首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Milling data of four long-grain rice cultivars were analyzed to determine the uniformity in the slope of their curves for head rice yield (HRY) versus the corresponding degree of milling (DOM). The data set for each cultivar comprised samples that had been subjected to various drying air conditions and durations and milled over a range of moisture contents. All treatment combinations were split and milled for either 15, 30, 45, or 60 sec in a McGill no. 2 laboratory mill to obtain HRY versus DOM data. Linear relationships between HRY and DOM, as observed in past research, were confirmed. This implies that as rice is milled to greater extents (higher DOM), the HRY decreases linearly. Within the bounds of the experimental levels tested, neither the drying air condition nor drying duration affected the rate at which HRY changed with DOM. However, the cultivar and the moisture content at which the rice was milled significantly (P < 0.05) influenced this rate. At higher milling moisture contents, the decrease in HRY per unit of increase in the DOM was greater than at lower moisture contents. While not conclusive, there was an indication of a relationship between the average kernel thickness of a cultivar and the HRY versus DOM slope.  相似文献   

2.
The degree of similarity between rice milled in a McGill #2 laboratory mill and commercial milling processes was evaluated using eight physical, physicochemical, and end‐use properties. There was no statistical difference between the two milling systems with respect to color parameters L* and a*, final viscosity, texture, and end‐use cooking properties (α = 0.05). Overall, the kernel dimensions of length, width, and thickness were less in the McGill #2 laboratory‐milled rice than the same rice milled commercially. The incidence of bran streaks and peak viscosity values were each higher when the rice sample was milled commercially in 27, and 28, respectively, of the 29 samples by means comparison. The decrease in kernel dimensions and incidence of bran streaks were attributed to the more aggressive nature of the single‐pass, batch milling system of the McGill #2 laboratory mill as compared with multipass, continuous milling systems that are used commercially. Finally, as surface lipid content (SLC) decreased, L* increased and a*, b*, and the incidence of bran streaks decreased for both milling systems.  相似文献   

3.
The objective of this research was to study the effects of different milling conditions and postmilling handling procedures on appraised milling quality of rough rice. Rough rice (M202) with moisture content of 11.5 ± 0.2% was used for this study. The samples were milled with a McGill number 3 mill under four milling conditions, including normal milling, milling at high temperature, milling with cooling using ice water, and room temperature water. The milled rice samples were cooled in closed and open plastic containers and in open pans with three temperatures: 15, 23, and 35°C. The effects of milling and postmilling conditions on milled rice temperature, moisture loss, cooling rate, single and multiple fissuring rates, total rice yield (TRY), head rice yield (HRY), whiteness index (WI), and total lipid content (TLC) were evaluated. Results showed that high single and multiple fissuring rates and low TRY and HRY were inherent in improper milling and postmilling conditions. Single fissuring rates were 15.9 and 17.6% and multiple fissuring rates were 3.5 and 7.2% for rice samples milled under normal and high‐temperature conditions, respectively. Cooling methods that used open containers and pans had more moisture losses and further resulted in lowering appraised milling quality than methods that used closed containers. Low‐temperature milling conditions followed by cooling in closed containers significantly reduced single and multiple fissuring rates and improved TRY and HRY by 0.9 and 1.5 percentage points, respectively. The effects of tested milling and postmilling conditions on WI and TLC were not significant. Obtained results constitute valuable information for developing milling and cooling procedures to achieve consistent, accurate, and reliable milling quality appraisals for rough rice.  相似文献   

4.
The surface lipids and free fatty acids (FFA) content of head and broken rice samples generated through milling after various drying treatments were studied. Long grain cultivars Francis, Wells, and Cypress, and medium grain cultivar Bengal were dried under three air conditions (mild 25°C, 50% rh; moderate 45°C, 40% rh; and stressed 65°C, 20% rh) for two durations (10 and 30 min). Immediately after drying, the rough rice samples were placed in a conditioning chamber to continue drying slowly to ⋍12.5% moisture content (MC), which occurred within three to five days. After dehulling, a McGill No. 2 mill was used to mill the samples for 30 sec. The head rice yield (HRY) for all rice samples were within the range of 40–68%. Rice surface lipid was extracted with isopropanol (IPA) and the lipid and FFA content of the IPA extracts were determined. Broken rice kernels had significantly greater surface lipid and FFA content than head rice kernels. The surface FFA contents of broken kernels were within the range of 0.045–0.065% of broken rice mass, while that of head rice was 0.027–0.040%. Broken ricehad greater b values indicating greater yellow color than did head rice.  相似文献   

