首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The moist savanna of West-Africa is characterized by a wide range of climates and soil types. The impact of the biophysical environment on hedgerow N uptake, wood production and maize grain yield was assessed for three years in three alley cropping trials with a selected number of hedgerow species in Glidji (Southern Togo), Amoutchou (Central Togo), and Sarakawa (Northern Togo). Senna siamea hedgerows accumulated significantly more N in the first pruning in Glidji (129−138 kg N ha−1) and Sarakawa (102−185 kg N ha−1) than in Amoutchou (17–26 kg N ha−1). This difference in N uptake was attributed to the infertile subsoil in Amoutchou, which was sandy up to 1 m and had a shallow groundwater-table. The amount of N accumulated in the Gliricidia sepium biomass varied between 38 kg N ha−1 in Glidji and 142 kg N ha−1 in Amoutchou. Averaged over all species and sites, 9 to 29% and 9 to 39% of the annual N accumulation in the hedgerow biomass is incorporated in the second, respectively third pruning. The Gliricidia trees produced between 12 and 26 ton fresh matter ha−1 of wood and the Senna trees between 4 and 38 ton fresh matter ha−1. Maize grain yield in Glidji was not affected by treatments (3196 kg ha−1, on average). In Amoutchou, the highest grain production was observed in the Gliricidia treatment (2774 kg ha−1 vs 1007 kg ha−1 in the control), while in Sarakawa, the Gliricidia (3786 kg ha−1) and Senna (3842 kg ha−1) plots produced a greater grain yield than the control plots (2123 kg ha−1). Maize yield increase in the alley cropping systems relative to the control plots was related to the soil total N content. Top and sub-soil characteristics were shown to be an important modifier of the functioning of alley cropping systems and should be taken into account when deciding on whether to use alley cropping and when selecting the hedgerow species. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Fine root turnover plays important roles in carbon allocation and nutrient cycling in forest ecosystems. Seasonal dynamics of fine roots is critical for understanding the processes of fine root turnover. From May to October 2002, soil core method was used for estimating the seasonal pattern of fine root (diameter < 1 mm) parameters (biomass, specific root length (SRL) and root length density (RLD)) in a Manchurian ash (Fraxinus mandshurica) plantation located at the Maoershan Experiment Station, Heilongjiang Province, northeast of China. The relationships of fine root biomass, SRL and RLD with available nitrogen in soil, average soil temperature per month in 10 cm depth and soil moisture content were analyzed. Seasonal variation of fine root biomass was significant (P < 0.05). The peak values of fine root biomass were observed both in spring and in autumn, but SRL and RLD were the highest in spring and lowest in autumn. Specific root length and root length density were higher in spring and summer, which means that fine root diameter was thinner. In autumn, both parameters decreased significantly due to secondary incrassation of fine root diameter or the increase of tissue density. Seasonal dynamics of fine roots was associated with available nitrogen in soil, soil temperature in 10 cm depth and moisture content. Fine root biomass has a significant relationship with available NH4 +-N in soil. Available NO3 -N in soil, soil temperature in 10-cm depth and moisture content have a positive correlation with fine root biomass, SRL and RLD, although these correlations are not significant (P > 0.05). But the compound effects of soil available N, soil temperature and soil moisture content are significant to every root parameter. The variations of these three root parameters in different seasons show different physiological and ecological functions in different growing periods. Translated from Scientia Silvae Sinicae, 2006, 42(9): 7–12 [译自: 林业科学]  相似文献   

3.
The biomass and the spatial distribution of fine and small roots were studied in two Japanese black pine (Pinus thunbergii Parl.) stands growing on a sandy soil. More biomass of fine and small roots was found in the 17-year-old than in the 40-year-old stand. There were 62 g m−2 of fine roots and 56 g m−2 of small roots in the older stand, which represented mean values of 608 g for fine and 552 g for small roots per tree, respectively. In the younger stand, a total of 85 g m−2 of fine roots and 66 g m−2 of small roots were determined, representing a mean of 238 g for fine and 186 g for small roots per tree, respectively. Fine and small root biomasses decreased linearly with a soil depth of 0–50 cm in the older stand. In the younger stand, the fine and small roots developed only up to a depth of 30 cm. Horizontal distributions (with regard to distance from a tree) of both root groups were homogeneous. A positive correlation in the amount of biomass of fine and small roots per m2 relative to tree size was found. Fine and small root biomasses increased consistently from April to July in both stands. The results also indicated earlier growth activity of the fine roots than small roots at the beginning of the growing season. The seasonal increases in fine and small root biomasses were slightly higher in the younger stand than the older stand.  相似文献   

