首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triticum monococcum L. (2n = 2x = 14, AmAm genome) is one of the most ancient of the domesticated crops in the Middle East, but it is not the ancestor of the A genome of durum wheat (T. durum Desf. 2n = 4x = 28, genomes BBAA) and bread wheat (T. aestivum L., 2n = 6x = 42, genomes BBAADD). It has been suggested that some differentiation has occurred between the Am and A genomes. The chlorina mutants at the cn-A1 locus located on chromosome 7AL have been described in T. aestivum L. and T. durum, and a chlorina mutant has been found in T. monococcum. The aims of our study were to establish linkage maps for chlorina mutant genes on chromosome 7A of T. aestivum and T. durum and chromosome 7Am of T. monococcum and to discuss the differentiation that has occurred between the A and Am genomes. The chlorina mutant gene was found to be linked with Xhbg234 (8.0 cM) and Xgwm282 (4.3 cM) in F2 plants of T. aestivum ANK-32A/T. petropavlovskyi k54716, and with Xbarc192 (19.5 cM) and Xgwm282 (12.0 cM) in F2 plants of T. durum ANW5A-7A/T. carthlicum #521. Both the hexaploid and tetraploid wheats contained a common marker, Xgwm282. In F2 lines of T. monococcum KT 3-21/T. sinskajae, the cn-A1 locus was bracketed by Xgwm748 (25.7 cM) and Xhbg412 (30.8 cM) on chromosome 7AmL. The distal markers, Xhbg412, Xgwm282, and Xgwm332, were tightly linked in T. aestivum and T. durum. The common marker Xhbg412 indicated that the chlorina mutant genes are located on chromosome 7AL and that they are homoeologous mutations.  相似文献   

2.
W. Sodkiewicz 《Plant Breeding》1992,109(4):287-295
Four hexaploid triticale lines were crossed as females with a T. monococcum×S. cereale amphiploid (AmAmRR), with the aim of introducing the genetic material of diploid wheat. F1-plants (AmABRR)were back-crossed with a parental form of 6×-triticale as male and progenies were subjected to four different types of pollination with the aim of finding the optimal one in respect to gradual stabilization of introgressive hexaploid karyotypes. Beginning with BC1-plants, a strong tendency to decrease the somatic chromosome number was observed. In subsequent generations this was accompanied by the decrease of seed germination and plant fertility. Both of these characters showed statistically significant dependence on somatic chromosome number variation which was analyzed in BC1/F2 and BC2 populations. Based on spike fertility, an effective selection pressure was applied to restitute the hexaploid chromosome number. In the BC1/F4 generation, the first morphologically uniform secondary hexaploid lines were selected. 11.4% of the lines showed a non-waxy spike — a morphological marker transmitted from T. monococcum.  相似文献   

3.
Two mutants for sphaerococcoid seed (MA 16219) and compact spike (MA 17648) were isolated from M3 progeny of durum wheat cultivar, Altaiskaya Niva, mutagenized with chemical mutagens. The chromosomal locations of the genes involved were determined by the use of a complete set of D-genome disomic substitutions in durum cultivar, Langdon. The gene for sphaerococcoid grain, s 16219 , was allelic to S2, located in the centromeric region of chromosome 3B in hexaploid wheat. The gene for compact spike, C 17648 , was located on chromosome 5AL distal to the Q locus. Using microsatellite markers, C 17648 and awn inhibitor B1 were located in the F2 of LD222 × MA17648. The gene order was Xbarc319C 17648 Xgwm179Xgwm126—Xgwm291B1.  相似文献   

