increase in resistance of 700 kPa over a range of 4000–8000 kPa resulted in a 10% reduction in sucrose yield.  相似文献   

2.
Abstract

The effects of triple superphosphate (TS) and liming on macronutrient accumulation and root growth of Pioneer 3072 and Cargill 505 corn hybrids were studied. Corn plants were grown up to 30 days in pots with 7 L of a dark red Latosol sandy loam (Haplortox). Lime was applied to raise base saturation to 30, 50, and 70%, in two levels of phosphorus (P) fertilization with TS (0 and 200 ppm P). There was an increase in root surface due to lime only in pots without TS, with no effects on plant growth or nutrition. Both corn hybrids responded to P fertilization, but Pioneer yielded more dry matter than Cargill. The roots of Cargill were thicker and, when in TS presence, were longer and had a larger surface than Pioneer. There was an increase in macronutrient uptake in the P fertilized pots. Pioneer required more nutrients and showed a higher efficiency in acquiring and utilizing the nutrients from the soil. A higher response of Pioneer in dry matter and nutrient acquisition was more related to the physiological efficiency than to root morphology.  相似文献   

3.
Abstract

Corn (Zea mays L.) yields were determined over a four year period on Kalmia sandy loam soil at Georgetown, Delaware. Yields were not significantly increased by the application of K fertilizer. Potassium soil test level was not significantly correlated with corn yield. Multiple extraction and leaching and changes in soil test K indicated that this soil has a K equilibrium which is reestablished sufficiently rapid to supply K to a growing corn crop.  相似文献   

4.
The effect of different concentrations of sulfur (1 and 3 mM) and interruption of sulfur (S) supply for 25 days on the photosynthesis and leaf water relations in young sugar beet plants (Beta vulgaris L.) was studied in water culture, under greenhouse conditions. Interruption of S‐supply significantly reduced the content of sulfur, chlorophylls a+b and carotenoids, leaf area, density of stomatal and epidermal cells, transpiration rate and leaf water potential, while it increased the free proline content and stomatal diffusion resistance. An increase in S concentration in the nutrient medium from 1 to 3 mM did not significantly affect the tested parameters, except for an increase in leaf S content and a decrease of leaf water potential. Sulfur deficiency caused a pronounced decrease of the rate and quantum yield of photosynthetic oxygen evolution under non‐photorespiratory conditions. This was partly the result of the diminished photochemical efficiency of photosystem II reaction centers. Less efficient excitation of PSII reaction centers is most probably the consequence of higher thermal energy dissipation in the reaction centers of S‐starved plants. These data support that S nutrition is one of the factors regulating plant photosynthesis.  相似文献   

5.
Abstract

The effects of liming (7 500 kg CaCO3/ha) and rate of urea application (0,50,100, and 200 kg N/ha) and its placement at the surface or at 5 cm depth on grain yield and nutrient uptake by corn grown on an acidic tropical soil (Fluventic Eutropept) were studied. Liming significantly increased grain yield, N uptake, and P and K uptake although Ca and Mg uptake, generally, were unaffected. Sub‐surface application of urea increased N uptake only. Yield response to applied N was observed up to 50 kg N/ha when limed but at all rates in the absence of liming. It therefore, reduced the fertilizer N requirement for optimum grain yield. Liming the acidic soil also reduced exchangeable Al but increased nitrification rate and available P in the soil profile (at least up to 0.6 m depth).  相似文献   

6.
Plant nutrient deficiencies are the main yield‐limiting factors in highly weathered acid soils around the world. Five greenhouse experiments were conducted on an Oxisol to identify nutrient deficiencies in common bean, upland rice, corn, wheat, and soybean. The treatments consisted of 13 fertility levels including an adequate level and remaining without application of one of the essential plant macro‐ or micronutrients. Dry matter yield of tops of all the crop species was affected by fertility treatments; however, significant effects of treatments were obtained in the case of common bean, upland rice, and corn. Based on tops dry weight under different treatments compared to adequate fertility level (AFL), the most yield‐limiting nutrients were in the order of phosphorus (P) > calcium (Ca) > magnesium (Mg) > boron (B) > zinc (Zn) for common bean, P > molybdenum (Mo) for upland rice, and P for corn. For the wheat crop, there was substantial decrease in tops dry weight in the absence of Ca, P, and potassium (K) nutrients. In the case of soybean, substantial tops dry weight reduction was due to deficiency in the order of P >Ca>Zn.  相似文献   

