首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion exchange resin?/?soil cores are a common in situ approach to estimating soil nitrogen (N) mineralization rates. However, no studies compare the two common methods of core preparation (disturbed and undisturbed). The objective of our study was to compare N mineralized and soil temperature in disturbed versus undisturbed cores of manured agricultural soils. Undisturbed cores were prepared by driving aluminum tubes (25 cm long with 10 cm inner diameter) into soil, removing the tubes, and then inserting an ion-exchange resin bag beneath the soil at the bottom of the tube. Disturbed cores were prepared with the same materials, but soil was excavated, mixed, and then filled into tubes fitted with ion-exchange resin bags at the bottom. Soil from six agricultural fields (five of which had more than 10 years of regular dairy manure application) was incubated over four time periods during summer and winter. A total of 13 soil?/?incubation-period combinations were tested. Disturbed cores tended to have more N mineralized than undisturbed cores (P < 0.10), especially in cores prepared with the lowest clay content soil. However, variability of N mineralized was lower in disturbed cores than undisturbed cores for 11 of the 13 soil?/?incubation periods. This lower variability was significant in two of the four incubation periods (P < 0.10). There was little difference in mean soil temperatures in disturbed versus undisturbed cores or within cores versus outside but adjacent to cores. However, in summer, the daily temperature range inside cores was significantly greater than the temperature range in soil outside cores (P < 0.01).  相似文献   

2.
Abstract

We compared estimates of soil nitrogen (N) mineralization rates using the buried bag and PVC core methods in an ongoing investigation of the effects of earthworms and N fertilizer sources on agroecosystem N dynamics. Over a seven‐month period, we paired monthly buried bag and PVC core soil incubations within research plots receiving one of three N treatments (inorganic, legume, or manure fertilizers) and with manipulated earthworm populations (reduced, ambient, or increased numbers). Soil moisture within both the buried bags and the PVC cores fluctuated in response to changes in the surrounding soil, violating assumptions of the buried bag method that soil moisture remains constant during incubation. For both methods, overall CV's for net ammonification, nitrification, and N mineralization rates were very high (104 ‐ 628%). Overall, results for the two methods were significantly correlated for net ammonification (r = 0.89), net nitrification (r = 0.58), and net N mineralization (r = 0.24). In general, the two methods yielded similar seasonal estimates of net N mineralization and nitrification. However, on one occasion in the plots with the inorganic N treatment, buried bag estimates of net N mineralization were significantly higher than the PVC core estimates (1.5 versus ‐0.4 mg N‐kg‐1 soil‐d1, respectively). Under some conditions, the two methods may lead to quite different interpretations of soil N mineralization processes.  相似文献   

3.
Properly estimating soil nitrogen (N) mineralization as a consequence of different agronomic practices would result in better soil N fertility management. In this study, we tested the differences between laboratory and in situ resin‐core incubation methods for estimating soil net N mineralization for long‐term burley tobacco (Nicotiana tobacum L .) tillage and rotation systems. The laboratory incubation method used crushed, homogenized, litter‐free soil samples, and the in situ resin‐core incubation method used an intact soil core with the inclusion of any plant residue below or above ground. Comparisons showed that no‐tillage had significantly increased soil net N mineralization compared to conventional tillage with the laboratory incubation method, while there was no significant difference between tillage methods with the in situ resin‐core method. This indicates that soil pretreatment in the laboratory incubation method can create an “artificial tillage effect” for soil previously managed with no‐tillage, resulting in overestimated soil net N mineralization. The rotation comparison showed that different crop sequences had no impact on measured net N mineralization with the laboratory incubation method. However, a preceding soybean crop did significantly increase net soil N mineralization compared to preceding corn when measured with the in situ resin‐core method. This suggests that discarding plant residue in the laboratory incubation method can neglect the potential effect of plant residue on soil N mineralization. Therefore, it is important to be aware that soil pretreatment may influence soil N mineralization estimates, potentially resulting in flawed decisions for soil N fertility management.  相似文献   