4.
Triticum monococcum, the diploid A genome species, harbours enormous variability for resistance to biotic stresses. A spring type T. monococcum acc. 14087 was found to be resistant to Heterodera avenae (cereal cyst nematode, CCN). A recombinant inbred line population (RIL) developed by crossing this accession with a CCN susceptible T. boeoticum acc. 5088 was used for studying the inheritance and map location of the CCN resistance. Based on composite interval mapping two QTL, one each on chromosome 1AS and 2AS, were detected. The QTL on 1A, designated as Qcre.pau-1A, appeared to be a major gene with 26% contribution to the overall phenotypic variance whereas the QTL on 2A designated as Qcre.pau-2A contributed 13% to total phenotypic variation. Qcre.pau-1A is novel, being the only CCN resistance gene mapped in any ‘A’ genome species and none of the other known genes have been mapped on chromosome 1A. The QTL Qcre.pau-2A might be allelic to Cre5, a CCN resistance gene transferred from Ae. ventricosa and mapped on 2AS. The Qcre.pau-1A was transferred to cultivated wheat using T. durum cv. PBW114 as the bridging species. Selected CCN resistant F8 lines showed introgression for the molecular markers identified to be linked with CCN resistance locus Qcre.pau-1A. Thus, this gene alone could impart complete resistance against CCN. These introgression lines can be used for marker-assisted transfer of Qcre.pau-1A to elite wheat cultivars.  相似文献   

5.
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases worldwide. Triticum aestivum-Haynaldia villosa 6VS/6AL translocation lines carrying the Yr26 gene on chromosome 1B, are resistant to most races of Pst used in virulence tests. In order to better utilize Yr26 for wheat improvement, we attempted to screen SSR and EST-based STS markers closely linked with Yr26. A total of 500 F2 plants and the F2:3 progenies derived from a cross between 92R137 and susceptible cultivar Yangmai 5 were inoculated with race CYR32. The analysis confirmed that stripe rust resistance was controlled by a single dominant gene, Yr26. Among 35 pairs of genomic SSR markers and 81 pairs of STS markers derived from EST sequences located on chromosome 1B, Yr26 was flanked by 5 SSR and 7 STS markers. The markers were mapped in deletion bins using CS aneuploid and deletion lines. The closest flanking marker loci, Xwe173 and Xbarc181, mapped in 1BL and the genetic distances from Yr26 were 1.4 cM and 6.7 cM, respectively. Some of these markers were previously reported on 1BS. Eight common wheat cultivars and lines developed from the T. aestivum-H. villosa 6VS/6AL translocation lines by different research groups were tested for presence of the markers. Five lines with Yr26 carried the flanking markers whereas three lines without Yr26 did not. The results indicated that the flanking markers should be useful in marker-assisted selection for incorporating Yr26 into wheat cultivars.  相似文献   

6.
The spikes of club wheat are significantly more compact than spikes of common wheat due to the action of the dominant allele of the compactum (C) locus. Little is known about the location of C on chromosome 2D and the relationship between C and to other spike-compacting genes. Thus, a study was undertaken to place C on linkage maps and a chromosome deletion bin, and to assess its relatedness to the spike compacting genes zeocriton (Zeo) from barley and soft glume (Sog) from T. monococcum. Genetic mapping was based on recombinant inbred lines (RILs) from a cross between the cultivars Coda (club) and Brundage (common) and F2 progeny from a cross between the club wheat Corrigin and a chromosome 2D substitution line [Chinese Spring (Ae. tauschii 2D)]. The C locus was flanked by Xwmc144 and Xwmc18 in the RIL population and it was completely linked to Xcfd116, Xgwm358 and Xcfd17 in the F2 population. C could not be unambiguously placed to a chromosome bin because markers that were completely linked to C or flanked this locus were localized to chromosome bins on either side of the centromere (C-2DS1 and C-2DL3). Since C has been cytogenetically mapped to the long arm of chromosome 2D, we suspect C is located in bin C-2DL3. Comparative mapping suggested that C and Sog were present in homoeologous regions on chromosomes 2D and 2Am, respectively. On the other hand, C and Zeo, on chromosome 2H, did not appear to be orthologous.  相似文献   

