首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In Oxisols, acidity is the principal limiting factor for crop production. In recent years, because of intensive cropping on these soils, deficiency of micronutrients is increasing. A field experiment was conducted on an Oxisol during three consecutive years to assess the response of common bean (Phaseolus vulgaris L.) under a no‐tillage system to varying rates of lime (0, 12, and 24 Mg ha?1) and boron (0, 2, 4, 8, 12, 16, and 24 kg ha?1) application. Both time and boron (B) were applied as broadcast and incorporated into the soil at the beginning of the study. Changes in selected soil chemical properties in the soil profile (0- to 10‐ and 10- to 20‐cm depths) with liming were also determined. During all three years, gain yields increased significantly with the application of lime. However, B application significantly increased common bean yield in only the first crop. Only lime application significantly affected the soil chemical properties [pH; calcium (Ca2+); magnesium (Mg2+); hydrogen (H+)+ aluminum (Al3+); base saturation; acidity saturation; cation exchange capacity (CEC); percent saturation of Ca2+, Mg2+, and potassium (K+); and ratios of exchangeable Ca/Mg, Ca/K, and Mg/K] at both soil depths (0–10 cm and 10–20 cm). A positive significant association was observed between grain yield and soil chemical properties. Averaged across two depths and three crops, common bean produced maximum grain yield at soil pHw of 6.7, exchangeable (cmolc kg?1) of Ca2+ 4.9, Mg2+ 2.2, H++Al3+ 2.6, acidity saturation of 27.6%, CEC of 4.1 cmolc kg?1, base saturation of 72%, Ca saturation of 53.2%, Mg saturation of 17.6%, K saturation of 2.7%, Ca/Mg ratio of 2.8, Ca/K ratio of 25.7, and Mg/K ratio of 8.6. Soil organic matter did not change significantly with addition of lime.  相似文献   

2.
ABSTRACT

A field study was conducted with the objective of determining response of dry bean (Phaseolus vulgaris L.) to liming and copper (Cu) fertilization applied to an Oxisol. The lime rates used were 0, 12, and 24 Mg ha?1 and Cu rates were 0, 2.5, 5, 10, 20, and 40 kg Cu ha?1. Liming significantly increased common bean grain yield. Liming also significantly influenced soil chemical properties in the top (0–10 cm) as well as in the sub (10–20 cm) soil layer in favor of higher bean yield. Application of Cu did not influence yield of bean significantly. Average soil chemical properties across two soil layers (0–10 and 10–20 cm) for maximum bean yield were pH 6.4, calcium (Ca), 4.2 cmolc kg?1, magnesium (Mg) 1.0 cmolc kg?1, H+Al 3.2 cmolc kg?1, acidity saturation 40.4%, cation exchange capacity (CEC) 8.9 cmolc kg?1, base saturation 63.1%, Ca saturation 45.7%, Mg saturation 18.0%, and Potassium (K) saturation 2.9.  相似文献   

3.
Soybean is one of the most important legume crops in the world. Two greenhouse experiments were conducted to determine the influence of liming and gypsum application on yield and yield components of soybean and changes in soil chemical properties of an Oxisol. Lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. Gypsum rates applied were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1 soil. Lime as well as gypsum significantly increased grain yield in a quadratic fashion. Maximum grain yield was achieved with the application of 1.57 g lime per kg soil, whereas the gypsum requirement for maximum grain yield was 1.43 g per kg of soil. Lime significantly improved soil pH, exchangeable soil calcium (Ca) and magnesium (Mg) contents, base saturation, and effective cation exchange capacity (ECEC). However, lime application significantly decreased total acidity [hydrogen (H) + aluminum (Al)], zinc (Zn), and iron (Fe) contents of the soil. The decrease in these soil properties was associated with increase in soil pH. Gypsum application significantly increased exchangeable soil Ca, base saturation, and ECEC. However, gypsum did not change pH and total acidity (H + Al) significantly. Adequate soil acidity indices established for maximum grain yield with the application of lime were pH 5.5, Ca 1.8 cmolc kg?1, Mg 0.66 cmolc kg?1, base saturation 53%, Ca saturation 35%, and Mg saturation 13%. Soybean plants tolerated acidity (H + Al) up to 2.26 cmolc kg?1 soil. In the case of gypsum, maximum grain yield was obtained at exchangeable Ca content of 2.12 cmolc kg?1, base saturation of 56%, and Ca saturation of 41%.  相似文献   

