首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Moldboard plowing, chisel plowing and no‐till methods were used to produce field corn (Zea mays) in an old grass sod. Grain yields were similar ranging between 13,100 and 14,186 kg/ha. The greatest spread in soil temperatures was only 2.1 C with the plowed soil always being warmest. Mean soil organic matter levels of the surface soil ranged between 1.9 percent on the moldboard plowed plots and 3.3 on the no‐till plots. Ten species of soil Collembola were identified. Collembola and Acarina populations were concentrated in the surface 5 cm of soil and were present in greatest numbers in the No‐Till soil.  相似文献   

2.
Abstract

Soil bulk density markedly influences hydrolysis of surface‐applied granular urea that is vulnerable to serious ammonia volatilization losses. In order to decrease the ammonia losses by retarding urea hydrolysis, several chemicals have been tested for their soil urease inhibition properties. Phenyl phosphorodiamidate (PPDA) is a potent soil urease inhibitor. Laboratory studies using soil column incubations were conducted to investigate the effect of soil bulk density on inhibition of hydrolysis of surface‐applied urea granules (=20 mg of urea/granule) containing 1% PPDA in unsaturated soils. The increase in soil bulk density (from 0.69 to 1.50 Mg/m3) markedly increased the rate of hydrolysis of surface‐applied urea granules and significantly decreased the apparent urease inhibition by PPDA present in the granules. These results are attributed to the probable spatial separation of urea and PPDA because of the differences in diffusive transports in unsaturated soils caused in part by differences in their solubilities in water.  相似文献   

3.
Abstract

Winter wheat (Triticum aestivum L.) occupies large hectarage and is important in crop rotations on the highly weathered, low organic matter silt loam soils common in southern Illinois and the southern midwest United States region. Sulfur (S) is an essential element with some potential for deficiency, but it is not commonly applied to winter wheat grown on these soils. This study was conducted to determine if S nutrition is limiting winter wheat growth and grain yield. Interactive effects of topdressed fertilizer S (0 and 28 kg S/ha), tillage (disk‐till, DT and no‐till, NT), and wheat variety on plant growth, nutrient concentration, and grain yield were investigated for three crop years on two soils in southern Illinois; Cisne silt loam (fine, montmorillonitic, mesic Mollic Albaqualf), Brownstown site, and Grantsburg silt loam (fine‐silty, mixed, mesic Typic Fragiudalf), Dixon Springs site. Grain yield was unaffected by S application although flag leaf and whole plant S concentrations increased. Lack of yield response to S application was consistent each year on both soils and across all varieties and tillage systems. Equivalent yields were produced with both tillage systems at Brownstown, but slightly lower yield occurred with no‐till at Dixon Springs. Plant S concentrations and soil sulfate levels indicated sufficient S was available from sources other than fertilizer S, including extractable soil S and atmospheric deposition. Wheat variety consistently influenced plant nutrient composition and grain yield more than tillage or application of S fertilizer. If, in the future, wheat grain production, atmospheric S deposition, and extractable soil S remain at levels measured in this study, then S fertilizer applications would not be expected to increase winter wheat grain yield.  相似文献   

4.
5.
Abstract

A long‐term (1968–1987) field study using corn‐soybean in rotation was conducted to compare the effect of rock phosphate (RP) and superphosphate (SP) at two lime levels on crop yield, soil available phosphorus (P) as Bray P‐1 (0.025M HCl + 0.03M NH4F) and Bray P‐2 (0.1M HCl + 0.03M NH4F) tests, and on the relationship between crop yield and available P tests. Treatments included a control, application of RP and SP ranging from 12 to 96 kg P2O5 ha‐1 yr‐1, and combinations of RP with SP or sulphur at various rates. The RP was applied once in 1968 at 8 times the annual rate while SP was applied annually until 1985. Corn and soybean yields increased with P application, more with SP than with RP. Bray P‐l and Bray P‐2 increased linearly with the amount of P applied as SP or RP. A significant correlation (r > 0.64) was found between corn yield and Bray P‐2 at low lime level with both P sources. In contrast, a poor correlation (r < 0.50) was found between soybean yield and soil P tests. Both RP and SP were effective sources of P fertilizers for corn on soils treated with a small amount of lime compared with a large amount of lime. Under low lime the Bray P‐2 accounted for 41% and 66% variability in com yield with applied RP and SP, respectively. On the other hand, Bray P‐1 was only of value when SP was the source of P.  相似文献   

