首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible direct effects of neuropeptide Y (NPY) on dispersed and cultured cells of the anterior lobe (AL) of the bovine pituitary were investigated. AL tissue from steers was enzymatically dissociated into individual cells, preincubated for 18 hr and then incubated in suspension cultures for 2 hr or 24 hr with either NPY, gonadotropin-releasing hormone (GnRH) or both. Release of luteinizing hormone (LH) and prolactin (PRL) into medium was quantified by radioimmunoassay and expressed as hormone released per 100,000 cells. Basal release of LH averaged 38 and 86 ng for 2 hr and 24 hr respectively while that of PRL averaged 118 and 438 ng for the same incubation periods. Addition of NPY did not alter (P>.05) basal release of LH or PRL for either duration of incubation. Also, NPY did not affect (P>.05) release of LH in response to GnRH. In summary, this study indicated that NPY, at in vitro dosages of .01 to 100nM, does not modulate the release of LH or PRL at the pituitary level in castrate cattle.  相似文献   

2.
STX is an agonist for a recently characterized membrane estrogen receptor whose structure has not been identified. We evaluated whether STX suppresses gonadotropin-releasing hormone (GnRH)–induced luteinizing hormone (LH) release from bovine anterior pituitary (AP) cells. We cultured AP cells (n=12) for 3 days in steroid-free conditions, followed by increasing concentrations (0.001, 0.01, 0.1, 1 and 10 nM) of 17β-estradiol or STX for 5 min before GnRH stimulation until the end of the experiment. Estradiol (0.001 to 0.1 nM) significantly suppressed GnRH-stimulated LH secretion, whereas STX did not affect GnRH-stimulated LH secretion at any of the tested concentrations. In conclusion, STX, unlike estradiol, possesses no suppressive effect on GnRH-induced LH release from bovine AP cells.  相似文献   

3.
GPR30 is known as a membrane receptor for picomolar concentrations of estradiol. The GPR30-specific agonist G1 causes a rapid, non-genomic suppression of gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) secretion from bovine anterior pituitary (AP) cells. A few studies have recently clarified that protein kinase A (PKA) and phosphorylated extracellular signal-regulated kinase (pERK) might be involved in cytoplasmic signaling pathways of GPR30 in other cells. Therefore, we tested the hypothesis that PKA and ERK kinase (MEK) are important cytoplasmic mediators for GPR30-associated non-genomic suppression of GnRH-induced LH secretion from bovine AP cells. Bovine AP cells (n = 8) were cultured for 3 days under steroid-free conditions. The AP cells were previously treated for 30 min with one of the following: 5000 nM of PKA inhibitor (H89), 1000 nM of MEK inhibitor (U0126), or a combination of H89 and U0126. Next, the AP cells were treated with 0.01 nM estradiol for 5 min before GnRH stimulation. Estradiol treatment without inhibitor pretreatment significantly suppressed GnRH-induced LH secretion (P < 0.01). In contrast, estradiol treatment after pretreatment with H89, U0126 or their combination had no suppressive effect on GnRH-induced LH secretion. The inhibitors also inhibited the G1 suppression of GnRH-induced LH secretion. Therefore, these data supported the hypothesis that PKA and MEK (thus, also pERK) are the intracellular mediators downstream of GPR30 that induce the non-genomic suppression of GnRH-induced LH secretion from bovine AP cells by estradiol or G1.  相似文献   