4.
Soybean is an important crop for the Brazilian economy, and soil acidity is one of the main yield-limiting factors in Brazilian Oxisols. A field experiment was conducted during three consecutive years with the objective to determine soybean response to liming grown on Oxisols. Liming rates used were 0, 3, 6, 12, and 18 Mg ha?1. Liming significantly increased grain yield in a quadratic trend. Ninety percent maximum economic grain yield (2900 kg ha?1) was achieved with the application of about 6 Mg lime ha?1. Shoot dry weight, number of pods per plant, and 100-grain weight were also increased significantly in a quadratic fashion with increasing liming rate from 0 to 18 Mg ha?1. These growth and yield components had a significant positive association with grain yield. Maximum contribution in increasing grain yield was of number of pods per plant followed by grain harvest index and shoot dry weight. Uptake of nitrogen (N) was greatest and phosphorus (P) was least among macronutrients in soybean plant. Nutrient-use efficiency (kg grain per kg nutrient accumulation in grain) was maximum for magnesium (Mg) and lowest for N among macronutrients. Application of 3 Mg lime ha?1 neutralized all aluminum ions in soil solution. Optimal acidity indices for 90% of maximum yield were pH 6.0, calcium (Ca) 1.6 cmolc kg?1, Mg 0.9 cmolc kg?1, base saturation 51%, cation exchange capacity (CEC) 4.8 cmolc kg?1, Ca/Mg ratio 1.9, Ca?/?potassium (K) ratio 5.6, and Mg/K ratio 3.0.  相似文献   

5.
This investigation was conducted by using alkaline slag and crop straw biochars to reduce acidity of an acidic Ultisol through incubation and pot experiments with lime as a comparison. The soil was amended with different liming materials: lime(1 g kg^-1),alkaline slag(2 and 4 g kg^-1), peanut straw biochar(10 and 20 g kg^-1), canola straw biochar(10 and 20 g kg^-1) and combinations of alkaline slag(2 g kg^-1) and biochars(10 g kg^-1) in the incubation study. A pot experiment was also conducted to observe the soybean growth responses to the above treatments. The results showed that all the liming materials increased soil p H and decreased soil exchangeable acidity. The higher the rates of alkaline slag, biochars, and alkaline slag combined with biochars, the greater the increase in soil p H and the reduction in soil exchangeable acidity. All the amendments increased the levels of one or more soil exchangeable base cations. The lime treatment increased soil exchangeable Ca^2+, the alkaline slag treatment increased exchangeable Ca^2+ and Mg^2+ levels, and the biochars and combined applications of alkaline slag with biochars increased soil exchangeable Ca^2+, Mg^2+ and K^+ and soil available P. The amendments enhanced the uptake of one or more nutrients of N, P, K, Ca and Mg by soybean in the pot experiment. Of the different amendments, the combined application of alkaline slag with crop straw biochars was the best choice for increasing base saturation and reducing soil acidity of the acidic Ultisol. The combined application of alkaline slag with biochars led to the greatest reduction in soil acidity, increased soil Ca, Mg, K and P levels, and enhanced the uptake of Ca, Mg, K and P by soybean plants.  相似文献   