7.
Using some of the chromosome substitution lines developed from thecrosses of the donor Cheyenne to Chinese Spring we showed that theaccumulation of water soluble carbohydrates during different stages ofhardening was time dependent. Moreover there was a significantcorrelation between the rate of carbohydrate accumulation and the frosttolerance. The expression and regulation of a wheat gene homologous tothe barley cold regulated cor14b gene was compared in frost sensitiveand frost tolerant wheat genotypes at different temperatures. Studies madewith chromosome substitution lines showed that the threshold inductiontemperature polymorphism of the cor14b wheat homologous genewas controlled by loci located on chromosome 5A of wheat, while cor14b gene was mapped, in Triticum monococcum, onto the longarm of chromosome 2Am. Our study on the effect of cold hardeningon glutathione (GSH) metabolism showed that chromosome 5A of wheathas an influence on the GSH accumulation and on the ratio of reduced andoxidised glutathione as part of a complex regulatory function during coldhardening. In addition, the level of increase in GSH content duringhardening may indicate the degree of the frost tolerance of wheat.  相似文献   

8.
N. Watanabe 《Euphytica》2017,213(8):201
Einkorn wheat, Triticum monococcum L. (2n = 2x = 14, AmAm genome), is a primitive, cultivated form of diploid wheat. The shortcoming of einkorn is that it lacks the free-threshing habit. Early heading and semi-dwarf traits are also required to fit modern agricultural practice. In the present study we developed T. monococcum pre-breeding germplasm having early, free threshing traits by utilizing an early heading source, two sources of soft glume (spike) and three sources of semi-dwarfism to combine their phenotypes into pre-breeding materials. We found two different genes determined free threshing of einkorn wheat. One of them was the sog (soft glume) gene from Triticum sinskajae Filat. et Kurkiev (2n = 2x = 14, AmAm genome) and another was the sos (soft spike) gene, which was completely linked or pleiotropic with the gene for semi-dwarfism. The genes sos, spd (short peduncle) and sd17654 (semi-dwarf CItr 17654) were utilized to develop semi-dwarf T. monococcum lines. Field performance of 6 early and free-threshing pre-breeding materials with sos and spd genes were tested over three crop seasons. Five semi-dwarf pre-breeding materials (PBMs) were obtained. However, these materials had slightly less grain yield than #252 (tall and hulled check) and PBM-1 (tall free-threshing check). Harvest index of the pre-breeding materials was improved due to the presence of sos and spd genes. If optimized cultivation practice is performed, these pre-breeding materials can be utilized as sources of early, free-threshing and semi-dwarf traits to produce modern T. monococcum varieties.  相似文献   

9.
A high‐resolution consensus linkage map of Triticum monococcum was assembled from two separate maps involving domesticated, feral and wild einkorn wheat accessions. The genotyping‐by‐sequencing (GBS) approach based on DArTseq markers yielded overstretched maps. Deleting all markers with missing data and then converting dubious singletons to missing data produced two maps of about 1,380 cM, close to the published genome size. The consensus map spanned 1,562 cM, had one bin mapped every 0.92 cM and showed only one gap > 10 cM. Chromosome length varied between 151 cM (chromosome 4) and 270 cM (chromosome 7). The consensus map was compared to other A‐genome maps, and the sequences of genetically mapped DArTseq were used to anchor contigs of the T. monococcum, T. urartu and T. aestivum draft genomes based on sequence homology to assess colinearity and to assign mapped markers to the seven chromosomes of the bread wheat A‐genome. Finally, an in silico functional characterization of the sequences was performed. This high‐resolution map will facilitate QTL and association analysis and assist the genome assembly of the einkorn genome.  相似文献   

10.
Eyespot is a major disease of common wheat (Triticum aestivum L.) in temperate climates and causes yield losses of up to 40%. The causal agents of eyespot are Oculimacula acuformis (syn. Tapesia acuformis; anamorph: Helgardia acuformis syn. Pseudocercosporella herpotrichoides var. acuformis) and O. yallundae (syn. T. yallundae; anamorph: H. yallundae syn. P. h. var. herpotrichoides). Pch1 located on chromosome 7DL is the most important and most effective resistance gene, but its use in practical breeding is limited because of difficulties in phenotyping and the fact that markers like XustSSR2001-7DL are often population-specific in German wheat cultivars. Therefore, based on results obtained for endopeptidase Ep-D1a, which is very closely linked to Pch1, molecular markers located in the terminal region of chromosome 7DL were analysed in three DH (double haploid) populations. In a next step these molecular markers were validated on a set of German winter wheat cultivars to obtain information on their usefulness for marker assisted selection (MAS). Based on the analysis of 127 DH-lines, linkage to Pch1 (Ep-D1) was obtained for Xorw1, Xorw5, Xorw6, Xcfd175, Xbarc76, Xwmc14, and Xcfa2040. Analyses of 104 German winter wheat cultivars showed that Xorw1, Xorw6 and the SSR Xcfd175 of these markers are well suited for MAS in German wheat breeding.  相似文献   