7.
磷素水平对不同大豆品种产量和品质的影响   总被引:9,自引:0,他引:9  
选用近年来在黑龙江省推广面积比较大并具有代表性的东农42(高蛋白品种)、合丰25(中间型品种)、东农46(高油品种)3个基因型大豆品种作为试验材料,采用盆栽的方式,在每千克土壤施N和K2O各为0.033g基础上,设P1、P2、P3、P4 4个施P处理(即每千克土壤分别施P2O5 0、0.033、0.067、0.100g),进行了3个大豆品种产量和品质的研究。结果表明,3个基因型大豆品种在单株产量、品质方面存在着差异。东农42和合丰25以P3处理单株产量和蛋白含量最高,东农46以P2处理单株产量和蛋白质含量最高;3个品种都是P4处理脂肪含量最高。同一处理不同品种间子粒蛋白质含量是东农42>合丰25>东农46;子粒脂肪含量是东农46>合丰25>东农42。  相似文献   

8.
Two acidic soils (initial pH, 4.6) with contrasting soil organic C (SOC) contents (11.5 and 40 g C kg?1) were incubated with 13C-labelled lime (Ca13CO3) at four different rates (nil, target pH 5, 5.8 and 6.5) and three application depths (0–10, 20–30 and 0–30 cm). We hypothesised that liming would stimulate SOC mineralisation by removing pH constraints on soil microbes and that the increase in mineralisation in limed soil would be greatest in the high-C soil and lowest when the lime was applied in the subsoil. While greater SOC mineralisation was observed during the first 3 days, likely due to lime-induced increases in SOC solubility, this effect was transient. In contrast, SOC mineralisation was lower in limed than in non-limed soils over the 87-day study, although only significant in the Tenosol (70 μg C g?1 soil, 9.15%). We propose that the decrease in SOC mineralisation following liming in the low-C soil was due to increased microbial C-use efficiency, as soil microbial communities used less energy maintaining intracellular pH or community composition changed. A greater reduction in SOC mineralisation in the Tenosol for low rates of lime (0.3 and 0.5 g column?1) or when the high lime rate (0.8 g column?1) was mixed through the entire soil column without changes in microbial biomass C (MBC) could indicate a more pronounced stabilising effect of Ca2+ in the Tenosol than the Chromosol with higher clay content and pH buffer capacity. Our study suggests that liming to ameliorate soil acidity constraints on crop productivity may also help to reduce soil C mineralisation in some soils.  相似文献   

9.
Abstract

A greenhouse experiment was conducted to investigate the effect of root growth and exudation of 3 crop species on soil aggregation. Two plant populations for each of 3 crops (corn, soybeans, and wheat) were grown in a Fincastle silt loam for 5 time periods (7, 14, 21, 28, and 41 days) and compared with fallow controls. Aggregate stability was estimated by the wet‐sieve method on both initially moist and air‐dry samples.

Soil water content of initially moist soil samples varied widely among replicates, crops, and sampling dates. Wet‐sieving using initially moist soil showed that samples with higher initial soil water content had greater aggregate stability. Wet‐sieving performed on initially air‐dry soil samples was used for subsequent interpretation because the water content variable was removed.

The presence of any crop and its roots in the planted soils versus the fallow controls was associated with increases in aggregate stability. No differences in aggregate stability were found among the different crops or over the established range of root length densities. Aggregate stability decreased from the original level during the first 14 to 21 days of the experiment, possibly due to daily watering. After 21 days, as root growth continued to increase, restabilization occurred until the original aggregate stability of the soil was exceeded for all crops. The observed increase in aggregate stability may be due in part to the physical entanglement of aggregates by roots and to the increased production of root exudates resulting from increased root growth.  相似文献   

10.
Pinto bean (Phaseolus vulgaris L.) and soybean [Glycine max (L.) Merv.] were exposed to O3 to determine the interactions of growth temperature, exposure temperature, K nutrition and doses of O3 on their foliar sensitivity. Pinto bean developed more foliar injury than soybean. Pinto bean were most sensitive when grown and exposed at 28°C. Growth and exposure temperature interacted in the development of foliar injury on pinto bean, but only growth temperature influenced the amount of foliar injury on soybean. Both species developed more foliar injury when grown with low K nutrition. There was no relationship between foliar injury and reducing sugars or sucrose content of the leaves.  相似文献   