6.
Upland rice is an important crop in the cropping systems of South America, including Brazil. Two greenhouse experiments were conducted to determine influence of lime and gypsum on yield and yield components of upland rice and changes in the chemical properties of an Oxisol. The lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. The gypsum rates were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1. Lime as well as gypsum significantly increased plant height, straw and grain yield, and panicle density in a quadratic fashion. Adequate lime and gypsum rates for maximum grain yield were 1.11 g kg?1 and 1.13 g kg?1, respectively. Plant height, straw yield, and panicle density were positively related to grain yield. Lime as well as gypsum application significantly changed extractable calcium (Ca), magnesium (Mg), hydrogen (H)+aluminum (Al), base saturation, and effective cation exchange capacity. In addition, liming also significantly increased pH, extractable phosphorus (P) and potassium (K), calcium saturation, magnesium saturation, and potassium saturation. Optimum acidity indices for the grain yield of upland rice were pH 6.0, Ca 1.7 cmolc kg?1, base saturation 60%, and calcium saturation 47%. In addition, upland rice can tolerate 42% of acidity saturation.  相似文献   

7.
In tropical regions, soil acidity and low soil fertility are the most important yield‐limiting factors for sustainable crop production. Using legume cover crops as mulch is an important strategy not only to protect the soil loss from erosion but also to ameliorate soil fertility. Information is limited regarding tolerances of tropical legume cover crops to acid soils. A greenhouse experiment was conducted to determine the differential tolerance of 14 tropical legume cover crops to soil acidity. The acidity treatments were high (0 g lime kg?1 soil), medium (3.3 g lime kg?1 soil), and low (8.3 g lime kg?1 soil). Shoot dry weight of cover crops were significantly affected by acidity treatments. Maximum shoot dry weight was produced at high acidity. Jack bean, black mucuna, and gray mucuna bean species were most tolerant to soil acidity, whereas Brazilian lucern and tropical kudzu were most susceptible to soil acidity. Overall, optimal soil acidity indices were pH 5.5, hydrogen (H)+ aluminum (Al) 6.8 cmolc kg?1, base saturation 25%, and acidity saturation 74.7%. Species with higher seed weight had higher tolerance to soil acidity than those with lower seed weight. Hence, seed weight was associated with acidity tolerance in tropical legume species.  相似文献   

8.
Most tropical soils have high acidity and low natural fertility. The appropriate application of lime and cattle manure corrects acidity, improves physical and biological properties, increases soil fertility, and reduces the use of chemical and/or synthetic fertilizers by crops, such as soybean, the main agricultural export product of Brazil. This study aimed to assess the effects of the combination of the application of dolomite limestone (0, 5, and 10 Mg ha?1) and cattle manure (0, 40, and 80 Mg ha?1) on grain yield and the chemical properties of an Oxisol (Red Latosol) cultivated with soybean for two consecutive years. The maximum grain yield was obtained with the application of 10 Mg ha?1 of lime and 80 Mg ha?1 of cattle manure. Liming significantly increased pH index, the concentrations of calcium (Ca2+) and exchangeable magnesium (Mg2+), and cation exchange capacity (CEC) of soil and reduced potential acidity (H+ + Al3+), while the application of cattle manure increased pH level; the concentrations of potassium (K+), Ca2+, and exchangeable Mg2+; and CEC of the soil. During the 2 years of assessment, the greatest grain yields were obtained with saturation of K+, Ca2+, and Mg2+ in CEC at the 4.4, 40.4, and 17.5 levels, respectively. The results indicated that the ratios of soil exchangeable Ca/Mg, Ca/K, K/Mg, and K/(Ca+Mg) can be modified to increase the yield of soybean grains.  相似文献   

