首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rheological properties of raw oat flour slurries were determined in experimental high β‐glucan (≤7.8%) and traditional oat lines (4–5% β‐glucan) grown in two consecutive years. Three different media were used to disperse oat flours: deionized water, silver nitrate solution (to inactivate endogenous enzymes), and alkali solution (to solubilize both water‐soluble and water‐insoluble β‐glucans). Significant correlations (P < 0.05) between viscosity of slurries and β‐glucan concentration obtained in either deionized water (r = 0.833), silver nitrate (r = 0.940), or alkali (r = 0.896) solutions showed that β‐glucans were the main contributor to oat extract viscosity. The highest correlation was obtained in silver nitrate solution, suggesting that inactivating endogenous enzymes is important to obtain high correlations. Predictive models of oat β‐glucan concentration based on the viscosity profile were developed using partial least squares (PLS) regression. Prediction of β‐glucan concentration based on viscosity was most effective in the silver nitrate solution (r = 0.949, correlation coefficient of predicted vs. analyzed β‐glucans) and least effective in the alkali solution (r = 0.870). These findings demonstrate that the β‐glucan in oat could be predicted by measuring the viscosity of raw flours in silver nitrate solution, and this method could be used as a screening tool for selective breeding.  相似文献   

2.
Oats, different oat fractions as well as experimental and commercial oat‐based foods, were extracted with hot water containing thermostable α‐amylase. Average molecular weight and molecular weight distributions of β‐glucan in extracts were analyzed with a calibrated high‐performance size‐exclusion chromatography system with Calcofluor detection, specific for the β‐glucan. Oats, rolled oats, oat bran, and oat bran concentrates all had high Calcofluor average molecular weights (206 × 104 to 230 × 104 g/mol) and essentially monomodal distributions. Of the oat‐containing experimental foods, extruded flakes, macaroni, and muffins all had high average molecular weights. Pasteurized apple juice, fresh pasta, and teacake, on the other hand, contained degraded β‐glucan. Calcofluor average molecular weights varied from 24 × 104 to 167 × 104 g/mol in different types of oat bran‐based breads baked with almost the same ingredients. Large particle size of the bran and short fermentation time limited the β‐glucan degradation during baking. The polymodal distributions of β‐glucan in these breads indicated that this degradation was enzymatic in nature. Commercial oat foods also showed large variation in Calcofluor average molecular weight (from 19 × 104 g/mol for pancake batter to 201 × 104 g/mol for porridge). Boiling porridge or frying pancakes did not result in any β‐glucan degradation. These large differences in molecular weight distribution for β‐glucan in different oat products are very likely to be of nutritional importance.  相似文献   

3.
Effects of various enzymes and extraction conditions on yield and molecular weight of β‐glucans extracted from two batches of commercial oat bran produced in Sweden are reported. Hot‐water extraction with a thermostable α‐amylase resulted in an extraction yield of ≈76% of the β‐glucans, while the high peak molecular weight was maintained (1.6 × 106). A subsequent protein hydrolysis significantly reduced the peak molecular weight of β‐glucans (by pancreatin to 908 × 103 and by papain to 56 × 103). These results suggest that the protein hydrolyzing enzymes may not be pure enough for purifying β‐glucans. The isolation scheme consisted of removal of lipids with ethanol extraction, enzymatic digestion of starch with α‐amylase, enzymatic digestion of protein using protease, centrifugation to remove insoluble material, removal of low molecular weight components using dialysis, precipitation of β‐glucans with ethanol, and air‐drying.  相似文献   

4.
Experimental oat lines high in β‐glucan (6–7.8%) and traditional lines (3.9–5.7% β‐glucan) were used to evaluate the effect of β‐glucan on pasting (by rapid viscoanalysis) and thermal properties (by differential scanning calorimetry) of oat flours. Significant correlations established between β‐glucan concentration and the pasting parameters after amylolysis demonstrated the role of β‐glucans in oat pasting. The relative decrease of peak viscosity (PV) observed after enzymatic removal of β‐glucans was correlated with β‐glucan concentration (r = 0.880, P < 0.010) and reconfirmed their contribution to pasting. A significant increase of PV with β‐glucan concentration obtained under conditions of either autolysis (deionized water used for dispersion) (r = 0.89, P < 0.010) or inhibition (silver nitrate solution used for dispersion) (r = 0.91, P < 0.001) might be explained by an increase in water retention capacity caused by the β‐glucans. Predictive models of β‐glucan concentration based on the whole pasting profile or selected profile regions were developed using partial least squares (PLS) regression.Prediction of β‐glucan based on the whole profile obtained in the silver nitrate solution was the most effective (r = 0.93, correlation coefficient of predicted vs. analyzed β‐glucans, P < 0.050). No correlations were observed between the thermal properties of oat flours and the β‐glucan concentration.  相似文献   