11.
追肥时间对小麦拔节-成熟期氧化亚氮排放的影响   总被引:3,自引:0,他引:3  
2007~2008年采用3种追肥时间(雨前追肥、雨时追肥和雨后追肥)进行田间试验,观测小麦拔节-成熟期N2O排放,以探讨追肥时间对麦季N2O排放的影响。结果表明,与雨前追肥和雨时追肥相比,雨后追肥小麦拔节-成熟期N2O排放量分别减少37%~67%和22%~46%。各处理小麦产量无显著差异(p>0.05)。土壤水分含量是影响小麦拔节-成熟期N2O排放的关键因素。雨后趁墒追肥能显著减少小麦拔节-成熟期N2O排放且不影响小麦产量,是较为合理的追肥方式。  相似文献   

12.
中层黑土不同耕作方式下玉米和大豆产量及经济效益分析   总被引:2,自引:0,他引:2  
为探索免耕与常规耕作下玉米和大豆的产量和经济效益,2001年秋开始在吉林省德惠市中层黑土上进行免耕、秋翻和垄作耕作方式下的不同轮作试验。试验结果表明:免耕玉米和大豆的田间作业次数比垄作、秋翻的作业次数分别减少3~6次。不同耕作方式对玉米产量的影响直到2006年才逐渐显现出来,垄作玉米年均产量最高,为10136kg·hm^-2,比产量最低的免耕玉米连作高12.3%,但几种耕作方式间玉米和大豆年均产量均无显著差异。按农业生产成本排序,玉米为秋翻〉免耕〉垄作,大豆为秋翻〉垄作〉免耕。按经济效益排序,玉米为垄作轮作〉免耕轮作〉秋翻轮作〉免耕连作〉秋翻连作,大豆为免耕轮作〉垄作轮作〉秋翻轮作。除玉米连作外,免耕不会降低作物产量,其中免耕玉米-大豆轮作可获得与常规耕作相当的玉米产量和较高的大豆产量。从生产成本和经济效益来看,免耕处理在人工和农机上的生产费用比其他处理少,且免耕轮作的经济效益明显大于秋翻,但长期效果如何还有待于进一步的试验和观测。  相似文献   

13.
共施磷酸二氢钙和硫酸铵对土壤中钾形态转化的影响   总被引:4,自引:0,他引:4  
Soil potassium (K) deficiency has been increasing over recent decades as a result of higher inputs of N and P fertilizers concomitant with lower inputs of K fertilizers in China; however, the effects of interactions between N, P, and K of fertilizers on K status in soils have not been thoroughly investigated for optimizing N, P, and K fertilizer use effciency. The influence of ammonium sulfate (AS), monocalcium phosphate (MCP), and potassium chloride application on K fractions in three typical soils of China was evaluated during 90-d laboratory soil incubation. The presence of AS significantly altered the distribution of native and added K in soils, while addition of MCP did not significantly affected K equilibrium in most cases. Addition of AS significantly increased water-soluble K (WSK), decreased exchangeable K (EK) in almost all the soils except the paddy soil that contained considerable amounts of 2:1 type clay minerals with K added, retarded the formation of fixed K in the soils with K added, and suppressed the release of fixed K in the three soils without K added. These interactions might be expected to influence the K availability to plants when the soil was fertilized with AS. To improve K fertilizer use effciency, whether combined application of AS and K was to be recommended or avoided should depend on K status of the soil, soil properties, and cropping systems.  相似文献   

14.
15.
采用田间试验研究氮肥用量对高淀粉玉米(郑单21)和普通玉米(四密25)吸氮特性及子粒品质产量的影响。结果显示,与普通玉米相比,高淀粉玉米氮素最大吸收速率较大,出现日期早,成熟期吸氮总量高,但其子粒产量却较低。高淀粉玉米子粒中的氮素更多依赖于后期的根系吸收,而较少来源于前期营养体的氮素转移;其淀粉总量、支链淀粉含量较高,而直/支比值较低。在蛋白质及其组分含量上,郑单21含有较高的粗蛋白总量及清蛋白、球蛋白和谷蛋白含量,但醇溶蛋白含量较低;在脂肪酸及其组成上,虽然郑单21的脂肪酸总量较低,但不饱和脂肪酸比例较高。在各品质组分上,支链淀粉、醇溶蛋白、软脂酸、油酸和亚油酸含量对氮肥的反应与淀粉含量、粗蛋白含量和脂肪酸总量的变化趋势基本一致,均随施氮量的增加而增加,但过量施氮则其含量下降。施氮对直链淀粉含量、清蛋白、球蛋白和谷蛋白含量、硬脂酸、花生酸和亚麻酸无明显影响。  相似文献   

16.

