首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Infrared reflectance spectra have been obtained for the meteorites Shergotty and Allan Hills (ALHA) 77005, a unique achondrite apparently related to the shergottites. Comparisons with the reflectance spectra of eucrites and asteroid 4 Vesta indicate that the surface of Vesta is covered with eucrite-like basalts and that, if shergottite-like basalts are present on the surface of Vesta, they must be a minor rock type. The paradox that both the eucrite and shergottite parent bodies should presently exist is examined. The preferred solution is that both eucrites and shergottites are derived from Vesta, and that this asteroid is compositionally and isotopically heterogeneous; however, other possible solutions cannot be ruled out.  相似文献   

2.
Binzel RP  Xu S 《Science (New York, N.Y.)》1993,260(5105):186-191
For more than two decades, asteroid 4 Vesta has been debated as the source for the eucrite, diogenite, and howardite classes of basaltic achondrite meteorites. Its basaltic achondrite spectral properties are unlike those of other large main-belt asteroids. Telescopic measurements have revealed 20 small (diameters 相似文献   

3.
Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.  相似文献   

4.
The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta's south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteorites. The spatially resolved mineralogy of the surface reflects the composition of the HED meteorites, confirming the formation of Vesta's crust by melting of a chondritic parent body. Vesta's mass, volume, and gravitational field are consistent with a core having an average radius of 107 to 113 kilometers, indicating sufficient internal melting to segregate iron. Dawn's results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs.  相似文献   

5.
Rhenium and osmium concentrations and Os isotopic compositions of eight carbonaceous chondrites, one LL3 ordinary chondrite, and two iron meteorites were determined by resonance ionization mass spectrometry. Iron meteorite (187)Re/(186)Os and (l87)Os/(l86)Os ratios plot on the previously determined iron meteorite isochron, but most chondrite data plot 1 to 2 percent above this meteorite isochron. This suggests either that irons have significantly younger Re-Os closure ages than chondrites or that chondrites were formed from precursor materials with different chemical histories from the precursors of irons. Some samples of Semarkona (LL3) and Murray (C2M) meteorites plot 4 to 6 percent above the iron meteorite isochron, well above the field delineated by other chondrites. Murray may have lost Re by aqueous leaching during its preterrestrial history. Semarkona could have experienced a similar loss of Re, but only slight aqueous alteration is evident in the meteorite. Therefore, the isotopic composition of Semarkona could reflect assembly of isotopically heterogeneous components subsequent to 4.55 billion years ago or Os isotopic heterogeneities in the primordial solar nebula.  相似文献   

6.
Eucrites are a group of meteorites that represent the first planetary igneous activity following metal-silicate differentiation on an early planetesimal, similar to Asteroid 4 Vesta, and, thus, help date geophysical processes occurring on such bodies in the early solar system. Using the short-lived radionuclide (182)Hf as a relative chronometer, we demonstrate that eucrite zircon crystallized quickly within 6.8 million years of metal-silicate differentiation. This implies that mantle differentiation on the eucrite parent body occurred during a period when internal heat from the decay of (26)Al and (60)Fe was still available. Later metamorphism of eucrites took place at least 8.9 million years after the zircons crystallized and was likely caused by heating from impacts, or by burial under hot material excavated by impacts, rather than from lava flows. Thus, the timing of eucrite formation and of mantle differentiation is constrained.  相似文献   

7.
Sulfides from four achondrite meteorite groups are enriched in 33S (up to 0.040 per mil) as compared with primitive chondrites and terrestrial standards. Stellar nucleosynthesis and cosmic ray spallation are ruled out as causes of the anomaly, but photochemical reactions in the early solar nebula could produce the isotopic composition. The large 33S excess present in oldhamite from the Norton County aubrite (0.161 per mil) suggests that refractory sulfide minerals condensed from a nebular gas with an enhanced carbon-oxygen ratio, but otherwise solar composition is the carrier. The presence of a mass-independent sulfur effect in meteorites argues for a similar process that could account for oxygen isotopic anomalies observed in refractory inclusions in primitive chondrites.  相似文献   