6.
Abstract

Iron (Fe) deficiency chlorosis (FeDC) results in extensive reduction in yield of strawberry (Fragaria x ananassa Duch.) grown on high pH calcareous soils. Three cultivars differing in response to FeDC were grown on a high pH (8.2) calcareous soil (25.4% calcium carbonate equivalent in surface 20 cm) in the field (Choueifat, coastal area of Lebanon) to determine the effects of FeDC on fruit yield of cultivars sprayed with FeEDDHA [ferric ethylene‐diiminobis (2‐hydroxyphenyl) acetate]. The unsprayed plots were used as a control. No significant interaction (P<0.05) between cultivars x FeEDDHA spray treatment, and no significant differences (P<0.05) between one and two FeEDDHA spray(s)/week treatment was noted for visual FeDC, fruit number, and fruit yield. Sprayed cultivars once a week produced higher yields than unsprayed ones; overall increases were 33% (13% for ‘Motto’, 30% for ‘Chandler’, and 56% for ‘Douglas'). Even though only slight FeDC was noted on the ‘Motto’ cultivar receiving no Fe EDDHA spray, fruit yields were increased when sprayed with FeEDDHA. However, significant increases in yield for ‘Chandler’ and ‘Douglas’ cultivars with severe FeDC ratings were rioted when sprayed with FeEDDHA.  相似文献   

7.
Abstract

Soil compaction is a significant production problem for agriculture because of its negative impact on plant growth, which in many cases has been attributed to changes in soil N transformations. A laboratory experiment was conducted to study the effect of soil compaction and water‐filled pore space on soil microbial activity and N losses. A hydraulic soil compaction device was used to evenly compress a Norfolk loamy sand (fine‐loamy, siliceous, thermic Typic Kandiudults) soil into 50 mm diameter by 127 mm long cores. A factorial arrangement of three bulk density levels (1.4, 1.6, and 1.8 Mg/m3) and four water‐filled pore space levels (60, 65, 70, 75%) was used. Fertilizer application of 168 kg N/ha was made as 1.0 atom % 15N as NH4NO3. Soil cores were incubated at 25°C for 21 d. Microbial activity decreased with both increasing water‐filled pore space and soil bulk density as measured by CO2‐C entrapment. Nitrogen loss increased with increasing bulk density from 92.8 to 334.4 g N/m3 soil at 60% water‐filled pore space, for 1.4 and 1.8 Mg/m3, respectively. These data indicate that N loss and soil microbial activity depends not only on the pore space occupied by water, but also on structure and size of soil pores which are altered by compaction.  相似文献   

8.
Abstract

The variability in corn yield responses to applications of Zn fertilizer appears to be associated with several complex soil and climatic factors that affect the availability of endogenous soil Zn to the crop under specific conditions. Among the soil chemical properties that influence availability of endogenous Zn are soil pH, organic matter content, and extractable P. Over a period of several years, soil and plant analysis data were collected from 54 field experiments, field trials, and diagnostic visits to producer's fields. These data were subjected to multiple regression analysis, resulting in an equation: Znleaf = 37.14 + 1.513 Znst ‐4.04 pHst ‐ 1.791 ln(Pst/100) where Znst, pHst, and Pst were 0.1N HC1 extractable soil Zn (kg/ha), 1:1 soil‐water pH, and Bray's 1 extractable soil P (kg/ha), respectively. These factors accounted for 67% of variation in leaf Zn, which was a large portion of the variability in Znleaf considering that climatic conditions, management levels, and varietal differences were uncontrolled in most instances. Using the previously published critical level in the leaf opposite and below the ear as 17 μg Zn/g, these data can be used to set required soil test levels of Zn at different levels of extractable P and soil pH. Inadequate levels of extractable Zn would range from 2.5 (at pH 6.0, P = 70 kg/ha) to, 9.5 kg/ha (at pH 7.5, P = 420 kg/ha).  相似文献   