4.
Abstract

Mixtures of cation and anion exchange resins are used as part of the resin core technique to determine nitrogen transformation in forest soils as they adsorb the NH4‐N and NO3‐N from soil solution percolating through the incubated soil cores. In the field, the exchange resins may be subjected to a variety of conditions, involving drying, rehydration, freezing, and thawing. This paper examines how these processes affect adsorption of NH4‐N and NO3‐N and the stability of the resins. Lab tests were performed on the anion resin Amberlite IRA‐93, the cation resin Amberlite IR‐120, a mixture of IRA‐93 and IR‐120, and the commercially‐mixed bed resin Amberlite MB1. The background content of NO3‐N and NH4‐N on the resins was large and highly variable between different batches of resins in spite of a 2 M NaCl pre‐rinse. The IR‐120 cation resin that was subjected to 48 hours air‐drying contained significantly less NH4‐N than the moist resins, while the drying of the IRA‐93 anion resin caused a significant release of NO3‐N from resins with no N addition. Although the variation was large, the mixed bed resin MB1 indicated a release of NH4‐N, which supports results from long term in situ deployments. A reduced adsorption of NO3‐N was found on the IRA‐93 anion resins and the MB1 mixed bed resins that were dried prior to N addition while the dry IR‐120 cation resins adsorbec significantly less NH4‐N than the control resin. No effect of freezing and thawing efficiency was observed on resin stability or N adsorption efficiency. Sufficient blanks that have been subjected to similar moisture changes are necessary in N limited systems with low levels of available NH4‐N and NO3‐N.  相似文献   

5.
Abstract

The attribute that ion‐exchange resins remove ions from solutions moving through them can be used to measure nitrate transport through soils. The characteristics of nitrate adsorption by resins must be known to interpret nitrate accumulation on ion‐exchange resins embedded in soil. The extent to which anion exchange resins retain NO3‐ from soil leachate was measured in 15.9 cm diam.by 60 cm long intact cores of Nolin (fine silty mixed mesic Dystric Fluventic Eutrochroept) soil. A NC3 ‐selective resin and a non‐selective resin were tested. Columns were fertilized at a rate of 300 kg N/ha and 150 kg Br/ha and leached with 50 cm of water. Under these conditions, both resins retained approximately 80% of the NO3‐ and Br leached through the soil. This compared with greater than 95% retention in laboratory columns containing only resin. The difference in retention was attributed to different flow through the resin associated with the method of resin emplacement.  相似文献   

6.
There is an urgent need to improve the methods to estimate solute fluxes in soil, e.g. cumulative capture of leaching ions by exchange resin cores. We compared the suitability of different resin materials, core sizes, and installation procedures to assess nutrient leaching in a highly permeable, tropical Xanthic Ferralsol. Three different cation and anion resins, respectively, and two combined anion-cation resins were tested in laboratory experiments with respect to their removal and recovery of nutrients (Mg, NH4+, NO3) and total dissolved organic carbon (TOC) from solution. In a field experiment, cores with three different diameters (25, 100, and 200 mm) were installed either vertically from the soil surface or laterally from a soil pit. Cumulative leaching of NO3 and NH4+ and of applied Sr was determined after 45 days. The combined anion and cation exchange resin (MB 20) showed satisfactory recovery of NO3 and NH4+ from solution. None of the investigated resins could be used for TOC removal from solution due to high contents of soluble carbon compounds in the resins. Wetting and drying cycles did not affect the removal of solutes from solution or subsequent recovery from the MB 20 resin. Additionally, the combined resin MB 20 was easier to handle than separate anion or cation resins and was therefore used for further field experimentation. The smallest core size (25 mm) was not suitable for nutrient leaching determination due to high preferential flow along the inner core walls. The medium diameter cores (100 mm) showed the lowest variability and the best correlation between NO3 and Sr capture. They were easier to install and retrieve than the large diameter cores (200 mm), which posed serious handling problems and soil disturbance. The lateral installation caused significantly lower artificial flow in comparison to a vertical installation, which was shown by the lower Sr loss and slightly lower N capture. Therefore, a lateral installation of medium sized resin cores (100 mm diameter) from a soil pit was superior to the other alternatives tested in this study.  相似文献   

