共查询到20条相似文献,搜索用时 269 毫秒
1.
L. C. Guerra G. Hoogenboom J. E. Hook D. L. Thomas V. K. Boken K. A. Harrison 《Irrigation Science》2005,23(4):171-181
An understanding of water needs in agriculture is a critical input in resolving the water resource issues that confront many southeastern and other US states. The objective of this study was to evaluate on-farm irrigation applications for three major crops grown in Georgia, USA using the Environmental Policy Integrated Climate (EPIC) model. For cotton, 16, 58, and 75 farmers fields in 2000, 2001, and 2002, respectively, were selected from among the Agricultural Water Pumping (AWP) program sites across the state of Georgia. For maize, 9, 20, and 28 fields were selected in 2000, 2001, and 2002, respectively, and for peanut, 18, 51, and 54 fields were selected in 2000, 2001, and 2002, respectively. The majority of these fields were located in the southwest region of Georgia, where traditional row-crop agriculture is most dominant. We compared the simulated irrigation requirements with the amount of water that the farmers actually applied during the 2000, 2001, and 2002 growing seasons. For cotton and peanut, the means of farmer-applied irrigation amounts and simulated irrigation requirements agreed very well, with similar values for root mean squared deviation (RMSD) of the two crops. For maize, good agreement between simulated and farmer-applied irrigation amounts were found only in 2001. Farmers applied more water to their maize crop when compared to simulated irrigation requirements, especially when rainfall was very low and potential evapotranspiration was high during the 2000 and 2002 growing seasons. The component of the mean squared deviation (MSD = RMSD2) related to the pattern of variability in seasonal irrigation applications contributed most to MSD. Accurate estimates of the mean and the magnitude of variability in seasonal irrigation applications could be very useful for the estimation of overall water use by agriculture in Georgia and other southeastern states. This study showed that the EPIC model would be an adequate tool for this purpose; potential users could include policy makers, planners and regulators, including the Georgia Department of Natural Resources (DNR). 相似文献
2.
Real-time forecasting of short-term irrigation canal demands using a robust multivariate Bayesian learning model 总被引:1,自引:0,他引:1
In the lower Sevier River basin in Utah, the travel times between reservoir releases and arrival at irrigation canal diversions limit the reservoir operation in enabling delivery changes, which may not be compatible with the on demand schedule in the basin. This research presents a robust machine learning approach to forecast the short-term diversion demands for three irrigation canals. These real-time predictions can assist the operator to react promptly to short-term changes in demand and to properly release water from the reservoir. The models are developed in the form of a multivariate relevance vector machine (MVRVM) that is based on a Bayesian learning machine approach for regression. Predictive confidence intervals can also be obtained from the model with this Bayesian approach. Test results show that the MVRVM learns the input–output patterns with good accuracy. A bootstrap analysis is used to evaluate robustness of model parameter estimation. The MVRVM is compared in terms of performance and robustness with an Artificial Neural Network. 相似文献
3.
4.
M.J. Calejo 《Agricultural Water Management》2008,95(2):154-162
On-demand pressurized irrigation systems are designed to deliver water with the flow rate and pressure required by the farm irrigation systems, sprinkling or micro-irrigation, and respecting the time, duration and frequency decided by the farmers. Due to the variation in farm demand along the season and the day, a large spatial and temporal variability of flow regimes occurs in these systems, which may affect the performance of the farm systems and the yields of the irrigated crops. Therefore, there is a need to analyse those systems to identify and solve performance problems. In this research, two simulation models for the analysis of irrigation systems operating on-demand, ICARE and AKLA, are used and compared to assess the hydraulic performance of the irrigation network of the Lucefecit Irrigation System, in Southern Portugal. ICARE assesses the global performance of the irrigation system through the indexed characteristic curves, while AKLA provides for the identification of the relative pressure deficit and reliability at every hydrant. Both models adopt a flow-driven analysis approach, performing the analysis for multiple flow regimes. To support the hydraulic characterization of the system and for calibration of the steady-state hydraulic model, field measurements were performed at selected nodes of the network, including four hydrants. The analysis with ICARE does not provide for a sufficient identification of problems. In fact, poor performance is indicated when a few hydrants operate below the minimum pressure set at design. Differently, the analysis with AKLA, applied at the hydrant level, shows that the performance of the Lucefecit system is generally acceptable. AKLA identifies which hydrants operate below the required pressure and, therefore, allows to support any eventual related improvement. Results show that the performance of the system highly improved when changing the piezometric elevation from 260 to 265 m a.s.l. However, this improvement is not sufficient because three hydrants still have high relative pressure deficit and low reliability. Solutions for those hydrants require increasing diameters of network pipes supplying them. 相似文献
5.