9.
Abstract

This study was undertaken to determine the effect of previous water and acid‐washing soil treatment on soil pH, Delta pH and Zero Point of Charge of soil surface samples of three Hawaii soils, Molokai (Typic Torrox), Wahiawa (Tropeptic Eutrustox), and Hilo (Typic Hydrandept).

The acid‐washing treatment lowered the soil pH and shifted the Zero Point of Charge to lower pH values. The effect was greater in the Wahiawa and Molokai soils that are dominated by oxidic materials. Whereas the acid‐washing treatment did not change the magnitude of the negative charge in the Wahiawa and Molokai soils, it overestimated the magnitude of the positive charge in the Hilo soil. This phenomena probably was enhanced by the dominance of variable charge clay minerals in the Hilo soil. The results indicated that the acid‐washing treatment changed the nature of the charge characteristics of the soils, hence it should not be recommended in the characterization of the net charge in variable charge soils.  相似文献   

10.
Abstract

Long‐term tillage and crop management studies may be useful for determining crop production practices that are conducive to securing a sustainable agriculture. Objectives of this field study were to evaluate the combined effects of crop rotation and tillage practices on yield and changes in soil chemical properties after 12 years of research on the Clyde‐Kenyon‐Floyd soil association in northeastern Iowa. Continuous corn (Zea mays L.) and a corn‐soybean [Glycine max L. (Herr.)] rotation were grown using moldboard plowing, chisel plowing, ridge‐tillage, or no‐tillage methods. Tillage and crop rotation effects on soil pH, Bray P1, 1M NH4OAc exchangeable K, Ca, and Mg, total C, and total N in the top 200 mm were evaluated. Profile NO3‐N concentrations were also measured in spring and autumn of 1988. Crop yields and N use efficiencies were used to assess sustainability. Bray P1 levels increased, but exchangeable K decreased for all cropping and tillage methods. Nutrient stratification was evident for no‐tillage and ridge‐tillage methods, while the moldboard plowing treatment had the most uniform soil test levels within the 200 mm management zone. Chisel plowing incorporated fertilizer to a depth of 100 mm. Soil pH was lower with continuous corn than with crop rotation because of greater and more frequent N applications. Profile NO3‐N concentrations were significantly different for sampling depth and among tillage methods in spring 1988. In autumn the concentrations were significantly different for sampling depth and for a rotation by tillage interaction. Estimated N use efficiencies were 40 and 50 kg grain per kg N for continuous corn, and 48 and 69 kg grain per kg N for rotated corn in 1988 and 1989, respectively. The results suggest that P fertilizer rates can be reduced, but K rates should probably be increased to maintain soil‐test levels for this soil association. Crop rotation and reduced tillage methods such as ridge‐tillage or chisel plowing appear to meet the criteria for sustainable agriculture on these soils.  相似文献   

11.
Abstract

Domestic sewage sludge applied to farm fields at a rate of 44.9 kg/ha in a mixture with lime and sawdust was found to increase the soil levels of cadmium, chromium, copper, lead, mercury, nickel and zinc. The average levels in sludge treated soil were: 0.11, 0.56, 3.59, 2.72, 0.068, 1.49 and 2.57 ppm, respectively. The increases were small and the overall loading factors were well below recommended maximums. The uptake of these heavy metals by grass and legume plants was variable with cadmium, copper and zinc levels being higher in those plants growing in the sludge treated soils but only copper was significantly higher. The heavy metal contents found were all within the levels normally found in grass and legume plants. The higher mean concentration in plants growing on the sludge treated soils were cadmium 0.495; chromium 1.22; copper 12.3; lead 1.54; mercury 0.022; nickel 4.08 and zinc 28.4 ppm.  相似文献   