4.
Two experiments were conducted to determine the minimal effective dose during lactation and site of action of N-methyl-d,l-aspartic acid (NMA) for elicitation of release of luteinizing hormone (LH) in female pigs. In the first experiment, three doses of NMA were given to lactating primiparous sows in which endogenous LH was suppressed by suckling of litters. In the second experiment, ovariectomized gilts were pretreated with estradiol benzoate or porcine antisera against GnRH to suppress LH and then given NMA to determine if it elicited secretion of LH directly at the anterior pituitary or through release of GnRH. In experiment 1, 3 lactating sows (17 +/- 1.5 d postpartum) were each given three doses of NMA (1.5, 3.0 and 5.0 mg/kg body weight [BW]; IV) on 3 consecutive days in a Latin Square design. Blood samples were collected every 10 min from -1 to 1 hr from injection of NMA. NMA at 1.5 and 3.0 mg/kg did not affect (p greater than .5) secretion of LH; however, 5 mg NMA/kg elicited a 114% increase (p less than .001) in circulating levels of LH during 1 hr after treatment. In experiment 2, 8 ovariectomized gilts were given either estradiol benzoate (EB; 10 micrograms/kg BW; IM n = 4) to suppress release of GnRH or porcine antiserum against GnRH (GnRH-Ab; titer 1:8,000; 1 ml/kg BW; IV; n = 4) to neutralize endogenous GnRH. Gilts infused with GnRH-Ab were given a second dose of antiserum 24 hr after the first. Gilts were then given NMA (10 mg/kg BW; IV) 33 hr after EB or initial GnRH-Ab. Blood samples were drawn every 6 hr from -12 to 24 hr from EB or GnRH-Ab treatments, and every 10 min from -2 to 2 hr from NMA. Serum LH declined (p less than .001) after EB (from 1.87 +/- .2 ng/ml at 12 hr before EB to 0.46 +/- .02 ng/ml during 24 hr after EB) and GnRH-Ab (from 1.97 +/- .1 to 0.59 +/- .02 ng/ml). In gilts treated with EB, the area under the curve (AUC) for the LH response (ng.ml-1.min) 1 hr after NMA (38.7 +/- 3) was significantly greater (p less than .01) than the 1 hr prior to NMA (21.3 +/- 1.5). Treatment with NMA had no effect (p greater than .5) on secretion of LH in gilts infused with GnRH-Ab.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The effects of morphine and the opiate receptor antagonist, naloxone, on the secretory pattern of luteinizing hormone (LH) were assessed in male sheep. Morphine infusion (250 mg/hr) abruptly stopped LH pulsatile secretion in castrates (wethers) and decreased mean serum LH concentrations by nearly 70 percent. Response of the pituitary to exogenous LH releasing hormone was not affected by morphine suggesting that the effects of morphine on LH secretion were mediated through the hypothalamus. Estradiol-implanted wethers, characterized by a nonpulsatile LH secretory pattern, responded to intravenous injection of naloxone (20, 50 and 200 mg Lv.) with an immediate release (pulse) of L.H. Similarly, LH release was significantly increased following naloxone infusion (200 mg/hr for four hours) in intact rams and wethers implanted with testosterone or estradiol. In contrast, naloxone infusion altered the pattern of LH secretion in wethers but without affecting mean serum LH concentrations. These results support the notion that LH secretion in male-sheep is tonically regulated by endogenous opiates and further suggests that opioid modulation of the hypothalamic-pituitary-LH axis in sheep involves an interaction with the steroid negative feedback system.  相似文献   

6.
In the following investigations, the LH secretion of cells from pituitaries in heifers on days 16-18 of their oestrous cycle (n = 14) was analysed. Cells were dissociated with trypsin and collagenase and maintained in a static culture system. For the estimation of LH release, the cells were incubated with various concentrations of mammalian GnRH (Lutrelef) for 6 h. To determine the action of Antarelix (GnRH antagonist), the cells were preincubated for 1 h with concentrations of 10(-5) or 10(-4) M Antarelix followed by 10(-6) M GnRH coincubation for a further 6 h. At the end of each incubation, the medium was collected for LH analysis. Parallel, intracellular LH was qualitatively detected by immunocytochemistry. Changes in the intensity of LH staining within the cells in dependence of different GnRH concentrations were not observed, but a significant increase LH secretion in pituitary cells was measured at 10(-6) M GnRH. Antarelix had no effect on basal LH secretion at concentrations of 10(-4) and 10(-5) M. After coincubation of pituitary cells with Antarelix and GnRH, Antarelix blocked the GnRH-stimulated LH secretion with a maximal effect of 10(-4) M, but the staining of immunoreactive intracellular LH was detected at approximately the same level compared to the pituitary cells treated with exogenous GnRH alone. These data demonstrate that Antarelix is effective in influencing the GnRH-stimulated LH secretion of pituitary cells in vitro. After administration of Antarelix in vivo, the GnRH-stimulated LH secretion of cultured pituitary cells was not inhibited.  相似文献   

