共查询到16条相似文献,搜索用时 78 毫秒
1.
利用支持向量机方法,构建RBF核函数支持向量机水质评价模型和地下水位动态预测模型,对白城地区进行水质评价及地下水位预测。结果表明:白城地区地下水污染严重,以Ⅳ类、Ⅴ类水居多,地下水位动态变化具有周期性。通过实例验证,支持向量机方法评价结果合理,且与综合水质评价法对比分析,更接近实际水质情况;在水位预测中也表现良好,预测准确率达到96.7%。可见该方法在水质评价及水位动态预测中表现出优秀的性能,具有很好的研究价值和推广前景。 相似文献
2.
3.
4.
鉴于支持向量机(SVM)的优越性及汽车发动机的故障特点,本文提出将支持向量机应用到发动机故障的智能诊断中。该方法专门针对小样本集合设计,能够在小样本情况下获得较大的推广能力,而且模型简单。首先对采集的故障信号采取信息融合方式进行特征提取,以获得特征向量。在此基础上通过多分类支持向量机对发动机故障进行分类测试,建立了故障诊断模型。试验结果表明:该方法具有较高的诊断精度,达到了发动机的故障诊断要求。 相似文献
5.
支持向量机在黄瓜病害识别中的应用研究 总被引:4,自引:0,他引:4
探讨了采用支持向量机对黄瓜病害进行分类的方法;提取了病斑的形状、颜色、质地、发病时期等特征作为特征向量,利用支持向量机分类器,选取4种常见核函数,以Matlab7.0为平台对10类常见病害进行识别.结果表明,SVM 方法在处理小样本问题中具有良好的分类效果,线性核函数和径向基核函数的SVM 分类方法在黄瓜病害的识别方面优于其他类型核函数的SVM. 相似文献
6.
旋转机械长期处于连续运转状态,很容易发生故障.而其一旦出现故障,不仅会影响企业生产的经济效益,甚至还会引发重大事故.因此,对旋转机械进行状态检测及故障诊断有着重要现实意义.课题组提出了一种基于LMD和支持向量机相结合的故障诊断方法.这一方法首先运用LMD信号处理方法进行故障特征提取,然后采用支持向量机对提取的特征进行状... 相似文献
7.
8.
9.
以干旱区浅水湖泊乌梁素海的多年实测pH值为例,在分析支持向量回归机算法(ε-SVR)核函数选取的基础上进行了回归分析及预测,并与线性回归、BP神经网络、RBF网络等算法进行了比较。研究结果显示::(1) 基于径向基核的支持向量回归机模拟效果优于其它核函数;(2)ε-SVR模拟结果与线性回归(LR)、BP神经网络和RBF网络等算法模拟结果相比,其拟合精度与预测精度均比其它三种方法要高。计算结果充分证明了支持向量回归机有较强的学习能力和泛化能力且该方法可以应用于水质预测研究。 相似文献
10.
径流预测的支持向量机应用探讨 总被引:6,自引:0,他引:6
支持向量机是近年来提出的一种新的机器学习算法,它能针对在样本有限的情况,采用结构风险最小化准则,把学习问题转化为一个二次规划问题来获得最优解,从而克服了神经网络易陷于局部极小值的缺点。尝试将支持向量机算法应用于径流预测,并与BP神经网络方法的预测结果进行了对比,证明SVM方法预测径流量精度要略优于BP神经网络方法。 相似文献
11.
12.
13.
道路坡度预测是汽车ABS、AMT、混合动力汽车扭矩分配等实时控制的关键技术。提出一种基于支持向量机(SVM)的道路坡度实时预测方法,输入参数为发动机转速、输出扭矩、纵向车速和纵向加速度,均从控制器CAN网络中实时提取。分别构建实车道路试验系统和Car Sim仿真平台,通过系统试验分别得到的样本对SVM模型进行学习和泛化能力测试。结果表明:Car Sim试验数据建立的SVM模型预测平方相关系数达到0.99,实车试验数据建立的SVM模型预测平方相关系数在0.9左右,二者差异的主要原因是实车试验GPS方法获取道路坡度信息时叠加了不易消除的车体俯仰角的影响。基于Lab VIEW编程将实车试验SVM模型导入虚拟仪器PXIe实时控制器中,其预测一个点的耗时等效到汽车电控ECU单片机为1.33 ms,完全满足实时控制要求。证明所提出道路坡度预测方法是有效、可行的。 相似文献
14.
基于粒子群寻优的支持向量机番茄红素含量预测 总被引:2,自引:0,他引:2
应用支持向量机(SVM)通过色差值对番茄果实番茄红素含量预测进行建模,解决预测过程受影响因素多、参数互相关联、难以建立精确模型问题。为提高预测精度,将SVM参数选择和输入变量的选取看作组合优化问题,通过赤池信息准则(AIC)构造组合目标优化函数,采用粒子群算法(PSO)进行目标函数搜索,提高了搜索效率。对采后储藏不同成熟度番茄进行的测量表明,所提预测建模算法在番茄红素的预测中具有良好的性能,为番茄红素的便捷、无破坏性测量提供了一种方法。 相似文献
15.
16.
采摘机器人基于支持向量机苹果识别方法 总被引:16,自引:2,他引:14
针对目前苹果采摘机器人果实识别过程误差大、处理时间长等问题,应用支持向量机(SVM)方法对苹果果实进行识别.首先采用矢量中值滤波法对苹果彩色图像进行预处理,然后运用区域生长算法和颜色特征相结合的方法进行图像分割,最后分别对苹果彩色图像的颜色特征、几何形状特征进行提取,并用支持向量机的模式识别方法识别苹果果实.实验结果表明:支持向量机识别方法的识别性能优于神经网络方法;综合颜色特征和形状特征的支持向量机识别方法对苹果果实识别的正确率高于只用颜色特征或形状特征的正确率. 相似文献