首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Improving our understanding about how natural enemies respond to semi-natural habitats and crop management scattered in the landscape may contribute to the development of ecologically based pest management strategies maximising biological control services. We investigated how soil tillage and semi-natural habitats influenced the parasitism rates of pollen beetle (Meligethes aeneus F.) larvae at 8 different spatial scales (from 250 to 2000 m radius circular sectors) in 42 oilseed rape (OSR) fields. We used multimodel inference approaches to identify and rank the influence of soil tillage and semi-natural habitats on parasitism rates, and to quantify the importance of each scale. Parasitism rates were due to three univoltine parasitoid species (Tersilochus heterocerus, Phradis morionellus and P. interstitialis) and varied from 0 to 98%. We found that both fine and large scales contributed to explain significantly parasitism rates, indicating that biological control of pollen beetle is a multi-scale process. At the 250 m scale, parasitism rates of T. heterocerus were positively related to the proportion of semi-natural habitats and the proximity to previous year OSR fields. At large scales (1500 to 2000 m), parasitism rates of T. heterocerus were positively related to semi-natural habitats and negatively related to the proportion of previous year OSR fields with conventional soil tillage. Parasitism rates of Phradis spp. were only positively related to the proportion of semi-natural habitats at the 1250 and 1500 m scales. These multi-scale effects are discussed in relation to the influence of semi-natural habitats and soil tillage on parasitoid populations and their movement behaviours within the landscape.  相似文献   

2.

Context

Hemipteran pests cause significant yield losses in European cereal fields. It has been suggested that local management interventions to promote natural enemies are most successful in simple landscapes that are dominated by large arable fields.

Objectives

We study how farming category (conventional, new and old organic fields) and landscape complexity affect pests, natural enemies and biological control services in spring barley. We further analyse if yields are related to pest infestation or biological control services.

Methods

The amount of pasture and the length of field borders were used to define landscape complexity around barley fields in Southern Sweden. Arthropods were sampled with an insect suction sampler and predation and parasitism services were estimated by field observations and inspections of pest individuals.

Results

Pest infestation was affected by landscape complexity, with higher aphid, but lower leafhopper numbers in more complex landscapes. Aphid predation was higher under organic farming and affected by effects on predator abundance and community composition independent of landscape complexity. Auchenorrhyncha parasitism was neither significantly affected by landscape complexity nor by farming category. Higher aphid predation rates and lower aphid densities were characteristic for organically managed fields with higher barley yields.

Conclusions

Our results suggest that it is possible to increase both aphid biological control services and barley yield via local management effects on predator communities independent of landscape complexity. However, the success of such management practices is highly dependent on the pest and natural enemy taxa and the nature of the trophic interaction.
  相似文献   

3.
The intensification of agriculture has led to a loss of biodiversity and subsequently to a decrease in ecosystem services, including regulation of pests by natural enemies. Biological regulation of pests is a complex process affected by both landscape configuration and agricultural practices. Although modeling tools are needed to design innovative integrated pest management strategies that consider tritrophic interactions at the landscape scale, landscape models that consider agricultural practices as levers to enhance biological regulation are lacking. To begin filling this gap, we developed a grid-based lattice model called Mosaic-Pest that simulates the spatio-temporal dynamics of Meligethes aeneus, a major pest of oilseed rape, and its parasitoid, Tersilochus heterocerus through a landscape that changes through time according to agricultural practices. The following agricultural practices were assumed to influence the tritrophic system and were included in the model: crop allocation in time and space, ploughing, and trap crop planting. To test the effect of agricultural practices on biological regulation across landscape configurations, we used a complete factorial design with the variables described below and ran long-term simulations using Mosaic-Pest. The model showed that crop rotation and the use of trap crop greatly affected pollen beetle densities and parasitism rates while ploughing had only a small effect. The use of Mosaic-Pest as a tool to select the combination of agricultural practices that best limit the pest population is discussed.  相似文献   