7.
Steroid hormones have a profound influence on the secretion of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These effects can occur as a result of steroid hormones modifying the secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus, or a direct effect of steroid hormones on gonadotropin secreting cells in the anterior pituitary gland. With respect to the latter, we have shown that estradiol increases pituitary sensitivity to GnRH by stimulating an increase in expression of the gene encoding the GnRH receptor. Since an estrogen response element (ERE) has not been identified in the GnRH receptor gene, this effect appears to be mediated by estradiol stimulating production of a yet to be identified factor that in turn enhances expression of the GnRH receptor gene. However, the importance of estradiol for enhancing pituitary sensitivity to GnRH during the periovulatory period is questioned because an increase in mRNA for the GnRH receptor precedes the pre-ovulatory rise in circulating concentrations of estradiol. In fact, it appears that the enhanced pituitary sensitivity during the periovulatory period may occur as a result of a decrease in concentrations of progesterone rather than due to an increase in concentrations of estradiol. Estradiol also is capable of altering secretion of FSH and LH in the absence of GnRH. In a recent study utilizing cultured pituitary cells from anestrous ewes, we demonstrated that estradiol induced a dose-dependent increase in secretion of LH, but resulted in a dose-dependent decrease in the secretion of FSH. We hypothesized that the discordant effects on secretion of LH and FSH might arise from estradiol altering the production of some of the intrapituitary factors involved in synthesis and secretion of FSH. To examine this hypothesis, we measured amounts of mRNA for activin B (a factor known to stimulate synthesis of FSH) and follistatin (an activin-binding protein). We found no change in the mRNA for follistatin after treatment of pituitary cells with estradiol, but noted a decrease in the amount of mRNA for activin B. Thus, the inhibitory effect of estradiol on secretion of FSH appears to be mediated by its ability to suppress the expression of the gene encoding activin.  相似文献   

8.
Hourly pulses of gonadotropin-releasing hormone (GnRH) or bi-daily injections of estradiol (E2) can increase luteinizing hormone (LH) secretion in ovariectomized, anestrous pony mares. However, the site (pituitary versus hypothalamus) of positive feedback of estradiol on gonadotropin secretion has not been described in mares. Thus, one of our objectives involved investigating the feedback of estradiol on the pituitary. The second objective consisted of determining if hourly pulses of GnRH could re-establish physiological LH and FSH concentrations after pituitary stalk-section (PSS), and the third objective was to describe the declining time trends of LH and FSH secretion after PSS. During summer months, ovariectomized pony mares were divided into three groups: Group 1 (control, n = 2), Group 2 (pulsatile GnRH (25 μg/hr), n = 3), and Group 3 (estradiol (5 mg/12 hr), n = 3). All mares were stalk-sectioned and treatment begun immediately after stalk-section. Blood samples were collected every 30 min for 8 h on the day before surgery (DO) and 5 d post surgery (D5) to facilitate the comparison of gonadotropin levels before and after pituitary stalk-section. Additionally, jugular blood samples were collected every 12 hr beginning the evening of surgery, allowing for evaluation of the gonadotropin secretory time trends over the 10 d of treatment. On Day 10, animals were euthanized to confirm pituitary stalk-section and to submit tissue for messenger RNA analysis (parallel study). Plasma samples were assayed for LH and FSH by RIA. Mean LH secretion decreased from Day 0 to Day 5 in Groups 1 and 3, whereas LH secretion tended (P < 0.08) to decrease in Group 2 mares. On Day 5, LH was higher (P < 0.01) in Group 2 (17.26 ± 3.68 ng/ml; LSMEANS ± SEM), than either Group 1 (2.65 ± 4.64 ng/ml) or group 3 (4.28 ± 3.68 ng/ml). Group 1 did not differ from Group 3 on Day 5 (P < 0.40). Similarly, mean FSH levels decreased in all groups after surgery, yet Group 2 mares had significantly (P < 0.001) higher FSH concentrations (17.66 ± 1.53 ng/ml) than Group 1 or Group 3 (8.34 ± 1.84 and 7.69 ± 1. 63 ng/ml, respectively). Regression analysis of bi-daily LH and FSH levels indicated that the time trends were not parallel. These findings indicate: 1) Pituitary stalk-section lowered LH and FSH to undetectable levels within 5 d after surgery, 2) pulsatile administration of GnRH (25 μg/hr) maintained LH and FSH secretion, although concentrations tended to be lower than on Day 0, and 3) E2 did not stimulate LH or FSH secretion.  相似文献   