4.
Morphology and vertical distribution patterns of spruce and beech live fine roots (diameter ≤2 mm) were studied using a soil core method in three comparable mature stands in the Solling: (1) pure beech, (2) pure spruce and (3) mixed spruce–beech. This study was aimed at determining the effects of interspecific competition on fine root structure and spatial fine root distribution of both species. A vertical stratification of beech and spruce fine root systems was found in the mixed stand due to a shift in beech fine roots from upper to lower soil layers. Moreover, compared to pure beech, a significantly higher specific root length (SRL, P<0.05) and specific surface area (SSA, P<0.05) were found for beech admixed with spruce (pure beech/mixed beech SRL 16.1–23.4 m g−1, SSA 286–367 cm2 g−1). Both indicate a flexible ‘foraging’ strategy of beech tending to increase soil exploitation and space sequestration efficiency in soil layers less occupied by competitors. Spruce, in contrast, followed a more conservative strategy keeping the shallow vertical rooting and the root morphology quite constant in both pure and mixed stands (pure spruce/mixed spruce SRL 9.6/7.7 m g−1, P>0.10; SSA 225/212 cm2 g−1, P>0.10). Symmetric competition belowground between mixed beech and spruce was observed since live fine roots of both species were under-represented compared to pure stand. However, the higher space sequestration efficiency suggests a higher competitive ability of beech belowground.  相似文献   

5.
The distribution of fine (<2 mm diameter) and small roots (2–20 mm diameter) was investigated in a chronosequence consisting of 9-year-old, 26-year-old, 82-year-old and 146-year-old European beech (Fagus sylvatica) stands. A combination of trench wall observations and destructive root sampling was used to establish whether root distribution and total biomass of fine and small roots varied with stand age. Root density decreased with soil depth in all stands, and variability appeared to be highest in subsoil horizons, especially where compacted soil layers occurred. Roots clustered in patches in the top 0–50 cm of the soil or were present as root channels at greater depths. Cluster number, cluster size and number of root channels were comparable in all stands, and high values of soil exploitation occurred throughout the entire chronosequence. Overall fine root biomass at depths of 0–120 cm ranged from 7.4 Mg ha−1 to 9.8 Mg ha−1, being highest in the two youngest stands. Small root biomass ranged from 3.6 Mg ha−1 to 13.3 Mg ha−1. Use of trench wall observations combined with destructive root samples reduced the variability of these estimates. These records showed that variability in fine root distribution depended more on soil depth and edaphic conditions than on stand age, and suggest that trench wall studies provide a useful tool to improve estimates of fine root biomass.  相似文献   

6.
Fine roots are a key component of forested ecosystems, but available information is still limited. This study examined the production and mortality of fine roots less than 1 mm in diameter in a Japanese cedar (Cryptomeria japonica D. Don) plantation located on the Kanto Plain in central Japan. We used a minirhizotron technique in combination with soil coring, and collected data for 1 year (May 2002–May 2003). Fine root production and mortality were determined from changes in the lengths of individual fine roots on minirhizotron tubes. Both fine root production and mortality rates were greater in the upper soil than in lower soil levels. Both rates were seasonal, with higher values in summer than in winter; this trend was more pronounced in upper soil levels. These results suggest that environmental conditions, such as temperature or soil properties, affect the production and mortality rates of fine roots. Fine root production and mortality occurred simultaneously, and their rates were similar, which may have led to unclear seasonal changes in fine root standing crop estimates. Soil coring indicated that the fine root biomass of this stand was about 120 g m−2, of which 40% was from Japanese cedar. The estimated rates of dry matter production and mortality of total fine roots, including understory plants, were both approximately 300 g m−2 year−1.  相似文献   