8.
Asteroid vesta: spectral reflectivity and compositional implications   总被引:1,自引:0,他引:1  
The spectral reflectivity (0.30 to 1.10 microns) of several asteroids has been measured for the first time. The reflection spectrum for Vesta contains a strong absorption band centered near 0.9 micron and a weaker absorption feature between 0.5 and 0.6 micron. The reflectivity decreases strongly in the ultraviolet. The reflection spectrum for the asteroid Pallas and probably for Ceres does not contain the 0.9-micron band. Vesta shows the strongest and best-defined absorption bands yet seen in the reflection spectrum for the solid surface of an object in the solar system. The strong 0.9-micron band arises from electronic absorptions in ferrous iron on the M2 site of a magnesian pyroxene. Comparison with laboratory measurements on meteorites and Apollo 11 samples indicates that the surface of Vesta has a composition very similar to that of certain basaltic achondrites.  相似文献   

9.
Eucrites and angrites are distinct types of basaltic meteorites whose origins are poorly known. Experiments in which samples of the Allende (CV3) carbonaceous chondrite were partially melted indicate that partial melts can resemble either eucrites or angrites, depending only on the oxygen fugacity (fo(2)). Melts are eucritic if thefo(2) is below that of the iron-wüstite buffer or angritic if above the fo(2) of that buffer. With changing pressure, the graphite-oxygen redox reaction can produce oxygen fugacities that are above or below those of the iron-wüstite buffer. Therefore, a single, homogeneous, carbonaceous planetoid >110 kilometers in radius could produce melts of drastically different composition, depending on the depth of melting.  相似文献   

10.
Meteorite studies suggest that each solar system object has a unique oxygen isotopic composition. Chondrites, the most primitive of meteorites, have been believed to be derived from asteroids, but oxygen isotopic compositions of asteroids themselves have not been established. We measured, using secondary ion mass spectrometry, oxygen isotopic compositions of rock particles from asteroid 25143 Itokawa returned by the Hayabusa spacecraft. Compositions of the particles are depleted in (16)O relative to terrestrial materials and indicate that Itokawa, an S-type asteroid, is one of the sources of the LL or L group of equilibrated ordinary chondrites. This is a direct oxygen-isotope link between chondrites and their parent asteroid.  相似文献   

11.
Ultraviolet laser microprobe analyses of a calcium-aluminum-rich inclusion (CAI) from the Allende meteorite suggest that a line with a slope of exactly 1.00 on a plot of delta17O against delta18O represents the primitive oxygen isotope reservoir of the early solar nebula. Most meteorites are enriched in 17O and 18O relative to this line, and their oxygen isotope ratios can be explained by mass fractionation or isotope exchange initiating from the primitive reservoir. These data establish a link between the oxygen isotopic composition of the abundant ordinary chondrites and the primitive 16O-rich component of CAIs.  相似文献   

12.
Pyroxene-garnet transformation in coorara meteorite   总被引:1,自引:0,他引:1  
Majorite is a new garnet in a veinlet of the Coorara meteorite. Its chemical composition is compatible with derivation mostly from original pyroxene, not from olivine as originally reported. Silicon is partly in sixfold coordination. Ringwoodite, a spinel of olivine composition, occurs as purple grains set in a matrix of fine-grained garnet. The similar mineralogy and texture of the Coorara and Tenham meteorites suggest a common parent body.  相似文献   

13.
Wadhwa M 《Science (New York, N.Y.)》2001,291(5508):1527-1530
The oxidation state of basaltic martian meteorites is determined from the partitioning of europium (Eu) in their pyroxenes. The estimated redox conditions for these samples correlate with their initial neodymium and strontium isotopic compositions. This is interpreted to imply varying degrees of interaction between the basaltic parent melts, derived from a source in the martian mantle, and a crustal component. Thus, the mantle source of these martian basalts may have a redox state close to that of the iron-wüstite buffer, whereas the martian crust may be more oxidized (with a redox state higher than or equal to that of the quartz-fayalite-magnetite buffer). A difference in redox state of more than 3 log units between mantle and crustal reservoirs on Mars could result from oxidation of the crust by a process such as aqueous alteration, together with a subsequent lack of recycling of this oxidized crust through the reduced upper mantle.  相似文献   

14.
More precise and comprehensive analytical results have been derived for lunar material at the Surveyor V landing site from alpha-scattering data. The composition is, in general, basaltic; the low sodium and high titanium contents, however, are distinctly different from the abundances in meteorites or common terrestrial rocks.  相似文献   