5.
Extraction protocols for β‐glucan from oat flour were tested to determine optimal conditions for β‐glucan quality testing, which included extractability and molecular weight. We found mass yields of β‐glucan were constant at all temperatures, pH values, and flour‐to‐water ratios, as long as sufficient time and enough repeat extractions were performed and no hydrolytic enzymes were present. Extracts contained about 30–60% β‐glucan, with lower proportions associated with higher extraction temperatures in which more starch and protein were extracted. All commercial starch hydrolytic enzymes tested, even those that are considered homogenous, degraded β‐glucan apparent molecular weight as evaluated by size‐exclusion chromatography. Higher concentration β‐glucan solutions could be prepared by controlling the flour‐to‐water ratio in extractions. Eight grams of flour per 50 mL of water generated the highest native β‐glucan concentrations. Routine extractions contained 2 g of enzyme‐inactivated flour in 50 mL of water with 5mM sodium azide (as an antimicrobial), which were stirred overnight, centrifuged, and the supernatant boiled for 10 min. The polymer extracted had a molecular weight of about 2 million and was stable at room temperature for at least a month.  相似文献   

6.
One way to study the state in which stabilized extracellular enzymes persist and are active in the soil is by extraction from the soil, with subsequent fractionation of enzyme–organomineral complexes and characterization of such complexes. In order to investigate the location and characteristics of soil β‐glucosidase, three soil fractions were obtained both from real (undisturbed) soil aggregates and from structural (dispersed in water and physically disrupted) aggregates using two different granulometric procedures. The β‐glucosidase activity of the fraction was then assayed. When the aggregates were dispersed, more than 73% of activity was in the soil microaggregates with diameters of less than 50 μm (SF50). These aggregates were associated with strongly humified organic matter. Solutions of diluted pyrophosphate at neutral pH liberated active β‐glucosidase from all fractions, although the efficacy of extraction varied according to the type of fraction. The SF50 fraction and aggregates of 2000–100 μm obtained by sieving (SF2000) showed the greatest β‐glucosidase activity (34.5 and 36.0%, respectively). Micro‐ and ultrafiltration of SF50 extracts increased the total β‐glucosidase activity, whereas these procedures, applied to the RF2000 fraction, decreased it. Humus–β‐glucosidase complexes in the SF50 fraction, between 0.45 μm and 105 nominal molecular weight limit ( nmwl ) (SF50II) and < 105nmwl (SF50III) showed an optimum pH at 5.4, and in the SF50I fraction (> 0.45 μm) the optimum was 4.0. The stability of β‐glucosidase in the aggregates of the smallest size SF50II and SF50III decreased at acid pHs. The presence of two enzymes (or two forms of the same enzyme) catalysing the same reaction with different values of Michaelis constant and maximum velocity was observed in all but one of the β‐glucosidase complexes extracted and partially purified from the SF50 aggregates.  相似文献   

7.
Fortifying bread with β‐glucan has been shown to reduce bread quality and the associated health benefits of barley β‐glucan. Fortification of bread using β‐glucan concentrates that are less soluble during bread preparation steps has not been investigated. The effects of β‐glucan concentration and gluten addition on the physicochemical properties of bread and β‐glucan solubility and viscosity were investigated using a less soluble β‐glucan concentrate, as were the effects of baking temperature and prior β‐glucan solubilization. Fortification of bread with β‐glucan decreased loaf volume and height (P ≤ 0.05) and increased firmness (P ≤ 0.05). Gluten addition to bread at the highest β‐glucan level increased height and volume (P ≤ 0.05) to values exceeding those for the control and decreased firmness (P ≤ 0.05). β‐Glucan addition increased (P ≤ 0.05) extract viscosity, as did gluten addition to the bread with the highest β‐glucan level. Baking at low temperature decreased (P ≤ 0.05) β‐glucan viscosity and solubility, as did solubilizing it prior to dough formulation. Utilization of β‐glucan that is less soluble during bread preparation may hold the key to effectively fortifying bread with β‐glucan without compromising its health benefits, although more research is required.  相似文献   