7.
Tree-based intercropping (TBI) systems, combining agricultural alley crops with rows of hardwood trees, are largely absent in Canada. We tested the hypothesis that the roots of 5–8 years old hybrid poplars, growing in two TBI systems in southern Québec, would play a “safety-net” role of capturing nutrients leaching below the rooting zone of alley crops. TBI research plots at each site were trenched to a depth of 1 m on each side of an alley. Control plots were left with tree roots intact. In each treatment at each site, leachate at 70 cm soil depth was repeatedly sampled over two growing seasons using porous cup tension lysimeters, and analyzed for nutrient concentrations. Daily water percolation rates were estimated with the forest hydrology model ForHyM. Average nutrient concentrations for all days between consecutive sampling dates were multiplied by water percolation rates, yielding daily nutrient leaching loss estimates for each sampling step. We estimated that tree roots in the TBI system established on clay loam soil decreased subsoil NO3 leaching by 227 kg N ha−1 and 30 kg N ha−1 over two consecutive years, and decreased dissolved organic N (DON) leaching by 156 kg N ha−1 year−1 in the second year of the study. NH4 + leaching losses at the same site were higher when roots were present, but were 1–2 orders of magnitude lower than NO3 or DON leaching. At the sandy textured site, the safety net role of poplar roots with respect to N leaching was not as effective, perhaps because N leaching rates exceeded root N uptake by a wider margin than at the clay loam site. At the sandy textured site, significant and substantial reductions of sodium leaching were observed where tree roots were present. At both sites, tree roots reduced DON concentrations and the ratio of DON to inorganic N, perhaps by promoting microbial acquisition of DON through rhizodeposition. This study demonstrated a potential safety-net role by poplar roots in 5–8 year-old TBI systems in cold temperate regions.  相似文献   

8.
Variability of fine root (diameter < 2 mm) distribution was investigated in four 55 to 56-year-old Maritime pine (Pinus pinaster) stands using a combination of trench wall observations and destructive sampling. Our objectives were to assess patterns of fine root distribution, to estimate tree fine root biomass and to explore interactions with understorey vegetation in a gradient of relevant site conditions. Results showed that root density decreased with soil depth in all stands, and variability appeared to be highest in litter and subsoil layers especially where compacted soil layers occurred. Roots were clustered in patches in the top 0–50 cm of the soil or were present as root channels at greater depths. Cluster number, cluster size and number of root channels were comparable in all four stands. Overall fine root biomass at depths of 0–120 cm ranged from 2.7 to 7.2 Mg ha−1 and was highest for the two driest stands. The use of trench wall records made it possible to reduce the variability of these estimates. Understorey species represented as much as 90% of the total number of fine roots in the upper layers, and the understorey formed a considerable proportion of the total ecosystem biomass, suggesting that understorey species are likely competitors for nutrients in this ecosystem. Further studies should focus on the interaction of the understorey and pine roots and the ecological significance of clustered roots and nutrient distributions.  相似文献   

9.
The responses of fine root mass, length, production and turnover to the increase in soil N availability are not well understood in forest ecosystems. In this study, sequential soil core and ingrowth core methods were employed to examine the responses of fine root (≤1 mm) standing biomass, root length density (RLD), specific root length (SRL), biomass production and turnover rate to soil N fertilization (10 g N m−2 year−1) in Larix gmelinii (larch) and Fraxinus mandshurica (ash) plantations. N fertilization significantly reduced fine root standing biomass from 130.7 to 103.4 g m−2 in ash, but had no significant influence in larch (81.5 g m−2 in the control and 81.9 g m−2 in the fertilized plots). Similarly, N fertilization reduced mean RLD from 6,857 to 5,822 m m−2 in ash, but did not influence RLD in larch (1,875 m m−2 in the control and 1,858 m m−2 in the fertilized plots). In both species, N fertilization did not alter SRL. Additionally, N fertilization did not significantly alter root production and turnover rate estimated from sequential soil cores, but did reduce root production and turnover rate estimated from the ingrowth core method. These results suggested that N fertilization had a substantial influence on fine root standing biomass, RLD, biomass production and turnover rate, but the direction and magnitude of the influence depended on species and methods.  相似文献   