5.
Many rice cultivars and hybrids have unique physical characteristics that affect milling performance. The purpose of this study was to quantify the rate of bran removal during milling for several rice cultivars and hybrids common to the southern United States, and compare the quantity of lipids remaining on the kernel surface to that located throughout the kernel. This was accomplished by analyzing two sample sets. The first comprised cultivars Cocodrie, Cypress, and Lemont, and hybrids XL7 and XL8, which were milled for 0 (brown rice), 20, 30, 40, 50, 60, and 70 sec in a laboratory mill. In the second set, cultivars Cocodrie, Cypress, and Wells, and hybrids XL7 and XL8 were milled for 0, 20, 40, and 60 sec. The surface lipid content (SLC) and color of head rice samples were measured as indications of the degree of milling (DOM). The total lipid content (TLC) of ground head rice was also measured to determine the total amount of lipids present throughout the entire kernel. Results showed that at a given milling duration, SLC and color varied across cultivars and hybrids. In particular, the SLC levels of hybrids were lower than those of cultivars, particularly for Cocodrie, for all milling durations. This research indicated that it may be necessary to mill different cultivars and hybrids for varying durations to attain comparable DOM levels. Milling to a consistent DOM level is necessary to ensure equitable head rice yield comparisons across cultivars and hybrids.  相似文献   

6.
Long-grain rice variety Kaybonnet was milled to three degree of milling (DOM) levels in two commercial milling systems (a single-break, friction milling system and a multibreak, abrasion and friction milling system) and separated into five thickness fractions. For both milling systems, the surface lipid content (SLC) and protein content of the milled rice varied significantly across kernel thickness fractions. SLC was influenced by DOM level more than by thickness, while the protein content was influenced by thickness more than by DOM level. Particularly at the low DOM levels, the thinnest kernel fraction (<1.49 mm) had higher SLC than the other kernel fractions. Protein content decreased with increasing kernel thickness to 1.69 mm, after which it remained constant. In both milling systems, thinner kernels were milled at a greater bran removal rate as indicated by SLC differences between the low and high DOM levels. For rice milled to a given DOM level, the multibreak system produced fewer brokens than did the single-break system.  相似文献   

7.
The effects of the degree of milling (based on surface lipids content [SLC]) on cooked rice physicochemical properties were investigated. Head rice yield (HRY), protein, and SLC decreased with increasing milling, while the percent of bran removed and whiteness increased. Results showed that SLC significantly (P < 0.05) affected milled as well as cooked rice properties across cultivar, moisture content (MC) at harvest, and location (Stuttgart, AR, and Essex, MO). Cooked rice firmness ranged from 90.12 to 111.26 N after milling to various degrees (SLC). The decrease in cooked rice firmness with increasing milling was attributed to the lowering of total proteins and SLC. Cooked rice water uptake increased with increasing degree of milling. Water uptake by the kernel during cooking dictated the cooked rice firmness. The increase in cooked rice stickiness with increasing degree of milling was attributed to an increase in starch leaching during cooking because of the greater starch granule swelling associated with a greater water uptake.  相似文献   

8.
During storage, the milling, physicochemical properties, and eating quality of rice change, which is generally termed “aging.” Aged rice is preferred by processors because of better processing characteristics, and therefore there are attempts to develop accelerated aging processes. In this study, the effects of various heat treatments and their influences on the milling, physicochemical, and cooking properties of two long‐grain rice cultivars during storage were investigated with a randomized complete block design with an 8 × 5 × 2 full‐factorial treatment design. Two long‐grain rice cultivars, Wells and XP723, were treated with eight different heat treatments, including two levels of UV irradiation, two levels of autoclaving, three levels of convection oven heating, and one control, and then stored for 180 days at room temperature. The heat treatments significantly influenced all properties, including head rice yield (HRY), surface lipid content, peak gelatinization temperature, pasting properties, and cooked rice texture. All properties except HRY exhibited a significant two‐way interaction of cultivar and heat treatment. The severe autoclaving treatment resulted in rice of significantly different protein compositions when compared with the control. Storage impacted all properties except HRY and peak gelatinization temperature. Autoclaving (particularly severe autoclaving) produced samples with more distinct characteristics for most properties. Cooked rice hardness and stickiness exhibited not only significant main effects but also significant two‐ and three‐factor interactions.  相似文献   

