首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Context

Woodland and agricultural expansion are major causes of grassland fragmentation. Fire and rainfall play important roles in maintaining grasslands, however, fire activity has been reduced in fragmented landscapes.

Objectives

Quantify the degree to which basic landscape fragmentation metrics could be used as drivers of woody cover potential.

Methods

Woody plant percent cover was calculated between 2004 and 2008 at?>?2000 sites. At each site, we calculated these fragmentation metrics for grassland cover type (classified by the National Land Cover Database); # patches, landscape proportion, edge density, largest patch index, effective mesh size and patch cohesion index within 3 circular areas (10 km2, 360 km2 and 3600 km2) surrounding the sampling site. A quantile regression was performed to identify which metrics were useful at predicting the 25th, 50th, 75th or 95th quantile of woody cover distribution.

Results

Grassland proportion and edge density were significant predictors of the woody plant potential (75th and 95th quantile). Woody cover potential was positively associated with edge density suggesting that fragmented areas (i.e., areas with high number of edges) maintained higher woody cover, while grassland proportion was negatively associated with woody plant potential.

Conclusion

We propose that in addition to a lack of fire, fragmented landscapes may facilitate further woodland expansion by reducing natural land and restricting grasslands to smaller, less connected patches, which can maintain higher woody cover. Given current trends in woodland expansion, special attention should be given to areas that are found within a fragmented landscape and climatically prone to woodland expansion.
  相似文献   

2.
3.
4.
Housing growth is prevalent in rural areas in the United States and landscape fragmentation is one of its many effects. Since the 1930s, rural sprawl has been increasing in areas rich in recreational amenities. The question is how housing growth has affected landscape fragmentation. We thus tested three hypotheses relating land cover and land ownership to density and spatial pattern of buildings, and examined whether building density or spatial pattern of buildings was a better predictor for landscape fragmentation. Housing locations were mapped from 117 1:24,000-scale USGS topographic maps across northern Wisconsin. Patch-level landscape metrics were calculated on the terrestrial area remaining after applying 50, 100 and 250 m disturbance zones around each building. Our results showed that building density and the spatial pattern of buildings were affected mostly by lake area, public land ownership, and the abundance of coniferous forest, agricultural land, and grassland. A full 40% of the houses were within 100 m of lakeshores. The clustering of buildings within 100 m of lakeshores limited fragmentation farther away. In contrast, agricultural and grassland areas were correlated with higher building density, higher fragmentation, and more dispersed building pattern possible legacies of agricultural settlement patterns. Understanding which factors influence building density and fragmentation is useful for landscape level planning and ecosystem management in northern Wisconsin and areas that share similar social and environmental constraints.  相似文献   

5.
6.
Increasing land ownership fragmentation in the United States is causing concerns with respect to its ecological implications for forested landscapes. This is especially relevant given that human influence is one of the most significant driving forces affecting the forest landscape. A method for generating realistic land ownership maps is needed to evaluate the effects of ownership fragmentation on forest landscapes in combination with other natural processes captured in forest process models. Ownership patterns from human activities usually generate landscape boundary shapes different from those arising from natural processes. Spatial characteristics among ownership types – e.g., private, public ownership – may also differ. To address these issues, we developed the Fragmented Land Ownership Spatial Simulator (FLOSS) to generate ownership patterns that reflect the Public Land Survey System (PLSS) shapes and various patch size distributions among different types of ownership (e.g., private, public). To evaluate FLOSS performance, we compared the simulated patterns with various ownership fragmentation levels to the actual ownership patterns in the Missouri Ozarks by using selected landscape indices. FLOSS generated landscapes with spatial characteristics similar to actual landscapes, suggesting that it can simulate different levels of ownership fragmentation. This will allow FLOSS to serve as a feasible tool for evaluating forest management applications by spatially allocating various management scenarios in a realistic way. The potentials and limitations of FLOSS application are discussed.  相似文献   

7.
Landscape Ecology - Since 2005, unconventional gas development has rapidly altered forests across the Marcellus-Utica shale basin in the central Appalachian region of the eastern United States, an...  相似文献   

8.
Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of northern New England using ground based forest growth rates, housing density data, satellite derived land cover and tree canopy cover maps at the county level. We estimated that the region's urban and community forests sequestered 603,200 tC/yr ($38.7 million/yr value), contributing 8.2% of regional net forest ecosystem carbon sequestration. The contributions at the state level varied from 2.3% in Vermont to 16.6% in New Hampshire with substantial variation at the county level up to 73.3%. Spatially, contribution rates from urban and community forests at the county level were much higher and concentrated in southeast portion of NH and southwest portion of ME along the coast, and decreased toward inland areas. Our estimated net FCS compared reasonably with gross FCS in the region reported by a previous study. On average, the net FCS was 34.2% lower (varying from 41.9% lower in Vermont to 28.1% lower in Maine) than the corresponding gross FCS mainly because of a lower regional average net growth rate used in this study, compared to the national average gross carbon sequestration rate used in the previous study.  相似文献   

9.