10.
The distributions of ectomycorrhizas and ectomycorrhizal fungal inoculum with soil depth (0–45 cm) were determined in a 40-year-oldBetula platyphylla var.japonica forest. Mycorrhizal and non-mycorrhizal fine roots were measured in each soil core sample that was collected at soil depths of 0–5, 5–10, 10–15, 15–20, 20–25, 30–35, and 40–45 cm. The ectomycorrhizas were mainly distributed (>50%) in the top soil (0–5 cm) of organic forest floor horizons. Below 5 cm the quantity of ectomycorrhizas decreased sharply. The percentage of fine roots which were ectomycorrhizal gradually declined with the depth of soil. The ectomycorrhizal fungal inoculum was evaluated by a bioassay method, measuring the lengths of the entire root system and of the ectomycorrhizal roots of birch seedlings planted in each soil sample. The soil samples were collected from 0–5, 10–15, 20–25, 30–35, and 40–45 cm depths of the soil profile. Ectomycorrhizal formation on birch seedling roots in the bioassay was high in both the soil depth intervals 0–5 cm and 10–15 cm, while the amount was lower in the soil depth interval from 20–45 cm. The results of these investigations show that the amount of the ectomycorrhizas in soil, and the ectomycorrhizal fungal inoculum potential as determined by bioassay, are not always consistent with each other.  相似文献   

11.
Measurements were carried out to survey the quantity of above- and below-ground biomass and its distribution of five Japanese black pines (Pinus thunbergii Parl.) growing on a sandy soil. The roots, divided into diameter groups, were surveyed using two methods—soil coring and excavation. Average dry weight of total biomass of the trees was 176,185 g. Roots represented 13.2%, below-ground stump 6.5%, stem 70.4% and branches with needles 9.9% of total biomass. Roots made up about two thirds and stump one third of below-ground biomass. Total length of below-ground biomass (except roots with diameter < 0.1 cm) was 479.1 m/tree. Roots with diameter of 0.1–0.2 cm represented only 0.7% of below-ground biomass, however as much as 49.9% of their total length. Roots with diameter over 10.0 cm constituted as much as 21.6% of below-ground biomass, however were only 0.3% of its total length. Root systems had well developed tap roots to maximal depth of 231 cm. The results indicated that mass and length of roots with diameter 0.5–2.0 cm had a close correlation with branch mass. Mass and length of roots with diameter 2.0–10.0 cm closely correlated to stem mass. Stem mass, root mass and root length closely correlated to DBH. A rather low correlation was found between DBH and mass of branches and below-ground stump. DBH was a suitable variable for predicting total biomass.  相似文献   

12.
The poplar based agroforestry system improves aggregation of soil through huge amounts of organic matter in the form of leaf biomass. The extent of improvement may be affected by the age of the poplar trees and the soil type. The surface and subsurface soil samples from agroforestry and adjoining non-agroforestry sites with different years of poplar plantation (1, 3 and 6 years) and varying soil textures (loamy sand and sandy clay) were analyzed for soil organic carbon, its sequestration and aggregate size distribution. The average soil organic carbon increased from 0.36 in sole crop to 0.66% in agroforestry soils. The increase was higher in loamy sand than sandy clay. The soil organic carbon increased with increase in tree age. The soils under agroforestry had 2.9–4.8 Mg ha−1 higher soil organic carbon than in sole crop. The poplar trees could sequester higher soil organic carbon in 0–30 cm profile during the first year of their plantation (6.07 Mg ha−1 year−1) than the subsequent years (1.95–2.63 Mg ha−1 year−1). The sandy clay could sequester higher carbon (2.85 Mg ha−1 year−1) than in loamy sand (2.32 Mg ha−1 year−1). The mean weight diameter (MWD) of soil aggregates increased by 3.2, 7.3 and 13.3 times in soils with 1, 3 and 6 years plantation, respectively from that in sole crop. The increase in MWD with agroforestry was higher in loamy sand than sandy clay soil. The water stable aggregates (WSA >0.25 mm) increased by 14.4, 32.6 and 56.9 times in soils with 1, 3 and 6 years plantation, respectively, from that in sole crop. The WSA >0.25 mm were 6.02 times higher in loamy sand and 2.2 times in sandy clay than in sole crop soils.  相似文献   

13.
The impacts of elevated atmospheric CO2 concentrations (500 μmol·mol−1 and 700 μmol·mol−1) on total soil respiration and the contribution of root respiration ofPinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration ofPinus koraiensis seedlings were measured by a Li-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil instantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 μmol·m−2·s−1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. Foundation item: This study was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX1-SW-01) and the National Natural Science Foundation of China (30070158). Biography: LIU Ying (1976-), female, Ph. D. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