9.
The surface lipid content (SLC) of rice is often used to objectively measure the degree to which bran has been removed from rice kernels, commonly known as degree of milling (DOM). This study was conducted to evaluate new, rapid extraction technology for potential timesaving measurements of SLC of milled rice. The SLC of two long‐grain rice cultivars, Cypress and Drew, were determined using three extraction systems: Soxtec, accelerated solvent extraction (ASE), and supercritical fluid extraction (SFE). Before milling, rough rice was separated into three thickness fractions (<1.84, 1.84–1.98, and >1.98 mm) and samples from each thickness fraction were milled for durations of 10, 20, and 30 sec. Head rice collected from each milling duration was extracted using each of the three methods. Results showed that regardless of the extraction method, thinner kernels had lower SLC measurements than thicker fractions. In most cases, both the ASE and Soxtec produced SLC greater than that of the SFE. The ASE also showed SLC measurements at least as great as those from Soxtec extraction, suggesting that the ASE is as thorough in extracting lipids as commonly used methods.  相似文献   

10.
Degree of milling (DOM) of rice plays a key role in determining rice quality and value. Therefore, accurate, nondestructive, quick, and automated surface lipid content (SLC) measurement would be useful in a commercial milling environment. This study was undertaken to provide calibration models for commercial use to provide quick and accurate evaluation of milled rice SLC and Hunterlab color parameters (L,a,b) as indications of rice DOM. In all, 960 samples, including seven cultivars from seven southern United States locations, stored for 0, 1, 2, 3, and 6 months, were milled for four durations to obtain samples of varying DOM. The samples were used to develop calibration models of milled rice SLC and L,a,b values. Another sample set (n = 58) was commercially milled and used to validate the developed models. A DA 7200 diode array analyzer was used to scan milled rice samples in wavelength spectra of 950–1,650 nm. SLC and color parameters were measured using a Soxtec system and a HunterLab colorimeter, respectively. The partial least squares regression (PLS) method using the full near‐infrared spectra was used to develop prediction models for rice SLC and color parameters. Milled rice SLC was well fitted with a correlation of determination of predicted and measured values of (R2 = 0.934). Color parameters were also successfully fitted for L (R2 = 0.943), a (R2 = 0.870), and b (R2 = 0.855). Performance of the developed models to predict rice DOM was superior in predicting SLC and L,a,b values with R2 predicted and measured values of 0.958, 0.836, 0.924, and 0.661, respectively.  相似文献   

11.
Rice quality, specifically head rice yield (HRY), can vary inexplicably from one lot to another, and from year to year. In an effort to correlate air temperatures during various growth stages to HRY, growth staging data expressed in degree day units was used to predict the occurrence of sequential growth stages within a set of 17‐year historical data, which included HRY and 50% heading dates for two long‐grain rice cultivars, (Oryza sativa L) Newbonnet and Lemont, and area weather data. HRY was most strongly affected by the average daily low temperature (or nighttime temperature) during the R8 developmental stage. Lower HRY were associated with high nighttime air temperatures during this stage for both Newbonnet and Lemont. When used as a single variable in a regression model, the nighttime temperature during the R8 developmental stage explained over 25% of the variation in HRY.  相似文献   