Purpose  

Copper is a trace element of environmental concern. Repeated applications of Cu-containing fungicides have resulted in a large scale of Cu contamination in agricultural soils. However, limited information is available regarding Cu accumulation and availability in soils under citrus production in the Indian River Area, South Florida, which has received increasing amounts of Cu fungicides to control canker and other diseases. The purpose of this study was to investigate Cu transformation, availability, and mobility in soils as affected by external Cu loading and soil properties.  相似文献   

17.

Purpose  

Identifying the impact of inorganic-nitrogen (N) availability on soil amino sugar dynamics during corn (Zea mays L.) residue decomposition may advance our knowledge of microbial carbon (C) and N transformations and the factors controlling these processes in soils. Amino sugars are routinely used as microbial biomarkers to investigate C and N sequestration in microbial residues, and they are also involved in microbial-mediated soil organic matter (SOM) turnover. We conducted a 38-week incubation study using a Mollisol which was amended with corn residues and four levels of inorganic N (i.e., 0, 60.3, 167.2, and 701.9 mg N kg−1 soil). The objective of this study was to examine the effects of inorganic-N availability on fungal and bacterial formation and stabilization of heterogeneous amino sugars during the corn residue decomposition in soil.  相似文献   

18.
Laboratory and field experiments were conducted to determine the influence of different priming techniques on the germination characteristics and competition of weeds in sugar beet in 2008–2009. Three priming times and four priming methods were used in a laboratory study, and four priming treatments and four redroot pigweed densities (0, 4, 8 and 12 plants m?2) were used in a field study. Sugar beet seeds were treated with polyethylene glycol (PEG 8000), NaCl (1.5 N) and HCl (0.1 N) for 2, 4 and 6 h. Seed characteristics were significantly affected by HCl (0.1 N) treatment for 6 h. In this treatment, the germination percentage was 25 and 9% higher than control and NaCl (1.5 N) treatments after a similar time. An intermediate and low effect has been shown with NaCl (1.5 N) and PEG 8000 seed priming, respectively. Sugar beet root yield was reduced by 13, 54 and 89% compared with control treatment (without weed) at redroot pigweed densities of 4, 8 and 12 plants m?2, respectively. Sugar beet seeds primed with HCl (0.1 N) for 6 h gave a higher root yield than unprimed seeeds and the other primed seeds treatments. Overall, the results showed that weed control can significantly increase sugar beet yield and the seed priming technique can be used for weed control.  相似文献   

19.
The fractional-group composition of humus in a loamy-sandy soddy-podzolic soil limed using different doses of chalk was studied. The transformation of the humus composition is related to the dose of the lime fertilizer and terminates after the complete dissolution of the ameliorant applied. The full dissolution of the chalk applied in high doses ends within three years after the liming. The humus composition of the cultivated sandy soddy-podzolic soil was investigated at different stages of the postagrogenic successions. The changes in the humus composition due to the neutralization of the soil’s acidity and cultivation are rather stable in time. Sixty years after the termination of the anthropogenic impact, in the humus composition of the sandy soddy-podzolic soil, humic acids bound with calcium were found. One hundred years after the end of the soil cultivation, its humus composition approaches the humus composition of the virgin soil. However, no complete restoration of the humus composition has occurred. Data on the optical density of the humic acids are presented.  相似文献   

20.
 Soils from the former Lake Texcoco are alkaline saline and were artificially drained and irrigated with sewage effluents since the late 1980s. Undrained soil and soil drained for 1, 5 and 8 years were sampled, characterized and incubated aerobically for 90 days at 22±1  °C while production of CO2, available P and concentrations of NH4 +, NO2 and NO3 were monitored. Artificial drainage decreased pHH2O, water holding capacity, organic C, total N, and Na+, K+, Mg2+, B, Cl and SO4 2– concentrations, increased inorganic C and Ca2+ concentrations more than 5-fold while total P was not affected. Microbial biomass C decreased with increased length of drainage but bacteria, actinomycetes, denitrifiers and cellulose-utilizing bacteria tended to show opposite trends. CO2 production was less in soils drained ≥5 years compared to undrained soil but more than in soils drained for 1 year. Emission of NH3 was negligible and concentrations of NH4 + remained constant over time in each soil. Nitrification, as witnessed by increases in NO3 concentrations, occurred in soil drained for 8 years. NO2 concentrations decreased in soils drained ≤1 year in the first 7 days of the incubation and remained constant thereafter. It was found that artificial drainage of soils from the former Lake Texcoco profoundly affected soil characteristics. Decreases in pH and Na+, K+, Cl and SO4 2– concentrations made conditions more favourable for plant growth, although low concentrations of inorganic N and available P might be limiting factors. Received: 1 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号