12.
Abstract

Nitrate‐nitrogen concentration in fresh petiole sap, as measured by a portable, battery‐operated, nitrate‐selective electrode, was highly correlated with NO3‐N concentration in dry petiole tissue of broccoli [Brassica oleracea L. (Italica group), r2 = 0.84], celery [Apium graveolens L. var. dulce (Mill.) Pers., r2 = 0.88], lettuce (Lacluca saliva L., r2 = 0.77), pepper (Capsicum annuum var. annuum L., r2 = 0.89), tomato (Lycopersicon esculentum Mill., r2 = 0.83), and watermelon [Citrulius lanatus (Thunb.) Matsum. & Nakai, r2 = 0.88]. This relationship was linear over a wide range of NO3‐N values and was generally unaffected by site, crop, cultivar, or growth stage, provided that petiole tissue analyzed was from recently matured leaves. Sap was analyzed directly without dilution or filtration. The slope of the regression equation differed widely among crops. Selective electrode analysis of NO3‐N concentration of soil solution samples obtained by suction lysimetry was also highly correlated with conventional laboratory technique (r2 = 0.87). The nitrate‐selective electrode appeared to be a useful tool for on‐farm monitoring of soil and crop N status.  相似文献   

13.
Abstract

Changing conventional tillage to conservation tillage systems affects nitrogen (N) cycling in agroecosystems. Our objective was to evaluate the role of soil organic pools, specially plant residues, as sources‐sinks of nitrogen in an humid and warm temperate environment cropped to wheat, under plow‐ and no‐tillage. The experimental site was in the Argentine Pampa on a Typic Hapludoll. A balance‐sheet method was used: Nupt+Nres=Nsow+Nmin, where Nupt=N uptake by the crop at harvest; Nsow=soil mineral N as NH4 and NO3 at 0–90 cm depth, one month before sowing, plus N added as fertilizer; Nres=residual soil mineral N as NH4 and NO3 at 0–90 cm depth, at harvest; Nmin=N mineralized from humus and plant residues during wheat growing period. Nupt did not differ between tillage systems. Nitrogen supply by the mineral N pool, estimated by the difference Nsow‐Nres, was ca. 150 kg N ha‐1 in both tillage systems. Plant residues decomposed and released N under both treatments. This organic N pool decreased 77% along the crop cycle. Nmin, calculated using the balance equation was 83 kg N ha‐1, and did not differ between tillage managements, representing 35% of Nupt. This results highlight the importance of the organic pools as sources of N for wheat in the Humid Pampa. They also brink our attention on the importance for evaluate residue decomposition and humus mineralization in warm‐temperate regions when fertilizer requirements are determined, in order to minimize environmental hazard and economic losses by overfertilization.  相似文献   

14.
Pot experiments were conducted in the greenhouse to study the effect of nitrogen (N) nutrition on photosynthesis and water relations of barley plants under salinity conditions. Nitrogen decreased the sodium (Na) content and increased the potassium (K) content in shoots. The net photosynthetic rate of leaves increased significantly with added N increasing from 0 to 100 mg N/kg soil. The activity of ribulose 1,5 bisphosphate carboxylase (RuBPCase) in leaves of high‐salt plants was lower, and in leaves of the low‐salt plants higher than that in control plants. The photosynthetic rate was reduced by sodium chloride (NaCl) and was significantly correlated with total soluble protein per unit leaf area. At each N level, stomatal conductance in leaves was reduced considerably by salt. Proline content of leaves increased with increasing N level. It was higher in leaves of salt‐treated plants than in those of control plants. The osmotic potential of leaves decreased with increasing N applied, and the turgor pressure of high N plants remained higher under salt treatment condition.  相似文献   