8.
The beneficial role of soluble dietary fiber in human nutrition is well documented and has lead to a growing demand for the incorporation of β‐glucan, particularly from oats and barley, into foods. β‐Glucan with high solubility and high molecular weight distribution results in increased viscosity in the human intestine, which is desirable for increased physiological activity. Molecular weight, level, and solubility of β‐glucan are affected by genotype, environment, agronomic input, and the interactions of these factors and food processing methods. Available literature reveals that the level of β‐glucan in a finished product (e.g. bread, cake, muffins) depends upon several factors in the production chain, whereas food processing operations are major factors affecting molecular weight and solubility of β‐glucans. Therefore, to avail themselves of the natural bioactive compounds, food manufacturers must pay attention not only to ensure sufficient concentration of β‐glucan in the raw material but also to the processing methods and functional properties of β‐glucan, minimizing enzymatic or mechanical breakdown of the β‐glucans in end‐product and optimizing processing conditions. This review discusses the different sources of β‐glucan for use in human functional foods and factors affecting the levels and the molecular weight of β‐glucan at various pre‐ and postharvest operations.  相似文献   

9.
Use of saturated Ba(OH)2 to extract rye β‐glucan led to a depolymerized product. Similar depolymerization of β‐glucan was observed when oat bran was extracted with this reagent. Isolated oat β‐glucan, detarium xyloglucan, guar galactomannan, and wheat and rye arabinoxylan were also depolymerized by treatment with the barium reagent. The degree of depolymerization was related to time of contact with, and concentration of, the barium. Rye β‐glucan of two different molecular weights (MW) were isolated and characterized. The structure of rye β‐glucan, as evaluated from the ratio of (1→3)‐linked cellotriosyl to (1→3)‐linked cellotetraosyl primary structural units, most closely resembles barley β‐glucan. Analytical variability of this ratio is discussed. A freshly prepared solution (2%) of the higher MW sample showed shear thinning behavior typical of cereal β‐glucans. The lower MW sample at 2% was not shear thinning, but on further purification, after storage for seven days, a 6% solution had gelled as shown by the mechanical spectrum.  相似文献   

10.
Batch extraction of zein from dry‐milled whole corn with ethanol was optimum with 70% ethanol in water, an extraction time of 30–40 min, and temperature of 50°C. High yields (60% of the zein in corn) and high zein contents in the extracted solids (50%) were obtained at a solvent‐to‐solids ratio of 8 mL of 70% ethanol/g of corn. However, zein concentration in the extract was higher at lower ratios. Multiple extraction of the same corn with fresh ethanol resulted in a yield of 85% after four extractions, whereas multiple extractions of fresh corn with the same ethanol resulted in high (15 g/L) zein concentration in the extract. Optimum conditions for batch extraction of zein were 45°C, with 68% ethanol at a solvent‐to‐solids ratio of 7.8 mL/g for an extraction time of 55 min. Column extractions were also best at 50°C and 70% ethanol; a solvent ratio of 1 mL/g resulted in high zein concentrations in the extract (17 g/L) but yields were low (20%).  相似文献   

11.
β‐Glucan can be solubilized from barley by warm water, with increasing solubilization as the temperature is increased. Substantially less glucan is extracted if the barley is dehusked using sulfuric acid, particularly if the dehusked barley is denatured. This indicates that enzymes capable of solubilizing glucan are present in barley. Various purified enzymes promote the solubilization of glucan from denatured and dehusked barley. Apart from endo‐β‐(1→3)(1→4)‐glucanase, these enzymes include endo‐xylanases, arabinofuranosidase, xyloacetylesterase, and feruloyl esterase. Ferulic acid and, probably, acetyl groups are esterlinked to arabinoxylan, not β‐glucan, in the cell walls of barley starchy endosperm, so the ability of the esterases, xylanases, and arabinofuranosidase to solubilize glucan indicates the pentosan component of the cell wall can restrict the extraction of glucan.  相似文献   

