首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The determination of the chimpanzee genome sequence provides a means to study both structural and functional aspects of the evolution of the human genome. Here we compare humans and chimpanzees with respect to differences in expression levels and protein-coding sequences for genes active in brain, heart, liver, kidney, and testis. We find that the patterns of differences in gene expression and gene sequences are markedly similar. In particular, there is a gradation of selective constraints among the tissues so that the brain shows the least differences between the species whereas liver shows the most. Furthermore, expression levels as well as amino acid sequences of genes active in more tissues have diverged less between the species than have genes active in fewer tissues. In general, these patterns are consistent with a model of neutral evolution with negative selection. However, for X-chromosomal genes expressed in testis, patterns suggestive of positive selection on sequence changes as well as expression changes are seen. Furthermore, although genes expressed in the brain have changed less than have genes expressed in other tissues, in agreement with previous work we find that genes active in brain have accumulated more changes on the human than on the chimpanzee lineage.  相似文献   

2.
Humans have many cognitive skills not possessed by their nearest primate relatives. The cultural intelligence hypothesis argues that this is mainly due to a species-specific set of social-cognitive skills, emerging early in ontogeny, for participating and exchanging knowledge in cultural groups. We tested this hypothesis by giving a comprehensive battery of cognitive tests to large numbers of two of humans' closest primate relatives, chimpanzees and orangutans, as well as to 2.5-year-old human children before literacy and schooling. Supporting the cultural intelligence hypothesis and contradicting the hypothesis that humans simply have more "general intelligence," we found that the children and chimpanzees had very similar cognitive skills for dealing with the physical world but that the children had more sophisticated cognitive skills than either of the ape species for dealing with the social world.  相似文献   

3.
Tests on chimpanzees, orangutans, gibbons, baboons, and a gorilla, with blood grouping reagents prepared for human red cells, have disclosed patterns of reactions characteristic of each primate species. Determinations have been made of A-B-O groups and subgroups, M-N types, Rh-Hr types, secretor status, and Lewis types. Immunization experiments with ape and monkey blood are in progress.  相似文献   

4.
Humans collaborate with non-kin in special ways, but the evolutionary foundations of these collaborative skills remain unclear. We presented chimpanzees with collaboration problems in which they had to decide when to recruit a partner and which potential partner to recruit. In an initial study, individuals recruited a collaborator only when solving the problem required collaboration. In a second study, individuals recruited the more effective of two partners on the basis of their experience with each of them on a previous day. Therefore, recognizing when collaboration is necessary and determining who is the best collaborative partner are skills shared by both chimpanzees and humans, so such skills may have been present in their common ancestor before humans evolved their own complex forms of collaboration.  相似文献   

5.
Extreme gene duplication is a major source of evolutionary novelty. A genome-wide survey of gene copy number variation among human and great ape lineages revealed that the most striking human lineage-specific amplification was due to an unknown gene, MGC8902, which is predicted to encode multiple copies of a protein domain of unknown function (DUF1220). Sequences encoding these domains are virtually all primate-specific, show signs of positive selection, and are increasingly amplified generally as a function of a species' evolutionary proximity to humans, where the greatest number of copies (212) is found. DUF1220 domains are highly expressed in brain regions associated with higher cognitive function, and in brain show neuron-specific expression preferentially in cell bodies and dendrites.  相似文献   

6.
7.
Begun DR  Richmond BG  Strait DS 《Science (New York, N.Y.)》2007,318(5853):1066; author reply 1066
Thorpe et al. (Reports, 1 June 2007, p. 1328) concluded that human bipedalism evolved from a type of bipedal posture they observed in extant orangutans with seemingly human-like extended knees. However, humans share knuckle-walking characters with African apes that are absent in orangutans. These are most parsimoniously explained by positing a knuckle-walking precursor to human bipedalism.  相似文献   

8.
In tropical Africa, Anopheles funestus is one of the three most important malaria vectors. We physically mapped 157 A. funestus complementary DNAs (cDNAs) to the polytene chromosomes of this species. Sequences of the cDNAs were mapped in silico to the A. gambiae genome as part of a comparative genomic study of synteny, gene order, and sequence conservation between A. funestus and A. gambiae. These species are in the same subgenus and diverged about as recently as humans and chimpanzees. Despite nearly perfect preservation of synteny, we found substantial shuffling of gene order along corresponding chromosome arms. Since the divergence of these species, at least 70 chromosomal inversions have been fixed, the highest rate of rearrangement of any eukaryote studied to date. The high incidence of paracentric inversions and limited colinearity suggests that locating genes in one anopheline species based on gene order in another may be limited to closely related taxa.  相似文献   

9.
We compared fine-scale recombination rates at orthologous loci in humans and chimpanzees by analyzing polymorphism data in both species. Strong statistical evidence for hotspots of recombination was obtained in both species. Despite approximately 99% identity at the level of DNA sequence, however, recombination hotspots were found rarely (if at all) at the same positions in the two species, and no correlation was observed in estimates of fine-scale recombination rates. Thus, local patterns of recombination rate have evolved rapidly, in a manner disproportionate to the change in DNA sequence.  相似文献   