9.
The physic nut tree (Jatropha curcas) is an oilseed species with potential for biodiesel production. We evaluated the effect of soil acidity indices on nutrient uptake for optimal growth in physic nut plants grown on acidic soils under greenhouse conditions. Two soils were used in the experiment. Maximum growth was obtained with the application of 1.05 g lime kg-1 for both soils. Maximum growth of the physic nut plants occurred under the following conditions: pH of water = 6.1, calcium (Ca2+) = 17.0 mmolc kg?1, magnesium (Mg2+) = 5.7 mmolc kg?1, acidity saturation = 10.3%, base saturation = 52.3%, Ca saturation = 36.0%, Mg saturation = 12.0% and potassium (K) saturation = 3.8%. Furthermore, the nitrogen (N) requirement of physic nut trees was shown to be high, and to a lesser degree, Ca and Mg requirements were also high, suggesting that liming is very important in crop cultivation of this species.  相似文献   

10.
Abstract

The seriousness of soil acidity and the unavailability of “conventional”; liming materials in many developing countries necessitate a search for alternatives. With this goal in mind, the liming potential of two organic manures was investigated. The investigation was conducted in the greenhouse, using a highly weathered, acid Ultisol. Application rates were 0, 5, 10, 20, and 40 g kg‐1 for chicken manure and 20 g kg‐1 for sewage sludge. Treatments of Ca(OH)2 at 2, 4, 6, and 8 cmolckg‐1, were included for comparison.

Based on growth response of Desmodium intortum, a tropical forage legume with a relatively high Ca requirement and low Al tolerance, it was demonstrated that soil acidity can be corrected by either Ca(OH)2 or organic manure additions. Both lime and manures raised soil pH and inactivated Al. In terms of pH increases, 5 and 10 g chicken manure kg‐1 were equivalent to 3.4 and 6.7 cmolckg‐1; and 20 g sludge kg‐1, equivalent to 6.5 cmolckg‐1 as Ca(OH)2. The manures also detoxified soluble Al by organic complexation and enhanced Ca uptake of the Desmodium. The plant's maximum growth required at least 1.0% Ca in leaves, and this growth was reduced by half when leaf Al 76 mg kg‐1 and soil‐solution Al3+ activity 4 μM.  相似文献   

11.
Abstract

Soil acidity is one of the major yield constraints to crop production in various parts of the world. Quantifying optimum soil acidity indices is an important strategy for achieving maximum economic crop yields on acid soils. Five field experiments were conducted for three consecutive years using dry bean as a test crop on an Oxisol. The lime rates used were 0, 12, and 24 Mg ha?1 for creating a wide range of soil acidity indices in a no‐tillage cropping system. Grain yield of dry bean was significantly increased by improving soil pH, base saturation, calcium (Ca), magnesium (Mg), and potassium (K) saturation and reducing aluminum (Al) saturation. These soil acidity indices were higher in the 0‐ to 10‐cm soil layer than the 10‐ to 20‐cm soil layer for maximum grain yield. Across two soil depths, optimum values for maximum bean yield were pH 6.5, base saturation 67%, Ca saturation 48%, and Mg saturation 19%. Bean yield linearly increased with increasing K saturation in the range of 1.5 to 3% across two soil depths. There was a significant linear decrease in grain yield with increasing Al saturation in the range of 0 to 8% across two soil depths. Optimal values of soil indices for maximum bean yield can be used as a reference for liming and improving yield of bean crop on Oxisols in a no‐tillage cropping system. Yield components, such as pod number, grain per pod, and 100‐grain weight were significantly improved with liming, and bean yield was significantly associated with these yield components.  相似文献   