4.
The green–blue network of semi-natural non-crop landscape elements in agricultural landscapes has the potential to enhance natural pest control by providing various resources for the survival of beneficial insects that suppress crop pests. A study was done in the Hoeksche Waard to explore how generic scientific knowledge about the relationship between the spatial structure of the green–blue network and enhancement of natural pest control can be applied by stakeholders. The Hoeksche Waard is an agricultural area in the Netherlands, characterized by arable fields and an extensive network of dikes, creeks, ditches and field margins. Together with stakeholders from the area the research team developed spatial norms and design rules for the design of a green–blue network that supports natural pest control. The stakeholders represented different interests in the area: farmers, nature and landscape conservationists, water managers, and local and regional politicians. Knowledge about the spatial relationship among beneficial insects, pests and landscape structure is incomplete. We conclude that to apply scientific knowledge about natural pest control and the role of green–blue networks to stakeholders so that they can apply it in landscape change, knowledge transfer has to be transparent, area specific, understandable, practical and incorporate local knowledge.  相似文献   

5.
Pollen dispersal is a critical process defining connectivity among plant populations. In the context of genetically modified (GM) crops in conventional agricultural systems, strategies based on spatial separation are promoted to reduce functional connectivity between GM and non-GM crop fields. Field experiments as well as simulation studies have stressed the dependence of maize gene flow on distances between source and receptor fields and on their spatial configuration. However, the influence of whole landscape patterns is still poorly understood. Spatially explicit models, such as MAPOD-maize, are thus useful tools to address this question. In this paper we developed a methodological approach to investigate the sensitivity of cross-pollination rates among GM and non-GM maize in a landscape simulated with MAPOD-maize. The influence of landscape pattern on model output was studied at the landscape and field scales, including interactions with other model inputs such as cultivar characteristics and wind conditions. At the landscape scale, maize configuration (proportion of and spatial arrangement in a given field pattern) was shown to be an important factor influencing cross-pollination rate between GM and non-GM maize whereas the effect of the field pattern itself was lower. At the field scale, distance to the nearest GM maize field was confirmed as a predominant factor explaining cross-pollination rate. The metrics describing the pattern of GM maize in the area surrounding selected non-GM maize fields appeared as pertinent complementary variables. In contrast, field geometry and field pattern resulted in little additional information at this scale. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.

Context

Complex landscapes with high resource availability can support more diverse natural enemy communities and better natural pest control by providing resources and facilitating organism dispersal. Moreover, in agricultural landscapes, local agroecosystem management can support biodiversity maintenance and pest control by adding resources in less complex landscapes with fewer resources. However, we lack an understanding of how local and landscape factors interact to affect natural enemy communities and their site fidelity to agroecosystems in urban landscapes (i.e., cityscapes).

Objective

To better understand how local and landscape factors influence natural enemies in urban agroecosystems, we used urban community gardens as a model system to test if and how local resource manipulation and differences in cityscape quality affect natural enemy (ladybird beetles, parasitoid wasps) communities and their fidelity to urban habitats.

Methods

We performed two manipulations. First, we added local floral resources in 6 of 12 gardens situated in different cityscapes to measure differences in natural enemy biodiversity. Second, in those 12 gardens, with and without resource additions, we manipulated populations of a common natural enemy, Hippodamia convergens, to assess fidelity to the gardens.

Results

Floral resource additions increased parasitoid abundance and changed community composition, but had little effect on ladybeetle abundance, richness or site fidelity. Rather, ladybeetle fidelity to gardens was lower in gardens in low quality cityscapes with high impervious cover.

Conclusions

Cityscape quality influences natural enemies in and fidelity to gardens. Landscape-moderated biodiversity patterns observed in rural landscapes likely differ from urban contexts with implications for pest control.
  相似文献   