7.
Use of the nitrogen balance sheet method as a fertilization strategy in the semi-arid Pampas of Argentina is restricted because of a lack of available information regarding nitrogen mineralization in its coarse soils. Our objective was to determine nitrogen mineralization during corn (Zea mays L.) and following wheat (Triticum aestivum L.) growing cycles under contrasting tillage systems in a representative soil of the region. Mineralized nitrogen from decomposing residues was estimated using the litter bag method and mineralization from soil organic matter using a mass balance approach. Soil water content was higher under no-till during the corn growing season and no differences were detected for wheat during this period. Soil temperature was practically not affected by tillage system. Biomass and nitrogen absorption were higher under no-till than under disk till in corn (p ≤ 0.05), as were nitrogen mineralization from residues and organic matter (p ≤ 0.05). In wheat, no differences in biomass, nitrogen absorption and mineralization were detected between treatments. Mineralization during crop growing cycles accounted for 44.8–67.5% of the absorbed nitrogen. Differences in nitrogen mineralization between tillage systems resulted from the greater water availability under no-till than under disk till during the summer.  相似文献   

8.
Abstract

Nitrogen, tillage, and residue management systems influence the ability of microorganisms to mineralize plant residues in soil. The objective of this research was to investigate the seasonal changes in autoclave extractable‐N (AN) as influenced by different N rates, tillage practices and residue management systems. A field study under a continuous corn rotation was initiated in 1980, with factorial combinations of 2 or 20 g N/m2, roto‐tillage or no‐tillage, and residue (corn stover) returned or removed treatments. Soil water, AN, and inorganic N were measured at regular intervals over a three‐year period (1984 to 1986). AN, as a soil N mineralization index, was shown to be sensitive to changes in the nitrogen, tillage, and residue management systems. Correlations between corn yields and the N mineralization index suggest that AN was sampling a biologically‐active N pool.  相似文献   

9.
Increasing use of N fertilizer for crop production necessitates more rapid estimates on N provided by the soil in order to prevent under‐ or overfertilization and their adverse effect on plant nutrition and environmental quality. A study was conducted to investigate the responses of arginine ammonification (AA), L‐glutaminase activity (LG), soil N–mineralization indices, corn (Zea mays L.) crop–yield estimation, and corn N uptake to application of organic amendments. The relationships between corn N uptake and the microbial and enzymatic processes which are basically related to N mineralization in soil were also studied. The soil samples were collected from 0–15 cm depth of a calcareous soil that was annually treated with 0, 25, or 100 Mg ha–1 (dry‐weight basis) of sewage sludge and cow manure for 7 consecutive years. Soil total N (TN), potentially mineralizable N (N0), and initial potential rates of N mineralization (kN0) were significantly greater in sewage sludge–treated than in cow manure–treated soils. However, the amendment type did not influence soil organic C (SOC), AA, LG, and anaerobic index of N mineralization (Nana). The application rates proportionally increased N‐availability indices in soil. Corn N concentration and uptake were correlated with indices of mineralizable N. A multiple stepwise model using AA and Nana as parameters provided the best predictor of corn N concentration (R = 0.86, p < 0.001). Another model using only LG provided the best predictor of corn N uptake (R = 0.78, p < 0.001). This results showed that sewage‐sludge and cow‐manure application is readily reflected in certain soil biological properties and that the biological tests may be useful in predicting N mineralization and availability in soil.  相似文献   