9.
In the present study we examined the influence of castration and exogenous estradiol on pulsatile LH release during the transition from infancy to the prepubertal period of development. Bull calves were assigned to treatments (N = 5 treatment) at 6 weeks of age. Treatments consisted of intact controls, castrates and castrates receiving estradiol implants. Plasma LH response was monitored over 8 hr periods at 7, 8, 9, 10, 11 and 13 weeks of age. Castration alone did not alter LH concentrations, compared to controls until 10 weeks of age. At 10, 11 and 13 weeks, mean LH concentration and the number of LH pulses/8 hr period were greater (P less than .05) in castrates than in controls. In castrates with estradiol implants, mean LH concentration and the number of LH pulses/8 hr period were suppressed at all ages compared to controls and castrate treatments. These results indicate that LH release is not inhibited by gonadal factors from 6 to 9 weeks of age in the bull calf. However, estradiol negative feedback on LH secretion is evident during this same developmental period.  相似文献   

10.
Changes in metabolism of serotonin (5-HT) might mediate the reduced tonic luteinizing hormone (LH) and increased pituitary responsiveness to luteinizing hormone releasing hormone (LHRH) caused by estradiol-17β (estradiol). Two experiments were conducted to determine effects of estradiol, para-chlorophenylalanine (PCPA), an inhibitor of synthesis of 5-HT, and quipazine, an agonist of 5-HT, on tonic and LHRH-induced secretion of LH in ovariectomized ewes during the summer. Tonic levels of LH were reduced, the interval from LHRH to peak of the induced surge was longer and the magnitude of release of LH was greater in ovariectomized ewes treated with estradiol than in controls. Neither PCPA nor quipazine affected tonic secretion of LH. In ovariectomized ewes not receiving estradiol, PCPA and quipazine increased the magnitude of the LHRH-induced release of LH. However, PCPA reduced pituitary sensitivity to LHRH when administered concomitantly with estradiol; treatment with quipazine attenuated this effect of PCPA. The interval to the peak of the induced surge of LH was not affected by PCPA or quipazine in estradiol-treated or control ovariectomized ewes. Based on these results it appears that 5-HT mediates or is required for estradiol to increase pituitary responsiveness to LHRH.  相似文献   

11.
Nutritionally induced anovulatory cows were ovariectomized and used to determine the relationships between dose, frequency, and duration of exogenous gonadotropin-releasing hormone (GnRH) pulses and amplitude, frequency, and concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in serum. In Experiment 1, cows were given pulses of saline (control) or 2 micrograms of GnRH infused i.v. during a 0.1-, 1.25-, 5-, 10-, or 20-min period. Concentrations of LH and FSH during 35 min after GnRH infusion were greater than in control cows (P < 0.01), and FSH concentrations were greater when GnRH infusions were for 10 min or less compared with 20 min. In Experiment 2, the effect of GnRH pulse frequency and dose on LH and FSH concentrations, pulse frequency, and pulse amplitude were determined. Exogenous GnRH (0, 2, or 4 micrograms) was infused in 5 min at frequencies of once every hour or once every 4th hr for 3 d. There was a dose of GnRH x frequency x day effect on LH and FSH concentrations (P < 0.01), indicating that gonadotropes are sensitive to changes in pulse frequency, dose, and time of exposure to GnRH. There were more LH pulses when GnRH was infused every hour, compared with an infusion every 4th hr (P < 0.04). Amplitudes of LH pulses were greater with increased GnRH dose (P < 0.05), and there was a frequency x dose x day effect on FSH pulse amplitude (P < 0.0006). We conclude that LH and FSH secretion in the bovine is differentially regulated by frequency and dose of GnRH infusions.  相似文献   