15.
Measurement of rhenium (Re) and osmium (Os) concentrations and Os isotopic compositions in Ivory Coast tektites (natural glasses with upper crustal compositions that are ejected great distances during meteorite impact) and rocks from the inferred source crater, Lake Bosumtwi, Ghana, show that these tektites incorporate about 0.6 percent of a meteoritic component. Analysis of elemental abundances of noble metals alone gives equivocal results in the detection of meteoritic components because the target rocks already have relatively large amounts of noble metals. The Re-Os system is ideally suited for the study of meteorite impacts on old continental crust for three reasons. (i) The isotopic compositions of the target rocks and the meteoritic impactor are significantly different. (ii) Closed-system mixing of target rocks and meteorites is linear on Re-Os isochron diagrams, which thus permits identification of the loss of Re or Os. (iii) Osmium isotopic compositions are not likely to be altered during meteorite impact even if Re and Os are lost.  相似文献   

16.
Measurements of the lead isotopic composition and the uranium, thorium, and lead concentrations in meteorites were made in order to obtain more precise radiometric ages of these members of the solar system. The newly determined value of the lead isotopic composition of Canyon Diablo troilite is as follows: (206)Pb/(204)Pb = 9.307, (207)Pb/(2O4)Pb = 10.294, and (208)Pb/(204)Pb = 29.476. The leads of Angra dos Reis, Sioux County, and Nuevo Laredo achondrites are very radiogenic, the (206)Pb/(204)Pb values are about 200, and the uranium-thorium-lead systems are nearly concordant. The ages of the meteorites as calculated from a single-stage (207)Pb/(206)Pb isochron based on the newly determined primordial lead value and the newly reported (235)U and (838)U decay constants, are 4.528 x 10(9) years for Sioux County and Nuevo Laredo and 4.555 x 10(9) years for Angra dos Reis. When calculated with the uranium decay constants used by Patterson, these ages are 4.593 x 10(9) years and 4.620 x 10(9) years, respectively, and are therefore 40 to 70 x 10(6) years older than the 4.55 x 10(9) years age Patterson reported. The age difference of 27 x 10(6) years between Angra dos Reis and the other two meteorites is compatible with the difference between the initial (87)Sr/(86)Sr ratio of Angra dos Reis and that of seven basaltic achondrites observed by Papanastassiou and Wasserburg. The time difference is also comparable to that determined by (129)1-(129)Xe chronology. The ages of ordinary chondrites (H5 and L6) range from 4.52 to 4.57 x 10(9) years, and, here too, time differences in the formation of the parent bodies or later metamorphic events are indicated. Carbonaceous chondrites(C2 and C3) appear to contain younger lead components.  相似文献   

17.
Isotopic analyses of nickel in samples from the differentiated meteorite Chervony Kut revealed the presence of relative excesses of (60)Ni ranging from 2.4 up to 50 parts per 10(4). These isotopic excesses are from the decay of the now extinct short-lived nuclide (60)Fe and provide clear evidence for the existence of (60)Fe over large scales in the early solar system. Not only was (60)Fe present at the time of melting and differentiation (that is, Fe-Ni fractionation) of the parent body of Chervony Kut but also later at the time when basaltic magma solidified at or near the surface of the planetesimal. The inferred abundance of (60)Fe suggests that its decay alone could have provided sufficient heat to melt small (diameters of several hundred kilometers) planetary bodies shortly after their accretion.  相似文献   

18.
The composition and morphology of magnetite in CI carbonaceous meteorites appear incompatible with a nebular origin. Mineralization on the meteorite parent body is a more plausible mode of formation. The iodine-xenon age of this material therefore dates an episode of secondary mineralization on a planetesimal rather than the epoch of condensation in the primitive solar nebula.  相似文献   

19.
Visible and near-infrared spectroscopic observations of the asteroid 1459 Magnya indicate that it has a basaltic surface. Magnya is at 3. 15 astronomical units (AU) from the sun and has no known dynamical link to any family, to any nearby large asteroid, or to asteroid 4 Vesta at 2.36 AU, which is the only other known large basaltic asteroid. We show that the region of the belt around Magnya is densely filled by mean-motion resonances, generating slow orbital diffusion processes and providing a potential mechanism for removing other basaltic fragments that may have been created on the same parent body as Magnya. Magnya may represent a rare surviving fragment from a larger, differentiated planetesimal that was disrupted long ago.  相似文献   

20.
The preatmospheric mass of the Tagish Lake meteoroid was about 200,000 kilograms. Its calculated orbit indicates affinity to the Apollo asteroids with a semimajor axis in the middle of the asteroid belt, consistent with a linkage to low-albedo C, D, and P type asteroids. The mineralogy, oxygen isotope, and bulk chemical composition of recovered samples of the Tagish Lake meteorite are intermediate between CM and CI meteorites. These data suggest that the Tagish Lake meteorite may be one of the most primitive solar system materials yet studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号