10.
Abstract

In the West Central Great Plains of the United States, no‐till management has allowed for increased cropping intensity under dryland conditions. This, in turn, has affected the carbon (C) and nitrogen (N) mineralization dynamics of these systems. In this region, moisture stress increases from north to south due to an increase in evapotranspiration (ET), resulting in a climatic gradient that affects cropping system management. The objectives of this study were to determine the interaction of cropping system intensification and climatic gradient (ET) on C and N mineralization and to determine if the presence or absence of crop residue on the soil surface affects C and net N mineralization. Two cropping systems, winter wheat‐fallow (WF) (Triticum aestivium L.) and winter wheat‐corn (sorghum)‐millet‐fallow (WCMF) [Zea mays (L.), Sorghum bicolor (L.) Moench, Panicum milaceum (L.)] were studied at three locations across this aforementioned ET gradient. The treatments had been in place for 8 yrs prior to sampling in the study. These results showed that the more intense cropping system (WCMF) had a higher laboratory C mineralization rate at two of the three locations, which the study concluded resulted from larger residue biomass additions and larger quantities of surface residue and soil residue at these locations (Soil residue is defined as recognizable crop residue in the soil that is retained on a 0.6 mm screen). However, no differences in N mineralization occurred. This is most likely due to more N immobilization under WCMF as compared to WF. Presence or absence of crop residue on the surface of undisturbed soil cores during incubation affected potential C and net N mineralization more than either cropping system or location. Soil cores with the surface residue intact mineralized as much as 270% more C than the same soils where the surface crop residue had been removed. In laboratory studies evaluating the relative differences in cropping systems effects on C and N mineralization, the retention of crop residue on the soil surface may more accurately access the cropping system effects.  相似文献   

11.
Abstract

Aerobic incubation methods have been widely used to assess soil nitrogen (N) mineralization, but standardized protocols are lacking. A single silt loam soil (Catlin silt loam; fine‐silty, mixed, superactive, mesic, Oxyaquic Arguidoll) was subjected to aerobic incubation at six USDA‐ARS locations using a standardized protocol. Incubations were conducted at multiple temperatures, which were combined based on degree days (DD). Soil water was maintained at 60% water‐filled pore space (WFPS; constant) or allowed to fluctuate between 60 and 30% WFPS (cycle). Soil subsamples were removed periodically and extracted in 2 M potassium chloride (KCl); nitrate (NO3) and ammonium (NH4) concentrations in extracts were determined colorimetrically. For each location, the rate of soil organic‐matter N (SOMN) mineralization was estimated by regressing soil inorganic N (Ni) concentration on DD, using a linear (zero‐order) model. When all data were included, the mineralization rate from four datasets was not statistically different, with a rate equivalent to 0.5 mg N kg?1 soil day?1. Soil incubated at two locations exhibited significantly higher SOMN mineralization rates. To assess whether this may have been due to pre‐incubation conditions, time‐zero data were excluded and regression analysis was conducted again. Using this data subset, SOMN mineralization from five (of six) datasets was not significantly different. Fluctuating soil water reduced N‐mineralization rate at two (of four) locations by an average of 50%; fluctuating soil water content also substantially increased variability. This composite dataset demonstrates that standardization of aerobic incubation methodology is possible.  相似文献   

12.
Abstract

A procedure is proposed for measuring nitrogen mineralization and nitrification in intact soil cores. The method relies on ion exchange resins to trap ammonium and nitrate entering and leaving cores of soil otherwise open at the top and bottom. Changes in soil concentrations plus an accounting of ions trapped by the lower resin after field incubations, indicate rates of nitrogen reactions. Using this technique, we estimated net ammonification rates from 0–36 mg N/kg/mo and nitrification rates from 0–16 mg N/kg/mo for the surface of a sandy, low nutrient soil under pine cultivation in north Florida; higher rates occurred after urea fertilization. The procedure has potential advantages over others, but must be more fully evaluated under a variety of conditions.  相似文献   

13.
Soil nitrogen (N) availability is dominated by soil water regime and the N fertilizer levels, which affect crop growth in soil water stress. To determine the optimum N applications under different degrees of soil drought, this study investigated the effects of N fertilizer levels on the crop water stress index (CWSI) of summer corn under soil water stress. A 2-year field experiment was conducted in waterproof plots in upland red soils in subtropical China. Three N fertilizer levels and seven soil water deficit levels were employed in 2007 and 2008. Nitrogen fertilization had no influence on the CWSI of the corn under slight to moderate soil drought, but the high-N treatment increased the CWSI significantly (P < 0.01) under soil drought when the mean CWSI exceeded ~0.20. The results suggested that for scheduling irrigation or predicting crop yields, the equations between CWSI and yield should be established on comparable N fertilization levels.  相似文献   