12.
Two experiments were conducted with ewes 9 to 11 days after estrus to determine whether the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are controlled differentially. In experiment 1, gonadotropin-releasing hormone (GnRH) was injected (100 (μg/ewe) at time = 0 min into ewes in four treatment groups. The treatment groups (9 ewes/group) were: 1) periodic iv sodium pentobarbital (NaPen) vehicle from 0 min; 2) periodic iv NaPen from 0 min; 3) vehicle iv for 120 min then iv NaPen from 120 min; 4) vehicle iv for 150 min then iv NaPen from 150 min. A surgical plane of anesthesia was maintained from the initiation of NaPen injection until the experiment ended. Jugular blood was sampled at 30-min intervals from ?30 to + 210 min for LH and FSH assays, and profiles of hormone concentrations were compared by time-trend analyses. GnRH released LH (P<.001) and FSH (P<.001), but NaPen did not affect the profiles of hormone concentrations; this indicated that NaPen did not reduce the ability of the pituitary to secrete gonadotropins in response to GnRH. Experiment 2 was a 2x2 factorial with ovariectomy (time = 0 hr) and NaPen as the main effects. One group of ovariectomized (n = 6) and one group of sham ovariectomized (n = 6) ewes were anesthetized only during surgery, while a group of ovariectomized (n = 7) and a group of sham ovariectomized (n = 6) ewes were kept at a surgical plane of anesthesia until 10 hr after surgery. Patterns of LH and FSH were compared in jugular blood collected hourly from 0 hr until 10 hr after surgery and in samples collected at 24 hr intervals from -24 to +72 hr of surgery. After ovariectomy, LH increased (P<.001) hourly and daily, but anesthesia suppressed (hourly, <.001 and daily, P<.005) these increases, which resulted in an interaction (hourly, P<.001 and daily, P<.01) of ovariectomy and anesthesia. FSH after ovariectomy increased hourly and daily (hourly, P<.02 and daily, P<.001), but the effect of anesthesia and interaction of ovariectomy and anesthesia were not significant. Because NaPen did not alter secretion of LH or FSH after exogenous GnRH in experiment 1 while it blocked the postovariectomy increase in LH but not FSH in experiment 2, we concluded that the postovariectomy increase in LH resulted from increased hypothalamic secretion of GnRH. The mechanisms responsible for the postovariectomy increase in FSH secretion are not identical to those for LH. The mechanisms that control the postovariectomy secretion of FSH might involve factors that are not suppressible by NaPen or, alternatively, the differences in LH and FSH release after ovariectomy might reflect the removal of ovarian factors that suppress FSH but not LH secretion in intact ewes.  相似文献   

13.
An experiment was conducted to test the hypothesis that the effect of body fatness on LH pulsatility in post-partum cows is entirely independent of the negative feedback effects of ovarian steroids. Forty beef cows were fed in the last 100 d of gestation so that they achieved either a thin (mean score 1.97) or fat (mean score 2.79) body condition (0 to 5 scale) at calving and were fed after calving to maintain live weight and body condition. At 15 (sd 3.7) d post partum all cows were ovariectomised and half from each body condition score treatment group received a subcutaneous estradiol implant (+EST) while the remainder received no implant (−EST). At weeks 5 and 9 post-partum blood samples were collected via jugular catheter every 20 minutes for 10 hr on two consecutive d and on the third d cows were injected via the jugular vein with 2.5 μg GnRH. Blood samples were collected every 15 minutes for 1 hr before and 2 hr after GnRH injection. At 5 and 9 weeks the fatter cows had significantly higher mean LH concentrations, baseline LH concentrations, LH pulse amplitudes and pulse frequencies (P<0.01). Implantation with estradiol in both fat and thin cows reduced mean LH concentrations, baseline LH concentrations, LH pulse amplitudes and pulse frequencies (P<0.001). The lack of interaction between body condition and the presence or absence of estradiol implies that the effect of body condition on LH release is independent of ovarian steroid feedback mechanisms. Fat cows showed a greater release of LH in response to exogenous GnRH (P<0.01) than thin cows while implantation with estradiol in both fat and thin cows decreased (P<0.01) LH release. The pituitary responsiveness to GnRH with the −EST cows was greater at 9 compared to 5 weeks, but there was no difference with time in the +EST cows. However, there was no such interaction in endogenous LH pulse amplitude suggesting that in the absence of estradiol the magnitude of GnRH pulses declined with time post-partum.  相似文献   