12.
The increased magnesium (Mg) concentration in vegetables may be reduced due to inter-ionic inhibition caused by the concentration of other water-soluble cations that are mainly associated to low molecular weight organic anions. However, it is not known whether the levels of these compounds in crop residues are modified by increasing the Mg soil application. This study aimed to assess the effects of the Mg application on the contents of water soluble cations [potassium (K+), calcium (Ca2+), magnesium (Mg2+), cooper (Cu2+), iron (Fe2+), manganese (Mn2+), and zinc (Zn2+)] on common bean plant residues. The experiment was conducted under greenhouse conditions with Ustoxix Quatzipsamment in completely randomized design in 4×5 factorial scheme, with three replicates. The treatments consisted of four rates of Mg [0, 50, 100 and 200 mg kg?1, source magnesium chloride (MgCl2)] and five varieties of common bean of the carioca group [BRS Estilo, BRS Ametista, IPR Campos Gerais (CG), IPR Tangará and IAPAR 81]. The Mg rates affected the contents of water soluble Ca2+, Mg2+, Cu2+, Fe2+ and Mn2+ in the extracts of bean residue. The soluble Mg2+ showed a significant correlation with foliar Mg content, indicating the need for further research on the method used to assess nutrient availability in vegetables. The bean varieties showed different responses regarding balance of ions in cation exchange capacity (CEC) and in the Ca/Mg, Ca/K and Mg/K ratios in the soil.  相似文献   

13.
Understanding of tillage effects on soil chemical properties and cations in soil solution dynamics is essential for making appropriate land-management decisions. Measurements were made after more than 25 years of different tillage treatments: conventional tillage (CT) and conservation tillage, which includes no-till (NT) and minimum tillage (MT). pH and bulk density did not show important changes but exchangeable cations and cations in soil solution were affected by depth and different tillage. The highest concentration of exchangeable Ca2+ and Mg2+ was found in NT, decreased in MT and the lowest concentration was found in CT (mean values were 26.0, 24.4 and 23.3 cmolc kg?1 for exchangeable Ca2+ and 4.2, 3.7 and 3.3 cmolc kg?1 for exchangeable Mg2+ in NT, MT and CT, respectively). In addition, the highest concentration of exchangeable Na+ was found in NT, decreased in CT and the lowest concentration was found in MT. However, the highest concentration of exchangeable K+ was found in MT. A significant depth effect was observed for cations in soil solution: Na+ increased with depth whereas K+ and Ca2+ decreased with depth. This study aims to demonstrate the effect of tillage on the distribution and concentration of certain chemical soil properties.  相似文献   

14.
Abstract

The cost and difficulty of applying lime on hilly pastures or small forage fields makes it appropriate to devote attention to efficiency of lime utilization. This study evaluated effects of calcitic and dolomitic lime on yield and mineral composition of 11 forage species grown on soil with a low base status of 0.46 cmolc as Ca and 0.18 cmolc as Mg kg‐1. Both lime types increased dry matter production, but only Lolium multiflorum responded more positively to dolomitic lime. The low Mg level in the soil was not a major factor limiting yield. Increase in yield was mainly attributed to the increase in pH with the concurrent decrease in Al level and to an increased Ca availability to plants. The species ranked as follows according to the magnitude of yield increase due to calcitic liming: Trifolium fragiferum > Trifolium pratense > Vicia sativa > Vicia villosa > Trifolium repens > Lolium perenne > Lolium multiflorum > Festuca arundinaceae = Lolium (multiflorum x perenne x perenne) > Trifolium subterraneum > Dactylis glomerata. The most responsive, Trifolium fragiferum, did not grow without lime. The least responsive, Dactylis glomerata, showed a yield increase of 36%. A similar ranking was obtained when all species were evaluated for Al tolerance using a 48 hour root elongation bioassay. In both unlimed soil and soil limed with calcitic lime, Mg concentrations of all species were relatively low. Although they were generally not low enough to have an effect on yield, they barely met the Mg nutritional requirement of cattle. By adding dolomitic lime, Mg content increased in grasses an average of 3.7 fold and in legumes by 2.4 fold. Grasses were similar in Ca, Mg, and K concentrations within a soil treatment. Legumes showed a greater range with the two vetches having the lowest Ca and Mg concentrations and red clover the highest.  相似文献   