12.
Barley β‐glucan concentrate shows great potential as a functional food ingredient, but few product applications exist. The objectives of this study were to formulate a functional beverage utilizing barley β‐glucan concentrate, and to make a sensory evaluation of beverage quality in comparison to pectin beverages and to assess shelf stability over 12 weeks. Three beverage treatments containing 0.3, 0.5, and 0.7% (w/w) barley β‐glucan were developed in triplicate. Trained panelists found peely‐ and fruity‐orange aroma and sweetness intensity to be similar (P > 0.05) for all beverages tested. Beverage sourness intensity differed among beverages (P ≤ 0.05). Panelists evaluated beverages containing 0.3% hydrocolloid as similar (P > 0.05), whereas beverages with 0.5 and 0.7% β‐glucan were more viscous (P ≤ 0.05) than those with pectin at these levels. Acceptability of beverages was similar according to the consumer panel. Shelf stability studies showed no microbial growth and stable pH for all beverages over 12 weeks. Colorimeter values for most beverages decreased (P ≤ 0.05) during the first week of storage, mostly stabilizing thereafter. With an increase in concentration, β‐glucan beverages became lighter in color (P ≤ 0.05) and cloudier, but these attributes for pectin beverages were not affected (P > 0.05). β‐Glucan beverages exhibited cloud loss during the first three weeks of storage. β‐Glucan can therefore be successfully utilized in the production of a functional beverage acceptable to consumers.  相似文献   

13.
A modified procedure for the extraction of α‐zein from corn gluten meal was developed and compared against a commercial extraction method. The modification involved raising the concentration of alcohol in solvent and removing the precipitate by centrifugation. Five organic solvent mixtures were compared using the modified extraction procedure developed along with the reductant sodium bisulfite and NaOH. The modified procedure precipitated most of the non‐α‐zein protein solids by increasing the concentration of alcohol. The supernatant had α‐zein‐rich fraction, resulting in higher yield of α‐zein than the commercial method when cold precipitated. The commercial extraction procedure had a zein yield of 23% and protein purity of 28% using 88% 2‐propanol solvent. The three best solvents, 70% 2‐propanol, 55% 2‐propanol, and 70% ethanol, yielded ≈35% of zein at protein purity of 44% using the modified extraction procedure. Zeins extracted using the novel method were lighter in color than the commercial method. Densitometry scans of SDS‐PAGE of α‐zein‐rich solids showed relatively large quantities of α‐zein with apparent molecular weights of 19,000 and 22,000 Da. The α‐zein‐rich solids also had small amounts of δ‐zein (10,000 Da) because it shares similar solubility properties to α‐zein. A solvent mixture with 70% 2‐propanol, 22.5% glycerol, and 7.5% water extracted significantly less zein (≈33%) compared to all other solvents and had α‐zein bands that differed in appearance and contained little to no δ‐zein.  相似文献   

14.
Barley and oat β‐glucans of low viscosity form reversible gels when prepared in sufficiently high concentrations. Solutions of three barley β‐glucan gums differing in molecular weight and thus in viscosity were prepared at 1.0, 2.5, or 5.0% (w/w) concentration levels. Medium‐ and high‐viscosity gums were prepared in a pilot plant (PP) and laboratory (LAB), respectively. Low‐viscosity (LV) gum was extracted in the laboratory at pH 7, which allowed for native enzymatic activity and decreased molecular weight. Network formation was monitored overnight through changes in storage (G′) and loss (G″) moduli. The strength of the formed network was determined from oscillatory rheological measurements by increasing the strain from 2 to 100%. Findings demonstrate that gelation of β‐glucan is molecular weight dependent and practically an instantaneous process for low‐viscosity gum solutions at concentrations of ≤5% gum (or ≤4% β‐glucan), levels lower than previously anticipated. The purity of β‐glucan also seems to affect gelation rate. Better understanding of the β‐glucan gelation behavior is important for its functionality in both food product applications and physiological mechanisms of its health benefits.  相似文献   

15.
Food processing conditions may affect the extractability and molecular weight of β‐glucans and arabinoxylans in cereal products. This can dramatically affect the functional and physiological properties of the final products. Therefore, the purpose of this research was to explore the effects of jet cooking on the content, extractability, and molecular weights of these polymers in barley flour from a high β‐glucan, waxy barley genotype, Prowashonupana. Barley flours were jet cooked without pH adjustment or after adjusting to pH 7, 9, or 11. Jet cooking without pH adjustment increased the extractability of β‐glucans from 15.4 to 38.0% when extracted with water at 30°C. As pH during jet cooking increased, the extractability further increased to 63.5% at pH 11. Arabinoxylan extractability was only substantially affected when the pH of jet cooking was alkaline (extractability increased from 11.4 to 48.5% when jet cooked at pH 11). Jet cooking without pH adjustment resulted in slight increases in peak molecular weights for both polymers (β‐glucan increased from 420,000 to 443,000; arabinoxylan increased from 119,000 to 125,000); higher pH values during jet cooking resulted in minor decrease in molecular weights.  相似文献   