15.
Abstract

Four treatments (no‐tillage plus subsoiling, no‐tillage, conventional tillage plus subsoiling, and conventional tillage) were continuously in place for 6 yr and a second set of no‐tillage plus subsoiling and conventional plus subsoiling treatments were continuously in place for 3 yr to study the long‐term effects of conventional and no‐tillage corn on soil organic matter (OM) and N contents. Soil samples were taken at random between the rows and in the rows to a depth of 60 cm, in 5‐cm increments to a depth of 30 cm, and then in 15‐cm increments from the 30 to 60‐cm depth for OM and N determination. No‐tillage resulted in A3 and 20% more Kjeldahl N than conventional tillage in the 0 to 5‐cm soil depth after 6 and 3 yr, respectively. after 6 yr, the 0 to 5‐cm depth had 36% more OM in no‐tillage treatments than in conventional tillage treatments, and soil from no‐tillage treatments averaged 27% more OM than the conventional tillage plus subsoiling treatment at the 0 to 15‐cm soil depth.  相似文献   

16.
Abstract

Rates of substrate disappearance and product formation were compared as measures of urease enzyme activity in an NH4‐fixing and in a non‐fixing soil under tris‐, borate‐ or non‐buffered assay conditions over 4h at 37°C. Tris‐buffered urease activity of the NH4‐fixing soil was 119 μg urea‐N hydrol./g/h or 116 μg (KCl‐extractable) NH4‐N/g/h indicating prevention of NH4 fixation by the buffer; without tris, NH4 production rates amounted to only 35% of coresponding urea hydrolysis rates. Equal rates of urea disappear‐ ance and NH4 formation occurred in the non‐fixing soil irrespective of buffer amendment.

Tris‐inhibition of NH4 fixation during 4h incubation at 37°C, however, depended on NH4 Cl rate and buffer strength. 0.025–0.10 M tris (pH 9.0) reduced NH4 fixation to negligible amounts at < 0.03 M NH4C1 whereas, at 0.06–0.24 M NH4Cl, substantial NH4 fixation occurred in the presence of 0.05 M tris; NH4 fixation in unbuffered soil, however, always exceeded that in tris‐buffered soil. Borate buffer (0.06M, pH 10) did not influence the extent of NH4 fixation.

Tris significantly enhanced urea hydrolysis in the slightly acid, non‐fixing soil but not in the moderately alkaline NH4 ‐fixing soil indicating an effect of soil type on pH optima of urease enzyme activity. The urease activities of both soils in borate were considerably lower than in tris, possibly because of the combined effects of excess alkalinity and high substrate concentration.  相似文献   

17.
Abstract

Dicyandiamide (DCD) is a nitrification inhibitor that has been proposed for use in drill‐seeded rice. Immobilization of fertilizer NH4 +‐N by soil microorganisms under aerobic conditions has been found to be significantly enhanced in the presence of a nitrification inhibitor. The objective of this laboratory study was to determine if DCD significantly delayed nitrification of urea‐derived N, and if this enhanced immobilization of the fertilizer N in the delayed‐flood soil system inherent to dry‐seeded rice culture. Nitrogen‐15‐labeled urea solution, with and without DCD (1: 9 w/w N basis), was applied to a Crowley silt loam (Typic Albaqualf) and the soil was incubated for 10 weeks in the laboratory. The soil was maintained under nonflooded conditions for the first four weeks and then a flood was applied and maintained for the remaining six weeks of incubation. The use of DCD significantly slowed the nitrification of the fertilizer N during the four weeks of nonflooded incubation to cause the (urea + DCD)‐amended soil to have a 2.5 times higher fertilizer‐derived exchangeable NH4+‐N concentration by the end of the fourth week. However, the higher exchangeable NH4+‐N concentration had no significant effect on the amount of fertilizer N immobilized during this period. Immobilization of the fertilizer N appeared to level off during the nonflood period about the second week after application. After flooding, immobilization of fertilizer N resumed and was much greater in the (urea + DCD)‐amended soil that had the much higher fertilizer‐derived exchangeable NH4 +‐N concentration. Immobilization of fertilizer N appeared to obtain a maximum in the urea‐amended soil (18%) about two weeks after flooding and for the (urea + DCD)‐amended soil (28%) about four weeks after flooding.  相似文献   