14.
Soil nitrogen (N) mineralization rates from different agricultural regions in California were determined and related to soil properties. Undisturbed soil cores were sampled in spring from 57 fields under annual crop rotations and incubated at 25℃ for 10 weeks. Soil properties varied across and within regions, most notably those related to soil organic matter (SOM), with total soil carbon ranging from 6 to 198 g kg?1. Multivariate linear regression was used to select soil properties that best predicted N mineralization rates. Regression models with a good fit differed between soils with high and low SOM contents, but generally included a measure of SOM quantity, its quality as well as soil texture or mineralogy. Adjusted R2 values were 0.95 and 0.60 for high and low SOM soils, respectively. This study has shown that information on soil properties can contribute to better estimates of N mineralization in soils of contrasting characteristics.  相似文献   

15.
Does net soil nitrogen (N) mineralization change if N‐fertility management is suddenly altered? This study, conducted in a long‐term no‐tillage maize (Zea mays L.) fertility experiment (established 1970), evaluated how changing previous fertilizer N (PN) management influenced in situ net soil N mineralization (NSNM). Net soil N mineralization was measured by incubating undisturbed soil cores with anion and cation exchange resins. In each of three PN fertilizer application plots (0, 84, and 336 kg N ha?1), another three fertilizer application rates (0, 84, and 336 kg N ha?1) were imposed and considered the current fertilizer N (CN) management. Generally, PN‐336 (336 kg N ha?1) had significantly greater NSNM than PN‐0 (0 kg N ha?1) or PN‐84 (84 kg N ha?1), which reflected differences in soil organic‐C (SOC) and soil total‐N (STN). The three CN rates had no significant effect on NSNM when they were applied to PN‐0 or PN‐84, but CN‐336 (336 kg N ha?1) had significantly higher NSNM than CN‐0 (0 kg N ha?1) or CN‐84 (84 kg N ha?1) in the PN‐336 plots. The CN or “added N interaction” used the indigenous soil organic matter (SOM) pool and the added sufficient fertilizer N. Environmental factors, including precipitation and mean air temperature, explained the most variability in average daily soil N mineralization rate during each incubation period. Soil water content at each sampling day could also explain NSNM loss via potential denitrification. We conclude that “added N interaction” in the field condition was the combined effect of SOM and sufficient fertilizer N input.  相似文献   

16.
Abstract

Mixed‐bed cation + anion exchange resin bags are frequently used to assess in situ nutrient availability in forest soils, and have demonstrated their utility for comparing the impacts of different disturbances associated with treatments. They are generally installed in organic or mineral soil horizons for a certain time period, then recovered and extracted, to inform about nutrient availability during that period. For the method to be effective, the ion exchange sites of resins must be clear from any contaminants prior to installation in the soil. A washing procedure to be conducted before in situ burial of mixed‐bed resins was developed and is described. The IONAC NM‐60 H+/OH resins are consecutively washed with 2 N NaCl, deionized water, and 0.1 N NaOH. Finally, resins are rinsed with deionized water and stored moist and cold until bag preparation and burial in the soil.  相似文献   

17.
Abstract

Effective indigenous nitrogen (N) supply (EINS) was estimated in ‐N plots (no fertilizer N addition) of a multi‐location field experiment with irrigated rice conducted in India. Dynamic soil tests, namely anaerobic incubation without (AI) or with K+‐saturated cation exchange resin (AIR) and N release to a mixed‐bed ion‐exchange resin capsule (PST), were used and compared with total soil N, organic carbon (C), initial NH4‐N and alkaline KMnO4‐N as predictors for EINS. The pattern of net N mineralization was similar in all soils of 10 sites and fitted the two‐pool first and zero order model: a rapid early phase from 0–14 d, a transition phase from 14–35 d and a slow, nearly linear phase from 35–56 d. In the rapid phase, average net NH4‐N release with K‐resin was 125% greater than the net NH4‐N without K‐resin. Static soil N tests were significantly correlated with net NH4‐N of AIR only up to rapid and transition phases and also with the cumulative NH4‐N adsorption measured by PST. Grain yield in the ‐N plots ranged from 1094 to 5707 kg‐ha° while EINS estimated by crop N uptake at first flowering (FF) varied from 24 to 107 kg ha‐1 of N. All soil N tests were significantly correlated with N uptake at active tillering, panicle initiation (PI) and FF of rice, but none of the soil tests was correlated with average N uptake rates between PI and FF. Static soil N tests and short‐term anaerobic incubation procedures did not provide enough information about soil N release rates during the reproductive growth period of rice. Only the late phase N between (35–56 d) measured by AIR was correlated with grain yield (r=0.67, P<0.01). Implications for use of soil tests in practical N management are discussed.  相似文献   