Context

Although forest fragmentation is generally thought to impact tree growth and mortality negatively, recent work suggests some forests are resilient. Experimental forests provide an opportunity to examine the timing and extent of forest tree resilience to disturbance from fragmentation.

Objectives

We used the Wog Wog Habitat Fragmentation Experiment in southeastern Australia to test Eucalyptus growth and survivorship responses to forest fragmentation over a 26 year period.

Methods

We measured 2418 tree diameters and used spline-regression techniques to examine non-monotonic fragmentation effect over two time periods.

Results

Over the first 4 years after fragmentation, individual eucalypt tree growth was greater than in continuous forest for large trees and mortality rates were higher only within 10 m of edges. Over the following 22 years only the effects on tree growth remained and on average all fragments rebounded so that their biomass and mortality rates were equivalent to continuous forest. Importantly non-monotonic patterns were observed in growth and mortality with respect to area and distance from edge in both study periods, demonstrating that fragmentation impacts on trees can be strong in localized areas (greatest in 3 ha fragments and 0–30 m edges) and over short time periods.

Conclusions

Dry-sclerophyll eucalypt forests join the set of forest types that display resilient growth dynamics post fragmentation. Moreover, persistent non-monotonic impacts on tree growth with respect to tree size, fragment area, and fragment distance from edge, highlighting landscape fragmentation as a driver of habitat heterogeneity within remnant forest fragments.
  相似文献   

10.

Context

Natural regenerating forests are rapidly expanding in the tropics. Forest transitions have the potential to restore biodiversity. Spatial targeting of land use policies could improve the biodiversity benefits of reforesting landscapes.

Objective

We explored the relative importance of landscape attributes in influencing the potential of tree cover increase to restore native woody plant biodiversity at the landscape scale.

Methods

We developed land use scenarios that differed in spatial patterns of reforestation, using the Pangor watershed in the Ecuadorian Andes as a case study. We distinguished between reforestation through natural regeneration of woody vegetation in abandoned fallows and planted forests through managed plantations of exotic species on previously cultivated land. We simulated the restoration of woody plant biodiversity for each scenario using LANDIS-II, a process-based model of forest dynamics. A pair-case comparison of simulated woody plant biodiversity for each scenario was conducted against a random scenario.

Results

Species richness in natural regenerating fallows was considerably higher when occurring in: (i) close proximity to remnant forests; (ii) areas with a high percentage of surrounding forest cover; and (iii) compositional heterogeneous landscapes. Reforestation at intermediate altitudes also positively affected restoration of woody plant species. Planted exotic pine forests negatively affected species restoration.

Conclusions

Our research contributes to a better understanding of the recolonization processes of regenerating forests. We provide guidelines for reforestation policies that aim to conserve and restore woody plant biodiversity by accounting for landscape attributes.
  相似文献   

11.
While studies have found that bat abundance is positively related to the amount of forest cover in a landscape, the effects of forest fragmentation (breaking apart of forest, independent of amount) are less certain, with some indirect evidence for positive effects of fragmentation. However, in most of these studies, the variables used to quantify fragmentation are confounded with forest amount, making it difficult to interpret the results. The purpose of this study was to examine how forest amount and forest fragmentation independently affect bat abundance. We conducted acoustic bat surveys at the centers of 22 landscapes throughout eastern Ontario, Canada, where landscapes were chosen to avoid a correlation between forest amount and forest fragmentation (number of patches) at multiple spatial scales, while simultaneously controlling for other variables that could affect bat activity. We found that the effects of forest amount on bat relative abundance were mixed across species (positive for Lasiurus borealis, negative for Perimyotis subflavus and Lasionycteris noctivagans). When there was evidence for an effect of forest fragmentation, independent of forest amount, on bat relative abundance, the effect was positive (Myotis septentrionalis, Myotis lucifugus and Lasiurus borealis). We suggest that the mechanism driving the positive responses to fragmentation is higher landscape complementation in more fragmented landscapes; that is, increased access to both foraging and roosting sites for these bat species. We conclude that fragmented landscapes that maximize complementation between roosting and foraging sites should support a higher diversity and abundance of bats.  相似文献   