15.
This study was designed to evaluate changes in the dynamics of soil phosphorus and cationic balances of a savannah soil subjected to 45 years of continuous cultivation under different fertilizer management and later left fallow for 15 years. It was conducted on the experimental plots at the Institute for Agricultural Research, Ahmadu Bello University, Nigeria. Treatments consisted of nitrogen (N), phosphorus (P), potassium (K), cow dung manure (D) and their combination (DNPK). Results of P fractionation and cationic distribution were compared with previous studies on the same plot 15 years ago. Organic carbon increased from a range of 3–5 g kg?1 in 1997 to 10.9 g kg?1 in 2012. Similarly, the cation exchange capacity (CEC) of the soil increased from 6.40 cmolc kg?1 in 1997 to 16.4 cmolc kg1 in the present study. The degree of saturation of the CEC by Ca2+ was 68–79% and 10–20% for Mg2+, while that of K+ was 1.5–2%. Although there was an uneven trend in depletion and enrichment of the various P pools, however, the fallow period substantially improved the CEC and the plant available P pools of the soil by more than 200% and 6–259%, respectively.  相似文献   

16.
The increasing demand for fertilizers and the fact that the world reserves of phosphorus (P) and potassium (K) are depletable make appropriate soil management a critical factor in agriculture. Techniques for the fertilizer use and soil acidity corrective are becoming increasingly necessary to minimize the cost of yield and increase the nutrient efficiency. In view of the aforementioned, the present study aimed to assess the effects of gypsum application on the leaching of cations in the soil profile. A completely randomized design in a 5 × 4 factorial arrangement, with five replicates, was used. The treatments corresponded to five gypsum rates (0, 1, 2, 4, and 8 magnesium (Mg) ha?1) applied on broadcast of soil and at four depth sampled (0–5, 6–10, 11–15, and 16–20 cm). Gypsum application increased the fertility in depth, with the leaching of cations. There was an increase in soil pH, exchangeable K+ and calcium (Ca2+), sulfur (S–SO42?), P, boron (B), and manganese (Mn) concentration, cation exchange capacity (CEC), K+ and Ca2+ saturation, Ca2+/Mg2+, Ca2+/K+, and K+/(Ca2+ + Mg2+) ratios, and electrical conductivity in soil depth. On the other hand, there was a decrease in exchangeable Mg2+ and potential acidity hydrogen and aluminum (H+ Al3+), available silicon (Si), Mg2+ saturation, and Ca2+/K+ and Mg2+/K+ ratio. These results demonstrate that the gypsum application in an Oxisol with 690 g kg?1 of clay improves the root system with a significant increase in the soil fertility in the profile.  相似文献   

17.
Aluminum (Al) toxicity is a major limiting factor for crop production in many acid soils in Brazil. Two greenhouse experiments were conducted to evaluate response of rice (Oryza saliva L.) and common bean (Phaseolus vulgaris L.) to Al levels on a Low Humic Gley acid soil. The Al levels created by liming were: 0,0.03, 0.10, 0.23, 1.03, and 3.83 cmolc kg‐1 of soil. Rice dry matter and grain yield were significantly improved (P<0.05) with increasing Al levels in the soil solution. However, common bean dry matter as well as grain yield were significantly (P<0.01) decreased with increasing Al levels. At 3.83 cmolc Al kg‐1 of soil, bean did not produce any dry matter or grain yield. On an average, Al decreased nutrient concentrations in the tops of rice plant except zinc (Zn) and manganese (Mn), but in bean crop almost all the nutrients concentrations were increased with increasing Al levels. Rice showed tolerance to Al toxicity, whereas, common bean was susceptible to toxicity of this element. For successful intensive crops production lime application will be necessary in Varzea soils especially for legume production.  相似文献   