Uniformity of distribution in irrigation systems plays an important role in the optimum use of irrigation water, with direct repercussions on water-use efficiency and production. To evaluate the effects of the wind on sprinkler water uniformity, it is necessary to measure infield water distribution under different wind conditions and then calculate the parameters that define water distribution. This paper perfects the SIRIAS simulation model for sprinkler systems, which can be used to design new irrigation installations or to improve existing ones. Using ballistic theory to simulate the trajectory of drops discharged by the sprinkler, the model obtains wind-distorted water distribution, with a new formulation for the air drag coefficient. It takes into account three options to distribute the evaporation and drift losses in the irrigation process. SIRIAS software has been programmed using Delphi language for Windows 95, 98 and NT. 相似文献
6.
7.
A one-dimensional complete hydrodynamic model of border irrigation based on a hybrid numerical method 总被引:1,自引:0,他引:1
A numerical model of border irrigation flow is a useful tool in the design and evaluation of surface irrigation systems. A
one-dimensional complete hydrodynamic numerical model of border irrigation was established by using the time–space hybrid
numerical method. Differences in stability, convergence, precision, and efficiency of the one-dimensional model were analyzed
and compared between the hybrid numerical method proposed here and the Roe finite-volume method. At the same time, the computational
performance and simulation effects were validated based on the results of typical border irrigation tests. The results show
that the hybrid numerical method provides better numerical stability and convergence with little water quantity-balance and
average relative errors than does the Roe finite-volume method. The computational efficiency is about two times higher under
the same measurement circumstances. The proposed model of border irrigation can increase computational stability and convergence,
can improve computational precision and efficiency, and can provide a good numerical simulation tool for the design and evaluation
of border irrigation systems. 相似文献
8.
A computerized hydraulic model developed at Utah State University was installed at a large-scale irrigation project in Northeast Thailand with the objective of improving water management in the supply and distribution system. The model was calibrated for measured field conditions by determining discharge coefficients for flow control structures, measuring seepage loss rates, and calculating hydraulic roughness coefficients. The logistical and technical problems associated with the model installation, and the respective solutions, are presented in this paper. 相似文献
9.
Water management decisions are dependent on crop variety, soil and climatic conditions. A properly structured plant growth simulation model which takes these factors into account can be successfully used to quantify the effects of irrigation practices on crop yields. The use of such a simulation model will be considerably less expensive and time consuming than conducting field experiments.This paper reports the results of using such a model for making important water management decisions, such as determining: (a) optimum soil moisture depletion and replenishment levels; and (b) timing and amount of irrigation during different crop growth stages. 相似文献
10.
优化渠系配水过程是缓解灌区水资源压力、实现农业高效节水的重要举措.以河套灌区总干渠、干渠两级渠系作为研究对象,将水流过渡平稳和渠道渗漏量最小作为优化目标,建立渠系优化配水模型,采用回溯搜索算法(BSA)、多目标粒子群算法(MOPSO)以及向量评估遗传算法(VEGA)进行求解.结果显示,BSA,MOPSO,VEGA这3种算法所求的配水时间分别为30.96,11.65,29.96 d; 3种算法所得的阀门开启时间点的偏态系数分别为-0.048,0.068,0.566,表明BSA和MOPSO更能保证灌溉水在渠道运输中的稳定性.考虑渠首水位季节性变化对灌区引水时间产生的限制作用,BSA和MOPSO分别更适用于渠首引水量较少、充足的情况.考虑配水时间的集中程度以及干渠的地理位置分布,BSA和MOPSO更有利于实施分区管理措施. 相似文献
11.
12.
Summary Corn yields for full irrigation and 4 different levels of deficit irrigation were simulated using a model developed by Stockle and Campbell (1985). Different irrigation levels were obtained by holding the application depth constant and allowing the irrigation interval to vary from 1 to 5 days. Silt loam and loamy sand soils, two root depths, two water contents at planting time, total pumping heads ranging from 0 to 800 m, four ratios of energy cost to commodity price and climatic data for the 1974 growing season at Davis, California were examined. The different variable combinations resulted in a wide range of crop water deficit and yield. Results indicated that, for given combinations, slight deficit (ratios of actual to potential transpiration larger than 0.89) provided higher net benefit than full irrigation. Larger deficits were never advantageous across the diverse range of conditions examined, indicating that potential benefits are associated with only a narrow range of irrigation deficits. This result illustrates the risk involved when deficit irrigation is practiced. Large soil water holding capacity, high soil water contents at planting and deep root exploration were found important for successful implementation of deficit irrigation. Total pumping head and the ratio of energy cost to commodity price were important factors in determining the feasibility of deficit irrigation for the conditions examined. It was also found that the level of irrigation which maximized net benefits tended to be lower for situations where the quantity of water available for irrigation was fixed and the amount of land which could be irrigated was unlimited than when there was sufficient water to fully irrigate the entire farm. Situations where deficit irrigation is a more effective way of reducing energy cost than reducing system operating pressure were ob served.Scientific Paper No. 7571 Project 0634, College of Agriculture and Home Economics, Washington State University, Pullman, WA 99164-6120, USA 相似文献
13.