12.
In order to study forest fragmentation in the Virginia, USA Piedmont, a series of Landsat images from 1973, 1987, and 1999 covering a rapidly developing area (Loudoun County) was used to classify forest from non-forest. The classified images were analyzed using a geographic information system (GIS) to determine the spatial and temporal patterns of fragmentation, and to relate these patterns to infrared radiance provided by Landsat Enhanced Thematic Mapper Plus (ETM+) band 6. The analysis was concentrated on eleven major watersheds of Loudoun County. The relationship between urbanized area per watershed and mean fragment size showed a strong negative decay form (r 2=0.757, p<0.0001). Analysis of four landscape metrics showed increasing fragmentation of forest cover, particularly from 1987 to 1999, as well as an increase in forest edge and shape complexity. Of the landscape metrics used, the perimeter-to-area (P/A) ratio showed the strongest relationship with mean radiance of forest patches. In addition, there was a negative, linear relationship between distance from major roads and band 6 radiance of forested pixels. Overall, the study shows that landscape metrics can convey meaningful information on biophysical changes associated with forest fragmentation at broad scales. These changes suggest that ambient temperature increases associated with urban sprawl may have important, long-term implications for ecophysiological processes.  相似文献   

13.
He  Fangliang  LaFrankie  James V.  Song  Bo 《Landscape Ecology》2002,17(6):559-568
Abundance and richness are the two fundamental components of speciesdiversity. They represent two distinct types of variables of which the formerisadditive when aggregated across scales while the latter is nonadditive. Thisstudy investigated the changes in the spatial patterns of abundance andrichnessof tree species across multiple scales in a tropical rain forest of Malaysiaandtheir variations in different regions of the study area. The results showedthatfrom fine to coarse scales abundance had a gradual and systematic change inpattern, whereas the change in richness was much less predictable and ahotspot in richness at one scale may become acoldspot at another. The study also demonstrated that differentmeasures of diversity variation (e.g., variance and coefficient of variation)can result in different or even contradictory results which further complicatedthe interpretation of diversity patterns. Because of scale effect the commonlyused measure of species diversity in terms of unit area (e.g.,species/m2) is misleading and of little use in comparing speciesdiversitybetween different ecosystems. Extra care must be taken if management andconservation of species diversity have to be based on information gathered at asingle scale.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

14.
A tree diversity inventory was carried out in urban green spaces (UGSs) of Chennai metropolitan city, India. This inventory aims to study the diversity, density and richness of trees in UGSs of Chennai. A total of one hundred 10 m × 10 m (total 1 ha) plots were laid to reveal tree diversity and richness of UGSs. Trees with ≥10 cm girths at breast height (gbh) were inventoried. We recorded 45 species in 42 genera and 21 families. Caesalpiniaceae and Fabaceae each with 6 species dominated the study area followed by Arecaceae (3). Density and stand basal area of the present study were 500 stems ha?1 and 64.16 m2, respectively. Most of the inventoried trees were native (31 species) and deciduous (28 species). Fabaceae and Caesalpiniaceae dominated the present study area in terms of stand basal area and density. The Shannon diversity index and evenness of study area were 2.79 and 0.73, respectively. The most important species and families based on species important value index (IVI) and family important value index were Albizia saman, Polyalthia longifolia and Azadirachta indica; Fabaceae, Caesalpiniaceae and Annonaceae respectively. We find Chennai's urban forest is relatively superior to many urban forests of the world in terms of stand basal area and species richness. Results emphasize the importance of enhancement of urban green spaces in Chennai metropolitan city.  相似文献   

15.
Fire regime characteristics of high-elevation forests on the North Rim of the Grand Canyon, Arizona, were reconstructed from fire scar analysis, remote sensing, tree age, and forest structure measurements, a first attempt at detailed reconstruction of the transition from surface to stand-replacing fire patterns in the Southwest. Tree densities and fire-/non-fire-initiated groups were highly mixed over the landscape, so distinct fire-created stands could not be delineated from satellite imagery or the oldest available aerial photos. Surface fires were common from 1700 to 1879 in the 4,400 ha site, especially on S and W aspects. Fire dates frequently coincided with fire dates measured at study sites at lower elevation, suggesting that pre-1880 fire sizes may have been very large. Large fires, those scarring 25% or more of the sample trees, were relatively infrequent, averaging 31 years between burns. Four of the five major regional fire years occurred in the 1700s, followed by a 94-year gap until 1879. Fires typically occurred in significantly dry years (Palmer Drought Stress Index), with severe drought in major regional fire years. Currently the forest is predominantly spruce-fir, mixed conifer, and aspen. In contrast, dendroecological reconstruction of past forest structure showed that the forest in 1880 was very open, corresponding closely with historical (1910) accounts of severe fires leaving partially denuded landscapes. Age structure and species composition were used to classify sampling points into fire-initiated and non-fire-initiated groups. Tree groups on nearly 60% of the plots were fire-initiated; the oldest such groups appeared to have originated after severe fires in 1782 or 1785. In 1880, all fire-initiated groups were less than 100 years old and nearly 25% of the groups were less than 20 years old. Non-fire-initiated groups were significantly older (oldest 262 years in 1880), dominated by ponderosa pine, Douglas-fir, or white fir, and occurred preferentially on S and W slopes. The mixed-severity fire regime, transitioning from lower-elevation surface fires to mixed surface and stand-replacing fire at higher elevations, appeared not to have been stable over the temporal and spatial scales of this study. Information about historical fire regime and forest structure is valuable for managers but the information is probably less specific and stable for high-elevation forests than for low-elevation ponderosa pine forests.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