7.
To develop a species-centered definition of landscapes, I suggest using a fractal analysis of movement patterns to identify the scales at which organisms are interacting with the patch structure of the landscape. Significant differences in the fractal dimensions of movement patterns of two species indicate that the species may be interacting with the patch structure at different scales. Fractal analysis therefore permits comparisons of landscape perceptions of different species within the same environment.I tested the utility of this fractal application by analyzing the movement patterns of three species of acridid grasshoppers (Orthoptera) in a grassland mosaic. The largest species moved up to 6 times faster than the two smaller species, and species exhibited different responses to microlandscape structure within 25-m2 plots. Further, the largest species exhibited different responses to microlandscape structure in two pastures subjected to different intensities of cattle grazing. This species thus is able to integrate information on landscape structure at broad spatial scales. Fractal analysis of movement patterns revealed that the two small species had significantly more tortuous patterns than the larger species, which suggests that these species are interacting with patch structure at a finer scale of resolution than the large species. Fractal analysis can be used to identify the perceptive resolution of a species; that is, the spatial grain and extent at which they are able to perceive and respond to heterogeneity. Analysis of movement patterns across a range of spatial scale may reveal shifts in fractal dimension that reflect transitions in how species respond to the patch structure of the landscape at different scales.  相似文献   

8.
Resource utilization scales and landscape pattern   总被引:4,自引:0,他引:4  
The spatial patterning of resources constrains the movement of consumers on the landscape. Percolation theory predicts that an organism can move freely if its critical resource or habitat occupies 59.28% of the landscape. Sparse resources require an organism to operate on larger resource utilization scales. Multiple critical resources necessitate larger scales, while substitutable resources ease the scale requirements. Contagious spatial patterns require larger scales to permit movement between resource clusters. The study indicates a strong link between spatial pattern and ecological processes on a landscape.  相似文献   

9.

Context

Species distributions are a function of an individual’s ability to disperse to and colonize habitat patches. These processes depend upon landscape configuration and composition.

Objectives

Using Blanchard’s cricket frogs (Acris blanchardi), we assessed which land cover types were predictive of (1) presence at three spatial scales (pond-shed, 500 and 2500 m) and (2) genetic structure. We predicted that forested, urban, and road land covers would negatively affect cricket frogs. We also predicted that agricultural, field, and aquatic land covers would positively affect cricket frogs.

Methods

We surveyed for cricket frogs at 28 sites in southwestern Ohio, USA to determine presence across different habitats and analyze genetic structure among populations. For our first objective, we examined if land use (crop, field, forest, and urban habitat) and landscape features (ponds, streams, and roads) explained presence; for our second objective, we assessed whether these land cover types explained genetic distance between populations.

Results

Land cover did not have a strong influence on cricket frog presence. However, multiple competing models suggested effects of roads, streams, and land use. We found genetic structuring: populations were grouped into five major clusters and nine finer-scale clusters. Highways were predictive of increased genetic distance.

Conclusions

By combining a focal-patch study with landscape genetics, our study suggests that major roads and waterways are key features affecting species distributions in agricultural landscapes. We demonstrate that cricket frogs may respond to landscape features at larger spatial scales, and that presence and movement may be affected by different environmental factors.
  相似文献   

10.
The influence of prey density, within-field vegetation, and the composition and patchiness of the surrounding landscape on the abundance of insect predators of cereal aphids was studied in wheat fields in eastern South Dakota, USA. Cereal aphids, aphid predators, and within-field vegetation were sampled in 104 fields over a three year period (1988–1990). The composition and patchiness of the landscape surrounding each field were determined from high altitude aerial photographs. Five landscape variables, aggregated at three spatial scales ranging from 2.6 km2 to 581 km2, were measured from aerial photographs. Regression models incorporating within-field and landscape variables accounted for 27–49% of the variance in aphid predator abundance in wheat fields. Aphid predator species richness and species diversity were also related to within-field and landscape variables. Some predators were strongly influenced by variability in the composition and patchiness of the landscape surrounding a field at a particular spatial scale while others responded to variability at all scales. Overall, predator abundance, species richness, and species diversity increased with increasing vegetational diversity in wheat fields and with increasing amounts of non-cultivated lands and increasing patchiness in the surrounding landscape.  相似文献   

11.
Animal movements and population dynamics in heterogeneous landscapes   总被引:15,自引:1,他引:14  
Organisms respond to environmental heterogeneity at different scales and in different ways. These differences are consequences of how the movement characteristics of animals—their movement rates, directionality, turning frequencies, and turning angles—interact with patch and boundary features in landscape mosaics. The interactions of movement patterns with landscape features in turn produce spatial patterns in individual space-use, population dynamics and dispersion, gene flow, and the redistribution of nutrients and other materials. We describe several theoretical approaches for modeling the diffusion, foraging behavior, and population dynamics of animals in heterogeneous landscapes, including: (1) scaling relationships derived from percolation theory and fractal geometry, (2) extensions of traditional patch-based metapopulation models, and (3) individual-based, spatially explicit models governed by local rules. We conclude by emphasizing the need to couple theoretical models with empirical studies and the usefulness of ‘microlandscape’ investigations.  相似文献   

12.