12.
The degree of milling (DOM) of rice is a measure of how well the germ and bran layers are removed from the surface of rice kernels during milling. Because the majority of rice kernel lipids are found on the surface, measuring the surface lipid content (SLC) of rice after milling may be one way to quantify the DOM of rice. While there are several methods to measure the lipid content (LC) of rice, there is not an established standard method for determining the SLC of milled rice. The objective of this study was to evaluate the primary operating variables of a Soxtec apparatus in measuring the SLC of milled rice. This was accomplished by varying the preextraction drying, boiling, rinsing, and postextraction drying durations, as well as the solvent used for extraction, to achieve the maximum extraction of lipids from rice. Experiments were performed on stored Oryza sativa L. ‘Cypress’ and ‘Bengal’ rice milled for 10, 30, and 60 sec. Results showed that durations of 1 hr of preextraction, 20 min of boiling, 30 min of rinsing, and 30 min of postextraction drying provided the maximum lipid extraction from milled head rice with petroleum ether. Of the three solvents tested, petroleum ether, and ethyl ether yielded similar extraction results.  相似文献   

13.
A digital image analysis method was developed to quickly and accurately measure the degree of milling (DOM) of rice. The digital image analysis method was statistically compared to a chemical analysis method for evaluating DOM, which consisted of measuring the surface lipids concentration (SLC) of milled rice. The surface lipid area percentage (SLAP) obtained by the image analysis method and the SLC obtained by chemical analysis had a high coefficient of determination using a quadratic model (R2 = 0.9819) and using a logarithmic model (R2 = 0.9703). The quadratic model and the logarithmic model were validated using the test data set and it received high coefficients of determination (R2 = 0.9502 and R2 = 0.9459, respectively).  相似文献   

14.
我国稻米整精米率特点及环境影响因素分析   总被引:1,自引:0,他引:1  
为我国稻米整精米率的提高、品种品质的改善提供参考,本文对2002-2009年度全国稻米普查抽征的5574份稻谷样品的整精米率进行影响因素分析。结果表明,我国稻米整精米率年均值总体徘徊在55.0%,地域特点为北高南低;稻米整精米率与粒长、垩白粒率呈负相关性;地理位置、气候效益等环境因素对整精米率均有一定的影响。  相似文献   

15.
《Cereal Chemistry》2017,94(3):539-545
Fissuring caused by rapid moisture adsorption generates broken kernels upon milling; brokens are often ground to flour. The recent increase in demand for rice flour has promoted interest in brokens. This study investigated the physical and functional characteristics of brokens resulting from milling lots with various levels of moisture adsorption‐induced fissuring. Two long‐grain (LG) cultivars and one medium‐grain (MG) cultivar were conditioned to five initial moisture contents (IMCs), rewetted, and then reconditioned to 12% moisture content. Brown rice fissure enumeration and milling analyses as well as size distribution and functionality analyses of brokens were conducted. As IMC decreased, the percentage of fissured kernels increased and, consequently, the amount of brokens generated increased. Although the number of fissures/kernel also increased with decreasing IMC, the mass distribution of the resultant brokens was not affected by IMC. Across all IMC levels, the mass percentage of the medium‐sized brokens was greatest for the LG cultivars, whereas that of the large‐sized brokens was greatest for the MG cultivar. Regardless of IMC, peak, setback, and final viscosities were greatest for head rice and decreased significantly with decreasing size of brokens. Thus, brokens of different sizes have different functional properties and, hence, may be fractionated for different end‐use applications.  相似文献   

16.
Germinated brown rice is considered a more nutritious and palatable cooked product than conventional brown rice. However, germination usually decreases rice milling yield and alters some physicochemical properties. Parboiling is commonly used to increase milling yield and retain nutrients, but it also changes rice color and texture. The objective of this study was to investigate the effect of parboiling on milling, physicochemical, and textural properties of a medium‐grain and a long‐grain rice after germination at varying durations. Germinated rice samples of three germination durations were prepared with one germination time before the optimum time at which 70% of rice revealed hull protrusion, the optimum time, and one time after. Germinated rice was then immediately parboiled at 120°C for 20 min and was then immediately dried. The milling, physicochemical, and textural properties of parboiled germinated rice from both cultivars were determined. Parboiling significantly decreased the percentage of brokens, whiteness, and the apparent amylose content and increased γ‐aminobutyric acid content (GABA) in the nongerminated rice and rice at the first germination duration for both cultivars. Parboiling reduced pasting viscosities for both cultivars, but Jupiter still exhibited higher pasting viscosities than Wells. Cooked parboiled germinated rice was overall softer than nonparboiled rice because of kernel splitting, but Wells remained harder and less sticky than Jupiter. In conclusion, it is beneficial to combine parboiling with germination to enhance nutritional values and improve milling properties without affecting textural properties for both rice cultivars.  相似文献   