14.
Absorbing water from soil by roots in vascular plants is an important physiological function and plays an essential role on their water balance. The root hydraulic conductance (L P) determined by radical water transport inside the root is a major influence on the shoot water status, plant growth, and development. However, a few studies have focused on the effect of different substances on L P of roots, and the role of radical water transport was poorly understood. Based on the pressure-flux approach, this study used the roots of Fraxinus mandshurica seedlings with different treatments, i.e., distilled water, NH4NO3 solution, and HgCl2 to determine the effect of various substances on L P of roots. The objectives are: 1) to evaluate the difference in L P occurred between distilled water and NH4NO3 solution with various concentrations; and 2) to examine the changes of L P under distilled water and NH4NO3 solution with various concentrations after HgCl2 treatment. The results showed that L P of roots were 18.85×10−8 m/(s·MPa) in distilled water, 31.25–34.15×10−8 m/(s·MPa) in four NH4NO3 solutions (2, 4, 8 and 16 mmol/L), 14.69×10−8 m/(s·MPa) in distilled water after HgCl2-treated, and 9.63–13.57×10−8 m/(s·MPa) in four NH4NO3 solutions after HgCl2-treated, respectively. Aquaporins play an important role in regulating water uptake and transport in roots. NH4 + and NO3 could stimulate activity of aquaporins, and L P of roots in NH4NO3 solution was distinctly 77% higher than in distilled water. Nevertheless, Hg2+ can inhibit activity of aquaporins, and and L P of roots decreased 22% in distilled water and 68% in NH4NO3 solution after treatment by HgCl2 respectively. These evidences suggested that both Hg2+-sensitive aquaporins and ion channels existing in the protoplasm and vacuole membranes could regulate root water uptake, transport, and integral plant water balance. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(5): 706–712 [译自: 植物生态学报, 2005, 29(5): 706–712]  相似文献   

15.
The relative effects of irradiance and soil water on alley-cropped herbage are poorly understood. Our objective was to determine effects of irrigation on herbage productivity when tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] was grown in two sites, a meadow and a loblolly pine (Pinus taeda L.) alley (620 trees ha−1), near Booneville, Arkansas. Three tall fescue entries were space planted in the meadow and pine alley with or without irrigation. Herbage mass and nutritive value were determined at 8-week intervals for 2 years. Mean daily PAR was 33.9 (2004) and 37.5 mol m−2 d−1 (2005) in the meadow, while the pine alley received 5.6 mol m−2 d−1 (17% of the meadow) in 2004 and 4.3 mol m−2 d−1 (11% of meadow) in 2005. Effect of tall fescue entry tended to be small relative to site and irrigation. Irrigation compensated for evapotranspiration in the meadow, but not in the pine alley when summer rainfall was about normal (2004) or low (2005). Nevertheless, site (PAR) had a greater effect on herbage specific leaf weight, leaf elongation rate, tillers plant−1, mass tiller−1, and total nonstructural carbohydrate concentration than soil water. Irrigation might have had greater impact on herbage productivity if more water had been applied or if canopy cover had been less extreme. Silvicultural practices should be imposed to improve penetration of solar irradiance to the alley crop.  相似文献   

16.
Picea mongolica is an endemic but endangered species in China. The spruce forest is only found in sandy forest-steppe ecotones. In this study, we examined the initial response of the quantity and refilling process of fine roots in an artificial canopy gap with a diameter of 36 m in a P. mongolica forest. Under the canopy, the fine root length densities of trees, shrubs and herbs were 2,622, 864 and 3,086 m·m–2, respectively. The fine root biomass of trees, shrubs and herbs were 148, 62 and 65 g·m–2, respect...  相似文献   

17.
A considerable amount of data is available about above-ground biomass production and turnover in tropical agroforestry systems, but quantitative information concerning root turnover is lacking. Above- and below-ground biomass dynamics were studied during one year in an alley cropping system withGliricidia sepium and a sole cropping system, on aPlinthic Lixisol in the semi-deciduous rainforest zone of the Côte d'Ivoire. Field crops were maize and groundnut. Live root mass was higher in agroforestry than in sole cropping during most of the study period. This was partly due to increased crop and weed root development and partly to the presence of the hedgerow roots. Fine root production was higher in the alleys and lower under the hedgerows compared to the sole cropping plots. Considering the whole plot area, root production in agroforestry and sole cropping systems was approximatly similar with 1000–1100 kg ha–1 (dry matter with 45% C) in 0–50 cm depth; about 55% of this root production occured in the top 10 cm. Potential sources of error of the calculation method are discussed on the basis of the compartment flow model. Above-ground biomass production was 11.1 Mg ha–1 in sole cropping and 13.6 Mg ha–1 in alley cropping, of which 4.3 Mg ha–1 were hedgerow prunings. The input of hedgerow root biomass into the soil was limited by the low root mass ofGliricidia as compared to other tree species, and by the decrease of live root mass of hedgerows and associated perennial weeds during the cropping season, presumably as a result of frequent shoot pruning.  相似文献   