Improved water management and efficient investment in the modernization of irrigation schemes are essential measures in many countries to satisfy the increasing demand for water. Automatic control of the main canals is one method for increasing the efficiency and flexibility of irrigation systems. In 2005, one canal in the irrigation scheme ‘Sector B-XII del Bajo Guadalquivir’ was monitored. This canal is representative of irrigation schemes in Southern Spain; it is divided into four pools and supplies an area of 5154 ha. Ultrasonic sensors and pressure transducers were used to record the gate opening and water levels at the upstream and downstream ends of each canal pool. Using the recorded data and the SIC (Simulation of Irrigation Canals) hydraulic model, two canal control options (local upstream control and distant downstream control) were evaluated using a PI (Proportional-Integral) control algorithm. First, the SIC model was calibrated and validated under steady-state conditions. Then the proportional and integral gains of the PI algorithm were calibrated. The controllers were tested using theoretical demand changes (constant outflow followed by a sudden demand increase or decrease) and real demand changes generated on the basis of a spatially distributed crop water balance that included a number of sources of variability (random and not random) in the determination of field irrigation timing and depth. The results obtained show that only the distant downstream controller was able to adjust quickly and automatically the canal dynamics to the varying water demands; it achieved this efficiently and with few spills at the canal tail, even when there were sudden and significant flow variations. 相似文献
14.
15.
针对畦灌系统运行管理水平和灌水质量较低的问题,该文应用稳健设计的基本理论,结合地面灌溉SRFR模拟模型,评价了畦田的灌水质量,模拟了单宽流量和入渗参数对灌水质量的影响,分析了灌水质量对各因素的敏感性。结果表明,对某一固定的畦田,单宽流量并非越大越好,单宽流量在4~7 L/(s·m)时,畦灌可以获得较高的灌水效率和灌水均匀度。灌水均匀度对入渗参数的敏感程度要大于灌水效率,灌水质量对入渗指数的敏感性大于入渗系数,增加单宽流量能够降低灌水质量对入渗参数的敏感程度。对灌水质量影响较大的因素依次为单宽流量、入渗指数 相似文献
16.
《Agricultural Water Management》2006,85(3):314-322
Irrigation needs to be scheduled properly for winter wheat, the main food crop in North China where the water resources are limited. We optimized the irrigation timing of crops under limited water supply by integrating a soil water balance model, dated water production function with cumulative function of water sensitivity index, and a nonlinear search method. The optimization produced the optimal irrigation date series with the predetermined irrigation quota for each application, which aims to obtain higher crop yield with limited irrigation water and be convenient for irrigation management. This simulation–optimization model was used to investigate the irrigation scheduling of winter wheat in Xiaohe irrigation Area in North China. Results show that optimal irrigation date series, corresponding relative yield and relative evapotranspiration are all closely related to the irrigation quota and initial soil water conditions. For rich and medium initial soil water conditions in medium precipitation year, it takes four times of irrigation (60 mm each time) after greening in order to obtain higher crop yield. But it increases to five times for poor initial condition. With limited irrigation water, irrigation should generally be applied in the preferential sequence of early May or late April (in the jointing stage), then mid and late May (in the heading stage), and finally March (in the greening stage). Irrigation should be applied earlier with lower initial soil water storage. Higher irrigation quota increases the crop yield but tends to decrease the marginal value, especially when irrigation quota exceeds 180 mm. The study also indicates that the optimized relative yield is generally higher than that obtained in field experiment. Based on the optimization, we proposed to use the quadratic polynomial function to describe the frontier water production function, which shows the mathematical relationship between optimized relative yield and relative evapotranspiration. 相似文献
17.