10.
Genomic evolution of Hox gene clusters   总被引:1,自引:0,他引:1  
  相似文献   

11.
Animals evaluate and respond to their social environment with adaptive decisions. Revealing the neural mechanisms of such decisions is a major goal in biology. We analyzed expression profiles for 10 neurochemical genes across 12 brain regions important for decision-making in 88 species representing five vertebrate lineages. We found that behaviorally relevant brain regions are remarkably conserved over 450 million years of evolution. We also find evidence that different brain regions have experienced different selection pressures, because spatial distribution of neuroendocrine ligands are more flexible than their receptors across vertebrates. Our analysis suggests that the diversity of social behavior in vertebrates can be explained, in part, by variations on a theme of conserved neural and gene expression networks.  相似文献   

12.
We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.  相似文献   

13.
14.
薄壳山核桃全基因组LBD基因家族的生物信息学分析   总被引:1,自引:1,他引:0       下载免费PDF全文
  目的  研究薄壳山核桃Carya illinoensis LBD基因家族结构特征、进化模式和在胚发育过程中的表达模式。  方法  运用生物信息学手段鉴定薄壳山核桃LBD基因,分析该基因结构特征、系统发生学关系、显花植物中的进化历史和在胚发育过程中3个关键阶段的表达模式。  结果  薄壳山核桃全基因组中一共鉴定到52个候选LBD基因。根据基因结构、系统发生学最大似然树和Motif分析可分为3类:GroupⅠ、GroupⅡ和GroupⅢ。多序列比对分析中,52个LBD基因LOB结构域中鉴定出3个重要的结构:CX2CX6CX3C锌指结构、高度保守的甘氨酸GAS结构和亮氨酸拉链(zipper-like)结构,并且在3类内都分别发生了特异性的的变异或者缺失。根据代表性显花植物LBD基因家族的系统发生学分析,从变异程度看GroupⅠ和GroupⅡ相对较为保守,而GroupⅢ内的所有LBD基因共享1支较长的分支,它们已发生了较大的变异,可能已经分化出新的功能。表达分析结果显示:LBD基因家族参与调控胚发育过程,通常控制子叶的发育和形态建成。薄壳山核桃LBD基因中又有在整个胚发育过程中都高表达的一簇基因,这些基因可能在胚发育过程中发挥了更加重要的作用。  结论  薄壳山核桃全基因组中共获得LBD基因52个,共可分为3个亚家族,不同的亚家族具有不同的基因结构、蛋白质结构、进化模式和表达模式,转录组表达分析显示:不同亚家族之间在胚发育不同阶段具有差异性表达,它们共同参与调控薄壳山核桃胚发育过程。图5表2参47  相似文献   

15.
【目的】克隆菊花节律钟输出基因GIGANTEA的cDNA全长序列,进行序列信息学分析,研究其mRNA的相对定量表达。【方法】利用多聚酶链式反应(PCR)结合5′RACE、3′RACE技术,克隆节律钟输出基因GIGANTEA的cDNA全长序列,应用生物信息学软件对获得的基因核苷酸序列及编码的蛋白质序列进行分析;通过在线建模软件对蛋白质的三维结构进行建模预测;利用实时荧光定量PCR技术,用2-△△Ct法进行GIGANTEA的mRNA相对定量表达分析。【结果】从菊花品种‘Jinba’中克隆得到节律钟输出基因GIGANTEA的cDNA全长序列,核苷酸序列长度3 461 bp,开放阅读框3 453 bp,编码1 150个氨基酸。氨基酸序列分析显示,该基因编码的蛋白与植物节律钟输出基因GIGANTEA同源,命名为CmGI基因,序列提交到GenBank,登录号为JQ043439。序列比对显示与葡萄、蓖麻等的GI的相似度依次为76%、75%。构建类似蛋白系统进化树显示,菊花CmGI与拟南芥(Arabidopsis thaliana GIGANTEA,ABP96482.1)分子进化距离最近,其次是白菜(Brassica rapa GIGANTEA,AEB33730.1);预测CmGI蛋白有6个跨膜螺旋多次跨膜;为转录因子,定位在细胞核中,为非分泌性蛋白质;不具备信号肽;对CmGI三级结构建模预测表明,蛋白核心结构符合转录因子与DNA结合常见的功能域HTH、HLH;采用荧光相对定量分析,菊花CmGI的表达呈昼夜节律表达模式;不同花芽分化阶段叶片中CmGI基因mRNA水平差异大,两个高峰值分别出现在花芽分化启动期和小花原基分化中期;营养生长的组培苗、长日照条件下的叶、芽、花蕾期均是痕量表达;盛花期表达量依次为叶片>舌状花>筒状花。【结论】从菊花中克隆得到节律钟输出基因CmGI,对该基因的进一步深入研究有助于探索光周期途径菊花成花的分子调控机制,可作为切花菊花期调控分子育种的目标基因。  相似文献   