11.
We produced 15 dissection lines of common wheat carrying segments of chromosome 1R of wild rye (Secale montanum) (1Rm) by the gametocidal system. Using the 1Rm dissection lines and previously established 24 dissection lines of chromosome 1R from cultivated rye (Secale cereale cv. ‘Imperial’) (1Ri), we conducted cytological mapping of 97 markers that were amplified in the 1Ri addition line. Sixty‐eight of the 97 markers were amplified in the 1Rm addition line. To reveal what structural differentiation occurred in chromosome 1R during domestication, we compared the cytological map of chromosome 1Ri with that of chromosome 1Rm, and also with the previously published cytological map of chromosome 1R from wheat cultivar ‘Burgas 2’ (1RB). There was one discrepancy in marker order in the satellite region between chromosomes 1Ri and 1RB, while there were four discrepancies in marker order between chromosomes 1Ri and 1Rm. These results suggested that during the domestication of rye, some intrachromosomal rearrangements had occurred in chromosome 1R, although this chromosome is regarded as the most stable chromosome in the rye genome.  相似文献   

12.
Leaf rust, caused by Puccinia triticina, is an important disease for wheat production, both in China and worldwide. In laboratory studies spelt wheat (Triticum aestivum ssp. spelta) landrace Altgold was resistant to P. triticina races THT and PHT and genetic analysis indicated that it possessed a dominant leaf rust resistance gene, temporarily designated LrAlt. F6 recombinant inbred lines (RILs) derived from a cross with the susceptible common wheat cultivar Nongda 3338 were used to map LrAlt with SSR markers. The resistance gene was distal to SSR loci Xbarc212, Xwmc382, Xgwm636, and Xwmc407 on the short arm of chromosome 2A. The closest markers Xbarc212 and Xwmc382 which co-segregated were 1.8 cM away from LrAlt. The relationships of LrAlt and other wheat leaf rust resistance genes located on the short arm of chromosome 2A were discussed, suggesting that LrAlt might be a new leaf rust resistance gene.  相似文献   

13.
In Arabidopsis, two genes of abscisic acid (ABA) 8′-hydroxylase (cytochrome P450 (CYP) 707A1 and A2) have been found to play important roles in seed dormancy through the regulation of ABA content in seeds. In order to examine the role of wheat ABA 8′-hydroxylase gene in seed dormancy, a diploid wheat ABA 8′-hydroxylase gene was cloned that showed high similarity to a barley ABA8′-hydroxylase gene (HvABA8′OH-2), and the cloned gene was designated as TmABA8′OH-2. Using recombinant inbred lines derived from a cross between diploid wheat Triticum boeoticum L. (Tb) and Triticum monococcum L. (Tm), TmABA8′OH-2 has been mapped to near the centromeric region of the long arm of chromosome 5Am, where the major seed dormancy QTL has been previously found. Comparison of the deduced amino acid sequences of TmABA8′OH-2 between Tb and Tm revealed five amino acid residue substitutions. These amino acid residues have distinctly different characteristics, and one of the substitutions occurs in the highly conserved amino acid residues in CYP707A family, indicating that these substitutions may have effects on the enzyme activities. Moreover, hexaploid wheat TmABA8′OH-2 homologue revealed that the level of its expression during seed development peaks at mid-maturation stage. This resembles the expression pattern of the Arabidopsis CYP707A1, which was shown to control seed dormancy. These results imply a possibility that TmABA8′OH-2 might be involved in seed dormancy, and associated with the QTL on chromosome 5Am.  相似文献   