18.
Soil acidity is a major yield-limiting factors for bean production in the tropical regions. Using soil acidity–tolerant genotypes is an important strategy in improving bean yields and reducing cost of production. A greenhouse experiment was conducted with the objective of evaluating 20 dry bean genotypes for their tolerance to soil acidity constraints. An Inceptisol soil was amended with dolomitic lime (2 g dolomitic lime kg–1 soil) to achieve low acidity (pH = 5.9) and without lime (zero lime kg–1 soil,) to achieve high acidity (pH = 4.8) levels to evaluate bean genotypes. At both acidity levels, genotypes differed significantly in shoot dry weight and grain yield. Shoot dry weight and grain yield were significantly decreased at the high acidity level compared to the low acidity level. Grain yield was more sensitive to soil acidity than shoot dry weight. Hence, grain yield was used in determination of tolerance index (GTI) to differentiate the range of soil acidity tolerance among bean genotypes. Based on a GTI value, 55% of the genotypes were classified as tolerant, 40% classified as moderately tolerant, and the remaining were grouped as susceptible to soil acidity. The genotype CNFC 10410 was most tolerant and genotype CNFP 10120 was most susceptible to soil acidity. Number of pods and grain harvest index were significantly and positively associated with grain yield. The improvement in grain yield in low acidity may be related to reduction of toxic levels of soil aluminum (Al3+) and hydrogen (H+) ions by lime addition. At harvest, soil extractable phosphorus (P) and potassium (K) increased with the reduction of soil acidity, and this might have contributed to the better nutrition of beans and lead to higher growth.  相似文献   

19.
The aim of this study was to verify if the application of silicate or lime, in association with gypsum, on sugarcane residue can lead to amendment of subsurface soil acidity, increasing sugarcane yield and profitability. The treatments were: 1 – control (without application of amendments), 2 – gypsum, 3 – dolomitic limestone, 4 – silicate, 5 – dolomitic limestone + gypsum, and 6 – silicate + gypsum. The surface application of gypsum led to reduction in Al (aluminum) contents and Al saturation, and increase in Mg+2, Ca+2, K+, S–SO4?, and base saturation in deeper soil layers, as well as increased yield of stalks, sugar, trash, bagasse, and energy, and greater profit. The application of limestone and silicate, alone or in association with gypsum, amend soil acidity throughout the soil profile. It likewise leads to an increase in stalk, sugar, trash, bagasse, and energy yield, however, application of silicate in association with gypsum leads to the greatest profitability.  相似文献   

20.
Acid sulfate soils are normally not suitable for crop production unless they are appropriately ameliorated. An experiment was conducted in a glasshouse to enhance the growth of rice, variety MR219, planted on an acid sulfate soil using various soil amendments.The soil was collected from Semerak, Kelantan, Malaysia. Ground magnesium limestone(GML), bio-fertilizer, and basalt(each 4t ha^-1) were added either alone or in combinations into the soil in pots 15 d before transplanting. Nitrogen, P and potash were applied at 150, 30, and 60 kg ha^-1, respectively. Three seven-day-old rice seedlings were transplanted into each pot. The soil had a p H of 3.8 and contained organic C of 21 g kg^-1, N of 1.2 g kg^-1, available P of 192 mg kg^-1, exchangeable K of 0.05 cmolc kg^-1,and exchangeable Al of 4.30 cmol c kg^-1, with low amounts of exchangeable Ca and Mg(0.60 and 0.70 cmol c kg^-1). Bio-fertilizer treatment in combination with GML resulted in the highest p H of 5.4. The presence of high Al or Fe concentrations in the control soil without amendment severely affected the growth of rice. At 60 d of growth, higher plant heights, tiller numbers and leaf chlorophyll contents were obtained when the bio-fertilizer was applied individually or in combination with GML compared to the control. The presence of beneficial bacteria in bio-fertilizer might produce phytohormones and organic acids that could enhance plant growth and subsequently increase nutrient uptake by rice. Hence, it can be concluded that addition of bio-fertilizer and GML improved rice growth by increasing soil pH which consequently eliminated Al and/or Fe toxicity prevalent in the acid sulfate soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号