18.
The effects of the photoperiodic induction of flowering on nutrient uptake were studied using genetic lines of pea (Pisum sativum). Nitrogen, K, P, Mn, Fe, and Cu concentrations in the plants were higher in short days (SD) (vegetative), Mg concentrations were higher in long days (LD) (reproductive). Ca, B, and Zn levels appeared to be unrelated to light regimes or flower induction. Plants grown in LD had higher total uptake of most elements, because of substantially higher dry matter production. Low light treatments that stimulated flowering had less effect on nutrient composition than LD (full light). The nutrient concentrations of a photoperiod‐insensitive line were less affected by light regime, and total uptake appeared to be primarily dependent on photosynthate production. It was concluded that the induction of flowering does not impose special demands on nutrient uptake, and that, although photoperiod affected nutrient content, the effect was indirect.  相似文献   

19.
Drought stress affects plant growth and causes significant issues in meeting global demand for food crops and fodder. Drought can cause physiological, physicochemical, and morphological changes in plants, which negatively affects plant growth and productivity. To combat this under the increasing global threat of water shortage and rapid population expansion, it is crucial to develop strategies to meet global food demands. Plant growth-promoting rhizobacteria (PGPR) may provide a safe solution to enhancing crop yields through various mechanisms. These soil bacteria can provide drought tolerance to crop plants, allowing them to survive and thrive in water-scarce conditions. Productions of phytohormones, free radical-scavenging enzymes, and stress-combating enzymes that can increase tolerance to drought-induced stress are key features of plant-associated microbial communities. This review summarizes the beneficial properties of microbes that help plants tolerate water scarcity and highlights the bacterial mechanisms that enhance drought tolerance in plants.  相似文献   

20.
The effect of digging activity of little souslik (Spermophilus pygmaeus Pall.) on the microtopography and soils was studied in the areas with shallow saline groundwater developing under continental conditions for 10.5–12.7 ka. The portion of microtopographic features related to the digging activity was quantified. It was found that the micromounds formed by sousliks appear on recently dried surfaces with shallow saline groundwater. However, their portion in this case is less than 3% because of the poor vegetation and shallow groundwater. Then, with the lowering of the base of erosion and aging of the territory, the zoogenic effect becomes more pronounced. On the first terrace of Khaki Sor (salt lake), the digging activity of sousliks creates the initial heterogeneity of soils and vegetation. The soil cover is composed of the virgin quasigleyed solonchakous solonetzes under the Atriplex-Artemisia santonica association (Gypsic Salic Solonetz (Albic, Ruptic, Oxiaquic, Siltic)) and of the zooturbated solonetzes under the Artemisia santonica-A. lerchiana association (Endosalic Hypogypsic Gypsisol (Sodic, Siltic, Novic)). A comparative analysis of morphology and some chemical properties of virgin and zooturbated soils is given. The soils of souslik-made mounds are strongly mixed, and the structure of their horizons is completely disturbed. They are characterized by an increased total content of salts mainly due to gypsum accumulation. At the same time, the content of toxic salts in the soil profile remains rather high because of their ascending migration from the strongly saline groundwater. On the first terrace, the process of zoogenic amelioration of solonetzes by sousliks is limited and does not affect deep soil layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号