14.
Drought tolerance was investigated in ‘C306’, one of the most drought tolerant wheat cultivars bred in India in the 1960’s. An intervarietal mapping population of recombinant inbred lines of the cross ‘C306’ × ‘HUW206’ was evaluated for drought tolerance components, namely potential quantum efficiency of photosystem (PS) II (Fv/Fm), chlorophyll content (Chl), flag leaf temperature (Lt), and grain yield per plant (Gyp) under stress. Three independent experiments were conducted under well-watered and water-stressed conditions in greenhouses and growth chambers at Kansas State University (USA). Five hundred and sixty microsatellite markers covering the entire genome were screened for polymorphism between the parents. A QTL (QLt.ksu-1D) for Lt (low flag leaf temperature under stress) on the short arm of chromosome 1D between markers Xbarc271 and Xgwm337 at LOD 3.5 explained 37% of the phenotypic variation. A QTL for Fv/Fm (QF v /F m .ksu-3B) and Chl (QChl.ksu-3B) controlling quantum efficiency of PS II and chlorophyll content under stress were co-localized on chromosome 3B in the marker interval Xbarc68–Xbarc101 and explained 35–40% of the phenotypic variation for each trait. A QTL (QGyp.ksu-4A) for Gyp on chromosome 4A at a LOD value of 3.2 explained 16.3% of the phenotypic variation. Inconsistent QTLs were observed for Fv/Fm on chromosomes 3A, 6A, 2B, 4B, and 4D; for Chl on 3A, 6A, 2B and 4B; and for Lt on 1A, 3A 6A, 3B and 5B. The identified QTLs give a first glimpse of the genetics of drought tolerance in C306 and need to be validated in field experiments using the marker-phenotype linkages reported here.  相似文献   

15.
A novel gene, designated Pg (purple glume), controlling anthocyanin pigmentation of the glume was identified and mapped in an F2 population from the durum wheat (Triticum durum) cross TRI 15744/TRI 2719. This gene was close to one of the two complementary dominant genes, controlling anthocyanin pigmentation of the pericarp (gene Pp3) in the centromere region of chromosome 2A; the other Pp gene (Pp1) was mapped on the short arm of chromosome 7B, near gene Pc controlling anthocyanin pigmentation of the culm and co-segregating with Pls (purple leaf sheath) and Plb (purple leaf blade). On the basis of the mapping results, the Pp3, Pc, Pls and Plb genes of T. durum were regarded as allelic to the T. aestivum Pp3, Pc-B1, Pls-B1 and Plb-B1 loci. The likely allelism of Pp1 in T. durum and T. aestivum remains in dispute, the present durum Pp gene mapped to the short arm of chromosome 7B, whereas in common wheat it was reportedly located on the long arm.  相似文献   

16.
小麦品种小偃9323抗条锈基因的遗传分析和分子作图   总被引:1,自引:0,他引:1  
小偃9323是小偃6号的同源材料,具有早熟、抗逆性强、适应性广、抗条锈性强等许多优良的生物学特性。为明确其抗条锈性及遗传规律,利用当前流行的中国条锈菌小种CYR32对抗病品种小偃9323与感病品种铭贤169及其杂交后代F1、F2、F3和BC1代进行苗期抗条锈性遗传分析,并对其抗条锈基因进行SSR分子标记。结果表明,小偃9323对CYR32小种具有良好的抗性,由1对隐性基因所控制。利用F2代分离群体,筛选到6个与抗病基因连锁的SSR标记,分别是Xwmc807、Xbarc3、Xwmc684、Xwmc201、Xwmc553和Xwmc179;该抗病基因位于小麦6AL染色体上,其最近的标记为Xwmc201和Xwmc553,遗传距离分别是2.6 cM和3.7 cM。分析表明,该基因不同于已知抗条锈基因,暂被命名为YrXY9323。用YrXY9323两侧遗传距离最近的标记Xwmc201和Xwmc553对42个黄淮麦区主栽小麦品种进行分子检测,结果表明有19%的品种具有与YrXY9323相同的标记位点。本结果对YrXY9323在小麦抗条锈病育种中的应用提供了理论依据。  相似文献   