14.
15.
Gonadotropin-inhibiting hormone (GnIH), observed in quail as a member of the RFamide neuropeptide family, suppresses luteinizing hormone (LH) secretion from the avian pituitary. Rats and cattle have an active gene of another member of the RFamide neuropeptide family, termed RFamide-related peptide-3 (RFRP-3), although bovine RFRP-3 is different from that of rats in both length and amino-acid sequence. A single injection of GnIH or RFRP-3 inhibited LH secretion in rodents, which continued for various periods. This study was conducted to evaluate the effects of bovine C-terminal octapeptide of RFRP-3 (RFRP-3-8) on LH secretion from cultured anterior pituitary (AP) cells of cattle, and the effects of RFRP-3-8 injections on pulsatile LH secretion in castrated male calves. The suppressive effect of RFRP-3-8 on LH secretion from AP cells was observed in the presence of gonadotropin-releasing hormone (GnRH), but not in the absence of GnRH in culture media. In another experiment collecting blood samples serially from castrated male calves with repeated intravenous injections of RFRP-3-8 (n = 6) or saline (n = 6), the RFRP-3-8 group showed suppressed LH pulse frequency during the injection period (P < 0.05); however, the RFRP-3-8 group showed no difference from the saline group in all measures of LH secretion in the postinjection period. In conclusion, our results suggested that RFRP-3-8 suppresses LH secretion from cultured AP cells, as well as LH pulse frequency in cattle.  相似文献   

16.
Beef cows were used to determine if suckling influences release of LH via endogenous opioids at 28 +/- 4 d after parturition. Cows of similar weight and body condition (6.8 +/- .1, 1 = emaciated, 9 = obese) were assigned randomly to five groups (n = 6 to 7): 1) control-suckled/saline (suckled 15 min every 6 hr for 48 hr); 2) control-suckled/naloxone; 3) calf-removal/saline (calf removal for 52 hr); 4) calf-removal/naloxone; and 5) control-suckled/GnRH (Gonadotropin-Releasing Hormone). At 0 hr, saline was administered to all cows. This treatment was continued at 6 hr intervals for 24 hr. Either naloxone (0.5 mg/kg), GnRH (40 ng/kg) or saline was administered to cows in their respective groups every 6 hr during the ensuing 24-hr period in calf-removal groups, or immediately preceding each suckling episode in the control-suckled groups. Blood samples for analysis of luteinizing hormone (LH) were collected at 15-min intervals for 1 hr prior to and 3 hr after treatment at 0, 24, 36 and 48 hr. Cows were observed for estrus twice daily. All cows in the control-suckled/GnRH group released LH (P less than .05) in response to exogenous GnRH, indicating the presence of releasable quantities of the gonadotropin. Mean concentrations of LH were not effected (P greater than .05) by the control-suckled regime. However, calf-removal alone, or in combination with naloxone, increased (P less than .05) mean concentrations of LH by 48 hr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The objective was to determine if the endocrine status of the animal dictates the responsiveness of gonadotrophs to estradiol, activin, inhibin and follistatin; hormones implicated in the differential release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Bovine pituitaries were obtained at 13 (n=8), 30 (n=24) and 66 (n=8) h after the onset of estrus, corresponding to before, during and the end of the first FSH increase of the estrous cycle which follows the pre-ovulatory gonadotropin surge in heifers. Heifers slaughtered at 30 h received no treatment, or were treated with progesterone with or without estradiol before slaughter to suppress the first transient FSH increase. Secretion of FSH from cultured pituitary cells, reflecting the prior in vivo status, was greater (P<0.01) at 30 h than 13 or 66 h, whereas, LH secretion was less (P<0.01) at 13 h compared with 30 h. Treatment with exogenous steroids decreased (P<0.05) the pituitary gland's ability to subsequently secrete FSH and LH. Inhibin and, to a greater extent, estradiol decreased (P<0.01) mean FSH secretion but increased (P<0.05) mean LH secretion. These findings suggest that estradiol and inhibin both have the ability to differentially modulate basal gonadotropin secretion during the first FSH increase of the bovine estrous cycle. Differential regulation of LH and FSH is mediated via an alteration in gonadotropin biosynthesis and basal secretion. Furthermore, the secretory capability of cultured pituitary cells and basal gonadotropin secretion reflect the prior endocrine status of the animal from which pituitaries were obtained.  相似文献   