17.
Grain morphological characteristics were thought to play a significant role in genotypic variation in Fe concentration in white rice. Comparing 17 rice cultivars representing six major grain morphological categories, the present study systematically investigated the relationship between grain morphology, the degree of milling (DOM), and the loss of Fe during the polishing process. The relative importance of key morphological parameters in this relationship was also investigated. The grain morphological characteristics of different rice cultivars significantly affected the degree of Fe loss during polishing to produce white rice. This variation in Fe loss from polishing among the six categories of rice cultivars is mainly due to their difference in DOM (r = 0.73**) and this loss in Fe was the primary factor determining the level of Fe concentration in the white rice. Among the morphological parameters investigated, grain length and length-to-width ratios played the most significant role in determining the DOM, which suggests that these two grain attributes may serve as the initial screening parameters when selecting cultivars for high Fe white rice production. Degree of Fe loss was lowest in short-bold grain shape category compared with the other grain shapes.  相似文献   

18.
Dehulled glutinous black rice (cv. Kam Doi Saket) was abrasively milled (0–60 s) to make a degree of milling (DOM) curve. The curve showed a nonlinear relationship between milling time and DOM. The slope sharply increased in the first 20 s; after this point, the increase was moderate. The redness of grain and flour surprisingly increased after milling, and the highest value was found at 20 s of milling. Protein, fat, and crude fiber were not uniformly distributed in the dehulled rice kernel. The rice retained only 76.95, 32.79, 20.24, and 36.57% of protein, fat, crude fiber, and ash, respectively, after milling for 60 s. Anthocyanins, γ‐oryzanol, and α‐tocopherol decreased by 74.49, 55.35, and 70.36%, respectively, after 10 s of milling. The scavenging activity decreased sharply when milling was carried out for longer than 30 s. The methanolic extract from rice milled for 60 s showed the lowest activity, which was 21.1 times lower than that of the dehulled rice extract. It was concluded that milling for 20 s was sufficient to remove most of the bran layer of the black rice sample, but 10 s of milling retained higher contents of nutritional components and rice antioxidants.  相似文献   

19.
Three cultivars of long-grain rice were milled to three degree of milling (DOM) levels. Inverse linear relationships were established between surface fat concentration (SFC) and Satake milling meter (MM1B) optical DOM measurement values, including whiteness, transparency, and DOM, for the unfractionated head rice within each cultivar. Milled bulk rice for each cultivar was subsequently separated into thickness fractions. Effects of milled rice kernel thickness on SFC and optical DOM measurements were investigated. For a given DOM level, SFC decreased with increasing milled rice kernel thickness up to a thickness of 1.67 mm, after which it remained constant. As the overall DOM level increased, the difference in DOM between thin kernels and thick kernels lessened, implying that thin kernels were milled at a greater bran removal rate than thick kernels. Milled rice kernel thickness significantly (at the 0.05 significance level) affected MM1B whiteness and MM1B transparency in two of the cultivars because of the predominant effects of the thinner kernel fractions. Within each cultivar, MM1B DOM was not significantly influenced by milled rice kernel thickness.  相似文献   

20.
Three types of mills and six milling methods were employed to mill two waxy rice varieties (TCSW1, long grain; TCW70, short grain), and the physicochemical and functional properties of rice flour were examined. The results showed that dry-milling maintained a higher level of the chemical components than other milling methods. Wet-milling slightly increased solubility as test temperatures increased, and significantly increased swelling power at 75 and 85°C for TCSW1 and TCW70, respectively. Hammer and semi-dry hammer milling gave higher percentages of coarse particles (100–300 μm); cyclone and turbo milling led to a more even particle-size distribution, and the wet-milling gave the finest particles (10–30 μm). Dry hammer-milled rice had higher gelatinization and pasting temperatures, and semi-dry grinding milling resulted in the lowest pasting temperature, setback viscosity, and enthalpy value among the mills. The final quality of the two waxy rice varieties was profoundly affected by the mill type and milling method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号