16.
The mixed‐linkage (1→3),(1→4)‐β‐d ‐glucans are unique to the Poales, the taxonomic order that includes the cereal grasses. (1→3), (1→4)‐β‐Glucans are the principal molecules associated with cellulose microfibrils during cell growth, and they are enzymatically hydrolyzed to a large extent once growth has ceased. They appear again during the developmental of the endosperm cell wall and maternal tissues surrounding them. The roles of (1→3),(1→4)‐β‐glucans in cell wall architecture and in cell growth are beginning to be understood. From biochemical experiments with active synthases in isolated Golgi membranes, the biochemical features and topology of synthesis are found to more closely parallel those of cellulose than those of all other noncellulosic β‐linked polysaccharides. The genes that encode part of the (1→3),(1→4)‐β‐glucan synthases are likely to be among those of the CESA/CSL gene superfamily, but a distinct glycosyl transferase also appears to be integral in the synthetic machinery. Several genes involved in the hydrolysis of (1→3),(1→4)‐β‐glucan have been cloned and sequenced, and the pattern of expression is starting to unveil their function in mobilization of β‐glucan reserve material and in cell growth.  相似文献   

17.
The main nonstarch polysaccharide of rye is arabinoxylan (AX), but rye contains significant levels of (1→3)(1→4)‐β‐d ‐glucan, which unlike oat and barley β‐glucan, is not readily extracted by water, possibly because of entrapment within a matrix of AX cross‐linked by phenolics. This study continues objectives to improve understanding of factors controlling the physicochemical behavior of the cereal β‐glucans. Rye β‐glucan was extracted by 1.0N NaOH and increasing concentrations of ammonium sulfate were used to separate the β‐glucan from AX and prepare a series of eight narrow molecular weight (MW) distribution fractions. Composition and structural characteristics of the isolated β‐glucan and the eight fractions were determined. High‐performance size‐exclusion chromatography (HPSEC) with both specific calcofluor binding and a triple detection (light scattering, viscometry, and refractive index) system was used for MW determination. Lichenase digestion followed by high‐performance anion exchange chromatography of released oligosaccharides, was used for structural evaluation. The overall structure of all fractions was similar to that of barley β‐glucan.  相似文献   

18.
19.
This study focused on the performance of two hulless barley cultivars (Doyce and Merlin) and one commercial husked (hulled) sample using experimental milling. The purpose was to use experimental milling as a preliminary indicator of the milled streams with potential use for fuel ethanol production and fractions that could be used in food products. Experimental mills designed for flour production evaluation from wheat were Chopin CD1 Auto, Quadrumat Sr, Buhler, and an experimental Ross roller mill walking flow. Results indicate that the shorts had the highest levels of β‐glucan from all the mills. However, the β‐glucan content in the break flours was highest with the roller mill walking flow and the Chopin CD1 for the hulless cultivars. The lowest β‐glucan content in the break flour was found with the Buhler for Doyce. Break flour and, to a slightly lesser extent, reduction flour from all cultivars tested on all mills contained the highest starch content (up to 83%) and are therefore most appropriate for use as feedstock for fuel ethanol production. Conversely, bran and shorts from all cultivars and mills were lowest in starch (as low as 25%), making them ideal as low‐starch food ingredients.  相似文献   

20.
The comparably low starch digestibility of cooked sorghum flours was studied with reference to normal maize. Four sorghum cultivars that represent different types of endosperm were used. Starch digestibilities of 4% cooked sorghum flour suspensions, measured as reducing sugars liberated following α-amylase digestion, were 15–25% lower than for cooked maize flour, but there were no differences among the cooked pure starches. After the flours were predigested with pepsin to remove some proteins, the starch digestibility of cooked sorghum flours increased 7–14%, while there was only 2% increase in normal maize; however, there was no effect of pepsin treatment on starch digestibility if the flours were first cooked and then digested. After cooking with reducing agent, 100 mM sodium metabisulfite, starch digestibility of sorghum flours increased significantly while no significant effect was observed for maize. Also, starch solubility of sorghum flours at 85 and 100°C was lower than in maize, and sodium metabisulfite increased solubility much more in sorghum than in maize. Differential scanning calorimetry results of the flour residue after α-amylase digestion did not show any peaks over a temperature range of 20–120°C, indicating that sorghum starches had all undergone gelatinization. These findings indicate that the protein in cooked sorghum flour pastes plays an important role in making a slowly digesting starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号