18.
The blood luteinizing hormone (LH) surge in cows is well studied. However, little is known about urinary LH in cows. This study examined urinary LH concentrations after administration of gonadotropin-releasing hormone (GnRH) in six Japanese black cows to induce LH secretion from the pituitary gland into the bloodstream. Abrupt rises in plasma and urinary LH were observed after GnRH administration. Plasma and urinary LH peaked at 2 and 5 hr, respectively. A positive correlation was observed between plasma LH concentrations and urinary LH amounts. Ovulation was confirmed in the cows after 48 hr of GnRH administration. These data strongly suggest that urinary LH is derived from plasma LH, which triggers ovulation in cows.  相似文献   

19.
Two experiments were conducted to evaluate the effects of naloxone, an endogenous opioid receptor antagonist, on LH and FSH secretion in postpartum beef cows. In Experiment 1, 24 cows were divided into three equal groups. On day 15 postpartum, all cows were bled for 8 hr at 10 min intervals to evaluate LH secretory parameters. On day 18 postpartum, three treatments were administered: (a) saline at 0730 and 1130 hr; (b) 275 mg naloxone at 0730 and 1130 hr; (c) naloxone as in (b) above, plus this group was also treated with 50 mg progesterone (P4) twice daily from day 16 to day 19. In each treatment, jugular vein samples were collected at 10 min intervals from 0800 to 1600 hr. On day 19 the same treatments were administered at the same times, however, all cows were given 25 micrograms GnRH at 1200 hr to evaluate the LH secretory response. Naloxone increased mean LH concentration (P less than .05) and tended to increase pulse amplitude and frequency compared to controls. However, the most dramatic difference was due to P4 treatment which suppressed mean LH, pulse amplitude and frequency. Treatments had no effect on LH secretion in response to a 25 micrograms dose of GnRH. In Experiment 2, the effects of suckling on the naloxone response were examined in 16 postpartum cows. On day 21 postpartum, blood was collected at 10 min intervals for 8 hr and then calves were removed from half the cows. After 3 days of calf removal, all cows were sampled at 10 min intervals for 4 hr; then naloxone was injected after each 10 min sample at a dose rate of 200 mg/hr (33 mg per injection). Naloxone treatment and sampling continued for an additional 8 hr. Calf removal alone had very little effect on LH pulsatility. However, naloxone resulted in increased pulse frequency and mean LH compared to the control period. We conclude that LH release in the early postpartum cow is partially regulated by endogenous opioid peptides. We were unable to detect any effects on FSH secretion nor on pituitary sensitivity to exogenous GnRH.  相似文献   

20.
The effects of n-methyl-d,l-aspartate (NMA), a neuroexcitatory amino acid agonist, on luteinizing hormone (LH), prolactin (PRL) and growth hormone (GH) secretion in gilts treated with ovarian steroids was studied. Mature gilts which had displayed one or more estrous cycles of 18 to 22 d were ovariectomized and assigned to one of three treatments administered i.m.: corn oil vehicle (V; n = 6); 10 micrograms estradiol-17 b/kg BW given 33 hr before NMA (E; n = 6); .85 mg progesterone/kg BW given twice daily for 6 d prior to NMA (P4; n = 6). Blood was collected via jugular cannulae every 15 min for 6 hr. Pigs received 10 mg NMA/kg BW i.v. 2 hr after blood collection began and a combined synthetic [Ala15]-h GH releasing factor (1-29)-NH2 (GRF; 1 micrograms/kg BW) and gonadotropin releasing hormone (GnRH; .2 micrograms/kg BW) challenge given i.v. 3 hr after NMA. NMA did not alter LH secretion in E gilts. However, NMA decreased (P < .02) serum LH concentrations in V and P4 gilts. Serum LH concentrations increased (P < .01) after GnRH in all gilts. NMA did not alter PRL secretion in P4 pigs, but increased (P < .01) serum PRL concentrations in V and E animals. Treatment with NMA increased (P < .01) GH secretion in all animals while the GRF challenge increased (P < .01) serum GH concentrations in all animals except in V treated pigs. NMA increased (P < .05) cortisol secretion in all treatment groups. These results indicate that NMA inhibits LH secretion and is a secretagogue of PRL, GH and cortisol secretion with ovarian steroids modulating the LH and PRL response to NMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号