18.
Fine-root dynamics (diameter < 2.0 mm) were studied on-farm in associations of Coffea arabica with Eucalyptus deglupta or Terminalia ivorensis and in a pseudo-chronosequence of C. arabica-E. deglupta associations (two, three, four and five years old). Coffee plants were submitted to two fertilisation types. Cores were taken in the 0–40 cm soil profile two years after out-planting and subsequently in the following year in depth layers 0–10 and 10–20 cm, during and at the end of the rainy season, and during the dry season. Fine root density of coffee and timber shade trees was greater in the coffee fertilisation strip as compared to unfertilised areas close to the plants or in the inter-rows. Coffee fine roots were more evenly distributed in the topsoil (0–20 cm) whereas tree fine roots were mostly found in the first 10 cm. Although the two tree species had approximately the same fine root length density, lower coffee / tree fine root length density ratios in T. ivorensis suggest that this shade tree is potentially a stronger competitor with coffee than E. deglupta. Coffee and tree fine root length density for 0–10 cm measured during the rainy season increased progressively from two to five-year-aged associations and coffee fine root length density increased relatively more than E. deglupta fine root length density in the four and five-year-aged plantations suggesting that contrary to expectations, coffee fine roots were displacing tree fine roots.  相似文献   

19.
Agroforestry systems can play a major role in the sequestration of carbon (C) because of their higher input of organic material to the soil compared to sole crop agroecosystems. This study quantified C input in a 19-year old tropical alley cropping system with E. poeppigiana (Walp.) O.F Cook in Costa Rica and in a 13-year old hybrid poplar (Populus deltoides × nigra DN-177) alley cropping system in southern Canada. Changes in the level of the soil organic carbon (SOC) pool, residue decomposition rate, residue stabilization efficiency, and the annual rate of accumulation of SOC were also quantified in both systems. Carbon input from tree prunings in Costa Rica was 401 g C m−2 y−1 compared to 117 g C m−2 y−1 from litterfall at the Canadian site. In southern Canada, crop residue input from maize (Zea mays L.) was 212 g C m−2 y−1, 83 g C m−2 y−1 from soybeans (Glycine max L.) and 125 g C m−2 y−1 for wheat (Triticum aestivum L.), and was not significantly different (p < 0.05) from the sole crop. The average yearly C input from crop residues in Costa Rica was significantly greater (p < 0.05) in the alley crop for maize (134 g C m−2 y−1) and Phaseolus vulgaris L. bean crops (35 g C m−2 y−1) compared to the sole crop. The SOC pool was significantly greater (p < 0.05) in the Costa Rican alley crop (9536 g m−2) compared to its respective sole crop (6143 g m−2) to a 20 cm depth, but no such difference was found for the southern Canadian system. Residue stabilization, defined as the efficiency of the stabilization of added residue (crop residues, tree prunings, litterfall) that is added to the soil C pool, is more efficient in southern Canada (31%) compared to the alley cropping system in Costa Rica (40%). This coincides with a lower organic matter decomposition rate (0.03 y−1) to a 20 cm depth in Canada compared to the Costa Rican system (0.06 y−1). However, the average annual accumulation rate of SOC is greater in Costa Rica (179 g m−2 y−1) and is likely related to the greater input of organic material derived from tree prunings, compared to that in southern Canada (30 g m−2 y−1) to a 20 cm depth.  相似文献   

20.
In order to assess the possibility of root competition in agroforestry, the vertical distribution of fine roots (< 2 mm in diameter) of five tree species in pure two-year-old stands was compared to that of mature maize.Cassia siamea, Eucalyptus tereticornis, Leucaena leucocephala andProsopis chilensis had a rooting pattern similar to that of maize, i.e. a slow decline in fine root mass from 0–100 cm soil depth.Eucalyptus camaldulensis had its roots evenly distributed down to 100 cm. On an average, the fine root biomass of the tree species was roughly twice as that of the maize. We conclude that the studied tree species are likely to compete with maize and other crops with a similar rooting pattern for nutrients and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号