Context

Despite the key role of biological control in agricultural landscapes, we still poorly understand how landscape structure modulates pest control at different spatial scales.

Objectives

Here we take an experimental approach to explore whether bird and bat exclusion affects pest control in sun coffee plantations, and whether this service is consistent at different spatial scales.

Methods

We experimentally excluded flying vertebrates from coffee plants in 32 sites in the Brazilian Atlantic Forest, encompassing a gradient of forest cover at landscape (2 km radius) and local (300 m) spatial scales, and quantified coffee leaf loss, as an indicator of herbivory, and fruit set.

Results

Leaf loss decreased with higher landscape forest cover, but this relation was significantly different between treatment and control plants depending on local forest cover. On the other hand, fruit set responded to the interaction between treatment and local forest cover but was not affected by landscape forest cover. More specifically, fruit set increased significantly with local forest cover in exclusion treatments and showed a non-significant decrease in open controls.

Conclusions

These results suggest that services provided by flying vertebrates are modulated by processes occurring at different spatial scales. We posit that in areas with high local forest cover flying vertebrates may establish negative interactions with predaceous arthropods (i.e. intraguild predation), but this would not be the case in areas with low local forest cover. We highlight the importance of employing a multi-scale analysis in systems where multiple species, which perceive the landscape differently, are providing ecosystem services.
  相似文献   

13.
The spatial extent at which landscape structure best predicts population response, called the scale of effect, varies across species. An ability to predict the scale of effect of a landscape using species traits would make landscape study design more efficient and would enable landscape managers to plan at the appropriate scale. We used an individual based simulation model to predict how species traits influence the scale of effect. Specifically, we tested the effects of dispersal distance, reproductive rate, and informed movement behavior on the radius at which percent habitat cover best predicts population abundance in a focal area. Scale of effect for species with random movement behavior was compared to scale of effect for species with three (cumulative) levels of information use during dispersal: habitat based settlement, conspecific density based settlement, and gap-avoidance during movement. Consistent with a common belief among researchers, dispersal distance had a strong, positive influence on scale of effect. A general guideline for empiricists is to expect the radius of a landscape to be 4?C9 times the median dispersal distance or 0.3?C0.5 times the maximum dispersal distance of a species. Informed dispersal led to greater increases in population size than did increased reproductive rate. Similarly, informed dispersal led to more strongly decreased scales of effect than did reproductive rate. Most notably, gap-avoidance resulted in scales that were 0.2?C0.5 times those of non-avoidant species. This is the first study to generate testable hypotheses concerning the mechanisms underlying the scale at which populations respond to the landscape.  相似文献   

14.
Landscape spatial organization (LSO) strongly impacts many environmental issues. Modelling agricultural landscapes and describing meaningful landscape patterns are thus regarded as key-issues for designing sustainable landscapes. Agricultural landscapes are mostly designed by farmers. Their decisions dealing with crop choices and crop allocation to land can be generic and result in landscape regularities, which determine LSO. This paper comes within the emerging discipline called “landscape agronomy”, aiming at studying the organization of farming practices at the landscape scale. We here aim at articulating the farm and the landscape scales for landscape modelling. To do so, we develop an original approach consisting in the combination of two methods used separately so far: the identification of explicit farmer decision rules through on-farm surveys methods and the identification of landscape stochastic regularities through data-mining. We applied this approach to the Niort plain landscape in France. Results show that generic farmer decision rules dealing with sunflower or maize area and location within landscapes are consistent with spatiotemporal regularities identified at the landscape scale. It results in a segmentation of the landscape, based on both its spatial and temporal organization and partly explained by generic farmer decision rules. This consistency between results points out that the two modelling methods aid one another for land-use modelling at landscape scale and for understanding the driving forces of its spatial organization. Despite some remaining challenges, our study in landscape agronomy accounts for both spatial and temporal dimensions of crop allocation: it allows the drawing of new spatial patterns coherent with land-use dynamics at the landscape scale, which improves the links to the scale of ecological processes and therefore contributes to landscape ecology.  相似文献   

15.
Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer’s land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH–Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes.  相似文献   

16.
Landscape Ecology - Tritrophic interactions may be affected by local factors and the broader landscape context. At small spatial scales, carnivorous enemies of herbivorous insects use...  相似文献   

17.
Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape characteristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling.  相似文献   

18.