17.
The aim of this work was to evaluate the leaf rust resistance introduced into introgressive triticale lines with Triticum monococcum genes, and to study the expression of these genes at the hexaploid level. The introgressive lines were developed by incorporating diploid wheat (T. monococcum s.s.) genes into hexaploid triticale LT 522/6 using the synthetic allotetraploid T. monococcum/Secale cereale (AmAmRR) as a bridging form. A group of 44 those lines, parental stocks and check cultivars were inoculated at the seedling stage (in a greenhouse) and at the adult‐plant stage (in the field) with four pathotypes of Puccinia triticina. At the seedling stage the assessment of infection type showed that four lines had resistance to all pathotypes as high as in the T. monococcum donor. Adult plant examinations showed some introgressive lines with complete resistance and also lines with partial resistance, expressed in area under the disease progress curve (AUDPC) calculations as slow rusting. Some lines comprise low AUDPC with complete resistance at seedling stage.  相似文献   

18.
Heterosis is an important way to improve yield and quality for many crops. Hybrid rice and hybrid maize contributed to enhanced productivity which is essential to supply enough food for the increasing world population. The success of hybrid rice in China has led to a continuous interest in hybrid wheat, even when most research on hybrid wheat has been discontinued in other countries for various reasons including low heterosis and high seed production costs. The Timopheevii cytoplasmic male sterile system is ideal for producing hybrid wheat seeds when fertility restoration lines with strong fertility restoration ability are available. To develop PCR-based molecular markers for use in marker-assisted selection of fertility restorer lines, two F2 populations derived from crosses R18/ND36 and R9034/ND36 were used to map fertility restoration genes in the two elite fertility restorer lines (R-lines) R18 and R9034. Over 678 SSR markers were analyzed, and markers closely linked to fertility restoration genes were identified. Using SSR markers, a major fertility restoration gene, Rf3, was located on the 1B chromosome in both populations. This gene was partially dominant in conferring fertility restoration in the two restorer lines. SSR markers Xbarc207, Xgwm131, and Xbarc61 are close to this gene. These markers may be useful in marker-assisted selection of new restorer lines with T. timopheevii cytoplasm. Two minor QTL conferring fertility restoration were also identified on chromosomes 5A (in R18) and 7D (in R9034) in two R-lines.  相似文献   

19.
Few Chinese high yielding white-grained wheat cultivars possess sufficient dormancy to avoid pre-harvest sprouting (PHS). Because the field evaluation of PHS is difficult, the identification of informative molecular markers is a priority for improving the level of dormancy. In this report, the effectiveness of phenotypic and genotypic selection was compared. Four microsatellite loci Xbarc57, Xbarc294, Xbarc310 and Xbarc321, mapped on the short arm of chromosome 3A, were used for selection in white-grained wheat F5 lines which were also selected on the basis of their grain filling rate (GFR). One of these (later designated cv. Zhongmai911) was further selected on the basis of its allelic constitution at the four SSR loci. This cultivar combines a high level of PHS resistance with high grain yield. The results suggested that rapid GFR and PHS resistance can be bred simultaneously.  相似文献   

20.
I. Leonova    A. Borner    E. Budashkina    N. Kalinina    O. Unger    M. Röuder  E. Salina 《Plant Breeding》2004,123(1):93-95
The tetraploid wheat Triticum timopheevii Zhuk (AtAtGG) is known as a source of genes determining resistance to many diseases. An introgressive line 842, with durable resistance to leaf rust was established by crossing T. aestivum cv. ‘Saratovskaya29’ with T. timopheevii ssp. viticulosum and used for mapping leaf rust resistance genes. Molecular analysis of the line 842 with polymorphic microsatellite markers detected introgressions of T. timopheevii into the homoeologous group 2 chromosomes of common wheat. Transloca‐tion breakpoints of introgressed fragments were localized between the markers Xgwm95 and Xgwm817 on chromosome 2A, as well as Xgwm1128 and Xgwm1067 on chromosome 2B. Linkage analysis demonstrated the association of disease resistance at the seedling stage with chromosome 2A. The gene was found to be linked with marker Xgwm817 at a genetic distance of 1.5 cM. The alien leaf rust resistance gene was temporarily designated as lrTt1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号