Based on a simulation model reflecting physical and economic conditions typically found in rice irrigation systems in Asia, the irrigation performance implications of alternative water distribution rules for dry season irrigation are evaluated under varying degrees of water shortage. The rules examined reflect differing water distribution strategies designed either to maximize conveyance efficiency, economic efficiency, or equity; or to achieve a balance between efficiency and equity objectives. Irrigation performance is evaluated using several efficiency measures reflecting the physical, agronomic and economic productivity of water, and one measure of equity. Economic efficiency and equity among farmers within the portion of the irrigation system that is on in any given season are shown to be complementary, and not competing objectives. Economic efficiency and equity among all farmers within the command area of the irrigation system are largely complementary strategies at the lower levels of water shortage, but with increasing shortage, significant tradeoffs develop between these objectives. An operational rule for water distribution under a goal of maximizing economic efficiency is developed, and the data requirements for its implementation are shown to be modest. Under the model's assumed conditions of dry season rice production dependent solely on surface irrigation for water, the distribution strategy designed to maximize conveyance efficiency results in only modestly lower levels of economic efficiency and equity than could be achieved by the strategy designed to maximize economic efficiency. 相似文献
18.
《Agricultural Water Management》2006,79(3):312-320
Shrinking water resources in northwest India calls for diversification from a rice–wheat cropping system to low-water-requiring crops and development of water-efficient technologies in Punjab state. Chickpea, because of its lower water demand (evapotranspiration) and irrigation requirement has been identified as a suitable alternate crop to wheat. Simulations, averaged over 18 years, using the CROPMAN model indicated that the yield of chickpea on coarse- to medium-textured soils was higher in a rice–chickpea cropping system compared with maize–chickpea and mung–chickpea systems because of increased availability of water. Yield response of chickpea to irrigation depended upon soil texture, the timings and number of irrigations. The optimum yield (2 t ha−1) on coarse- to medium-textured soils after rice can be obtained with one heavy pre-plant and two post-plant irrigations, i.e., one in mid-February and one in mid-March synchronizing irrigations with flowering and grain development stages. Grain yield with irrigation water followed a quadratic function and linear with evapotranspiration. Water use efficiency and evapotranspiration was curvilinear. Grain yield was significantly sensitive to water stress during the pod setting to grain development period irrespective of soil texture. 相似文献
19.
The snow pack of Sierra Nevada, southern Spain, melts during spring and early summer, feeding ancestral irrigation channels in the region known as the Alpujarra. This simulation study compares the traditional irrigation water supply, based on proportional division, with the actual supply, based on up-downstream priority, in one watershed in the Alpujarra. A combination of three models was used for the analysis. Water supply was simulated using the snowmelt-runoff model. The snow cover required by that model was determined using satellite images. A second model simulated the distribution of water based on proportional division and on up-downstream priority. Irrigation requirements and return flows were simulated using a soil–water balance. Proportional division is an inherently equitable mechanism for distributing water, but can lead to water deficits for different crops in a command area. The analysis demonstrated this premise not be true. The superiority of proportional division was magnified in dry years. Because of the internal reuse of return flows, irrigation consumptive use coefficient (the ratio of irrigation water that is evapotranspirated by the crops to the total amount of irrigation water that leaves the area of concern during the period of analysis) at the watershed scale was significantly greater than at the irrigation-channel scale. This result illustrated, based on tradition in ancestral irrigation community, the notion of integrated water resources management. 相似文献
20.
The reported study aimed at developing an integrated management strategy for irrigation water and fertilizers in case of wheat crop in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop (cultivar Sonalika) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment included four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments considered were I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments considered in the experiments were F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1, F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. In this study CERES-wheat crop growth model of the DSSAT v4.0 was used to simulate the growth, development and yield of wheat crop using soil, daily weather and management inputs, to aid farmers and decision makers in developing strategies for effective management of inputs. The results of the investigation revealed that magnitudes of grain yield, straw yield and maximum LAI of wheat crop were higher in low volume high frequency irrigation (I1) than the high volume low frequency irrigation (I3). The grain yield, straw yield and maximum LAI increased with increase in fertilization rate for the wheat crop. The results also revealed that increase in level of fertilization increased water use efficiency (WUE) considerably. However, WUE of the I2 irrigation schedule was comparatively higher than the I1 and I3 irrigation schedules due to higher grain yield per unit use of water. Therefore, irrigation schedule with 40% maximum allowable depletion of available soil water (I2) could safely be maintained during the non-critical stages to save water without sacrificing the crop yield. Increase in level of fertilization increases the WUE but it will cause environmental problem beyond certain limit. The calibrated CERES-wheat model could predict the grain yield, straw yield and maximum LAI of wheat crop with considerable accuracy and therefore can be recommended for decision-making in similar regions. 相似文献