Context

Beyond the recognized importance of protecting large areas of contiguous habitat, conservation efforts for many species are complicated by the fact that patch suitability may also be affected by characteristics of the landscape within which the patch is located. Currently, little is known about the spatial scales at which species respond to different aspects of the landscape surrounding an occupied patch.

Objectives

Using grassland bird point count data, we describe an approach to evaluating scale-specific effects of landscape composition on patch occupancy.

Methods

We used data from 793 point count surveys conducted in idle and grazed grasslands across Wisconsin, USA from 2012 to 2014 to evaluate scale-dependencies in the response of grassland birds to landscape composition. Patch occupancy models were used to evaluate the relationship between occupancy and landscape composition at scales from 100 to 3000 m.

Results

Bobolink (Dolichonyx oryzivorus) exhibited a pattern indicating selection for grassland habitats in the surrounding landscape at all spatial scales while selecting against other habitats. Eastern Meadowlark (Sturnella magna) displayed evidence of scale sensitivity for all habitat types. Grasshopper Sparrow (Ammodramus savannarum) showed a strong positive response to pasture and idle grass at all scales and negatively to cropland at large scales. Unlike other species, patch occupancy by Henslow’s Sparrow (A. henslowii) was primarily influenced by patch area.

Conclusions

Our results suggest that both working grasslands (pasture) and idle conservation grasslands can play an important role in grassland bird conservation but also highlight the importance of considering species-specific patch and landscape characteristics for effective conservation.
  相似文献   

19.
Tropical mountains have a long history of human occupation, and although vulnerable to biological invasions, have received minimal attention in the literature. Understanding invasive pest dynamics in socio-ecological, agricultural landscapes, like the tropical Andes, is a challenging but timely issue for ecologists as it may provide developing countries with new tools to face increasing threats posed by these organisms. In this work, road rehabilitation into a remote valley of the Ecuadorian Andes constituted a natural experiment to study the spatial propagation of an invasive potato tuber moth into a previously non-infested agricultural landscape. We used a cellular automaton to model moth spatio-temporal dynamics. Integrating real-world variables in the model allowed us to examine the relative influence of environmental versus social landscape heterogeneity on moth propagation. We focused on two types of anthropogenic activities: (1) the presence and spatial distribution of traditional crop storage structures that modify local microclimate, and (2) long-distance dispersal (LDD) of moths by human-induced transportation. Data from participatory monitoring of pest invasion into the valley and from a larger-scale field survey on the Ecuadorian Andes allowed us to validate our model against actual presence/absence records. Our simulations revealed that high density and a clumped distribution of storage structures had a positive effect on moth invasion by modifying the temperature of the landscape, and that passive, LDD enhanced moth invasion. Model validation showed that including human influence produced more precise and realistic simulations. We provide a powerful and widely applicable methodological framework that stresses the crucial importance of integrating the social landscape to develop accurate invasion models of pest dynamics in complex, agricultural systems.  相似文献   

20.
大棚蔬菜西花蓟马的种群动态及其天敌种类   总被引:3,自引:0,他引:3  
对北京地区大棚栽培蔬菜上西花蓟马种群动态和天敌种类进行调查。结果显示,春茬甜椒在定植30 d内,西花蓟马种群数量增长缓慢,但进入开花期,其数量迅速增长,到6月后持续保持在高数量水平。秋茬甜椒上西花蓟马的种群数量明显低于春季,也主要集中在花中取食。西花蓟马的天敌有瓢虫类、草蛉类和花蝽类,以花蝽类昆虫最多,并对西花蓟马种群具有一定的控制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号