18.
Abstract

Interest in manure management and its effects on nitrogen (N) mineralization has increased in recent years. The focus of this research was to investigate the N‐mineralization rates of different soil types in Coastal Plain soils and compare them to a soil from Illinois. Soils with and without dairy composted manure addition were subjected to different wetting/drying cycles [constant moisture at 60% water‐filled pore space (WFPS) and cycling moisture from 60 to 30% WFPS] under laboratory conditions at three different temperatures (11°C, 18°C, and 25°C). Samples were collected from three different soil types: Catlin (Mollisols), Bama (Ultisols), and Goldsboro (Utilsols). Soil chemical and physical properties were determined to help assess variations in N-mineralization rates. Addition of composted manure greatly impacted the amount of N mineralized. The amount of manure‐derived organic N mineralized to inorganic forms was mainly attributed to the soil series, with the Catlin (silt loam) producing the most inorganic N followed by the Goldsboro (loam) and then Bama (sandy loam). This was probably due to soil texture and the native climatic conditions of the soil. No significant differences were observed between the constant and cycling moisture regimens, suggesting that the imposed drying cycle may not have been sufficient to desiccate microbial cells and cause a flush in N mineralization upon rewetting. Nitrogen mineralization responded greatly to the influence of temperature, with the greatest N mineralization occurring at 25°C. The information acquired from this study may aid in predicting the impact of manure application to help increase N‐use efficiency when applied under different conditions (e.g., climate season) and soil types.  相似文献   

19.
Environmentally Smart Nitrogen (ESN) is a polymer-coated urea fertilizer with potential to increase crop recovery of fertilizer nitrogen (N). Our research objectives were to characterize ESN N retention across time as affected by soil series, temperature, moisture, and incubation method. A rumen bag containing 38 to 44 mg ESN N was placed in 400 g soil, and the amount of ESN N remaining in prills was measured every 5 d for 40 d. Soil was incubated at 25 °C and 250 g H2O kg?1 soil, except in experiments where soil temperature or moisture was varied. Nitrogen retention in ESN was linear for three silt and sandy loams and curvilinear in two clayey soils with retention declining more rapidly in clayey soils. Soil temperature had the greatest effect on N retention with the rate of ESN N release increasing as soil temperature increased. Near complete release of ESN N was achieved by 40 d with temperatures ≥ 20 °C.  相似文献   

20.
In south-western Australia, plantations of Eucalyptus globulus are being established on land that has previously been used for conventional agriculture. Sustaining the productivity of these tree plantations in second and subsequent rotations will depend partly on maintenance of soil fertility, especially soil nitrogen (N) supply rates. We compared soil N status and supply rates between adjacent pasture and 6-11 year old first-rotation eucalypt plantations at 31 paired sites in south-western Australia. Total soil N varied widely among sites (0.07-0.68% in the fraction <2 mm of the 0-10 cm soil layer), but concentrations averaged over all sites did not differ between land-use types. However, measurements of the indices of mineralization (mineral N produced during incubation of intact cores), potentially available N (from short-term anaerobic incubation) and model-predicted mineralization rates during 28-day aerobic incubations were generally lower in afforested soils than in pasture soils. This finding was supported by in situ field estimates of N mineralization over a full year at two contrasting paired pasture-plantation sites. At each site there was a marked reduction (2-3-fold) in net annual mineral N flux rates in soils under eucalypt plantations. Reduced N mineralization associated with tree plantations was due to both changes in soil organic matter quality and the generally lower soil moisture content under trees in comparison with pasture. These results suggest that N supply rates of pasture soils are likely to decline when the land is planted to successive crops of eucalypts. Eucalypt plantation managers will need to take account of this and implement management strategies to maintain adequate N nutrition to sustain tree growth in future rotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号