16.
Increasing urbanization around the globe is leading to concern over the loss of tree canopy within cities, but quantifying urban forest canopy cover can be difficult. We discuss methods of assessing canopy cover within cities, and then use a case study of Seattle, WA, USA to examine issues of uncertainty in canopy cover assessment. We find that uncertainty is often not reported, and when reported, may be biased. Based on these findings, we provide a list of recommendations for those undertaking canopy cover assessment in complex urban environments.  相似文献   

17.
There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire. In this study we quantified shrub characteristics and tree regeneration patterns in stand-replacing patches for five fires in the northern Sierra Nevada. These fires occurred between 1999 and 2008, and our field measurements were conducted in 2010. We analyzed tree regeneration patterns at two scales: patch level, in which field observations and spatial data were aggregated for a given stand-replacing patch, and plot level. Although tree regeneration densities varied considerably across sampled fires, over 50 % of the patches and approximately 80 % all plots had no tree regeneration. The percentage of patches, and to a greater extent plots, without pine regeneration was even higher, 72 and 87 %, respectively. Hardwood regeneration was present on a higher proportion of plots than either the pine or non-pine conifer groups. Shrub cover was generally high, with approximately 60 % of both patches and individual plots exceeding 60 % cover. Patch characteristics (size, perimeter-to-area ratio, distance-to-edge) appeared to have little effect on observed tree regeneration patterns. Conifer regeneration was higher in areas with post-fire management activities (salvage harvesting, planting). Our results indicate that the natural return of pine/mixed-conifer forests is uncertain in many areas affected by stand-replacing fire.  相似文献   

18.
Wolter  Peter T.  White  Mark A. 《Landscape Ecology》2002,17(2):133-155
Landsat TM satellite data covering an approximate 5-year interval (1990–1995) were used to quantify spatial pattern and transition rates between forest ecological states for a 2.76 million ha region in northeast Minnesota. Changes in forest cover were stratified by Ecological Subsection, management status, and by ownership categories using a 1995 digital ownership layer. Approximately 4.2% of the 1990 mature forested area was converted to early successional types by 1995. Of this 4.2%, private lands accounted for 33%, federal lands 31%, county lands 20% and state lands 16%. Notable conversion percentages by cover type category were spruce-fir (−5.3%), aspen-birch(−4.7%), jack pine (−4.6%) and black spruce(−3.0%). Transition rates were also adjusted to fit ten-year time intervals. Shannon-Weaver Eveness and edge density of cover types increased over the study period as relative contagion and interior forest area decreased. These trends suggest both smaller patches and a more even distribution of cover types. Area of upland conifers, lowland conifers and lowland hardwoods decreased while the area of mature upland hardwoods increased in most patch size classes except the > 500 ha class which showed a substantial decrease in area. The area of early successional types increased in most patch size classes. Non-industrial private forestland had the lowest proportion of interior forest of all ownership categories -decreasing by 13.5% in five years. Smaller average cut-unit size sand uncoordinated forest management is the likely cause since cutting rates between private and public forestland were similar. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Landscape Ecology - Western Olympic valley bottoms, disturbed by alluvial processes, are dominated by Picea sitchensis and isolated cohorts of Pseudotsuga menziesii, while upland contexts,...  相似文献   

20.
This paper presents a comparison of the structure, function, and value of street and park tree populations in two California cities. Trees provided net annual benefits valued at $2.2 million in Modesto and $805,732 in Santa Monica. Benefit-cost ratios were 1.85:1 and 1.52:1 in Modesto and Santa Monica, respectively. Residents received $1.85 and $1.52 in annual benefits for every $1 invested in management. Aesthetic and other benefits accounted for 50% to 80% of total annual benefits, while expenditures for pruning accounted for about 50% of total annual costs. Although these results were similar, benefits and costs were distributed quite differently in each city. Variations in tree sizes and growth rates, foliation characteristics, prices, residential property values, and climate were chiefly responsible for different benefits and costs calculated on a per tree basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号