16.
Currat M  Excoffier L  Maddison W  Otto SP  Ray N  Whitlock MC  Yeaman S 《Science (New York, N.Y.)》2006,313(5784):172; author reply 172
Mekel-Bobrov et al. and Evans et al. (Reports, 9 Sept. 2005, p. 1720 and p. 1717, respectively) examined sequence data from modern humans within two gene regions associated with brain development, ASPM and microcephalin, and concluded that selection of these genes must be ongoing. We show that models of human history that include both population growth and spatial structure can generate the observed patterns without selection.  相似文献   

17.
摘要:MOB家族是一个庞大的高度保守的蛋白家族,MOB蛋白参与调控细胞周期和细胞形态形成,而且与肿瘤的发生发展可能有关。本研究利用RT-PCR技术克隆获得了鸡的MOB基因全长编码序列并测序验证;利用生物信息学方法对鸡MOB基因的遗传进化性和蛋白功能进行预测分析;并利用半定量RT-PCR技术对雏鸡的MOB基因进行组织表达谱分析。实验结果表明鸡MOB基因核酸和氨基酸序列与人和鼠的同源基因同源性在80%以上;生物信息学对MOB蛋白的功能预测,发现鸡MOB蛋白具有6个跨膜结构域和一个SAM结构域;组织表达谱分析表明鸡MOB基因在各个组织中均有表达,但在脑、肠、脾、肺、骨骼肌和肝脏中表达量较高。含SAM结构域的多种蛋白在胚胎发育、神经形成和白血病等过程中具有重要功能,相信本研究通过对鸡MOB基因的研究能够为人类同源基因的深入研究有所帮助,并希望为人类肿瘤发生机制的深人探讨提供有价值的参考。  相似文献   

18.
Humans and their closest evolutionary relatives, the chimpanzees, differ in approximately 1.24% of their genomic DNA sequences. The fraction of these changes accumulated during the speciation processes that have separated the two lineages may be of special relevance in understanding the basis of their differences. We analyzed human and chimpanzee sequence data to search for the patterns of divergence and polymorphism predicted by a theoretical model of speciation. According to the model, positively selected changes should accumulate in chromosomes that present fixed structural differences, such as inversions, between the two species. Protein evolution was more than 2.2 times faster in chromosomes that had undergone structural rearrangements compared with colinear chromosomes. Also, nucleotide variability is slightly lower in rearranged chromosomes. These patterns of divergence and polymorphism may be, at least in part, the molecular footprint of speciation events in the human and chimpanzee lineages.  相似文献   

19.
20.
【目的】掌握SPOP和MyD88基因分子特征及其在鸡不同组织发育过程中的表达特征,为后续研究其调控鸡组织生长发育机理及开展抗病育种提供参考依据。【方法】通过RT-PCR克隆鸡SPOP和MyD88基因编码区(CDS)序列,运用ExPASy、SOPMA、SWISS-MODEL及PSORT II Prediction等在线软件进行生物信息学分析,并以实时荧光定量PCR检测这2个基因在鸡胚14胚龄(E14 d)及出壳后1 d(H1 d)、7 d(H7 d)和14 d(H14 d)各组织中的表达情况。【结果】鸡SPOP、MyD88基因CDS序列长为1125和900 bp,分别编码374和299个氨基酸残基。SPOP蛋白分子式为C1866H2926N496O559S28,相对分子量为42 kD,理论等电点(pI)为5.58,为相对不稳定蛋白;MyD88蛋白分子式为C1502H2394N410O438S18,相对分子量为33 kD,pI为5.93,为相对不稳定蛋白。鸡SPOP和MyD88蛋白二级结构以α-螺旋和无规则卷曲为主,主要定位于细胞质(占60.9%)。与人类和哺乳动物相比,鸡SPOP蛋白的3个功能结构域(MATH、BTB-POZ和BACK)较保守,而MyD88蛋白的2个功能结构域(Death和TIR)存在多处氨基酸位点变异。SPOP和MyD88基因在鸡不同发育阶段各组织中均有表达,但以肺脏中的相对表达量最高,且二者间的表达差异极显著(P<0.01,下同)。从E14 d发育至H14 d,SPOP基因在眼球和肺脏中的表达整体上呈上升趋势,且至H14 d时肺脏中的表达趋于稳定,在脑组织、心脏和肌胃中的表达呈先上升后下降的变化趋势,在肝脏中的表达呈先下降后上升再下降的变化趋势;MyD88基因在眼球、肝脏和肺脏中的表达均呈先上升后下降再上升的变化趋势,在肌胃和胸肌中的表达呈下降趋势,至H14 d时降至最低值。【结论】SPOP和MyD88基因在鸡胚不同发育阶段肺脏、眼球和肌胃中的表达相对较高,SPOP基因的表达水平均极显著高于MyD88基因,且二者的相对表达量呈负相关,即SPOP基因负调控MyD88基因的表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号