首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two silages were made from perennial ryegrass ensiled without wilting in 2-t capacity silos with the application of either formic acid or an enzyme mixture of cellulases and hemicellulases. Effluent losses were monitored over the ensiling period. Subsequent silage analysis showed that the enzyme-treated silage had higher concentrations of residual water soluble carbohydrate, lactic acid and acetic acid, and lower concentrations of cellulose, ADF and NDF. Effluent production was higher with the enzyme silage (formic acid, 211 1 t?1; enzyme, 2671 t?1). The silages were either offered as the sole diet or supplemented with rapeseed meal at two levels (60 or 120 g fresh weight kg?1 silage DM offered) to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole tract digestibilities for DM, OM, N, ADF and NDF were similar for all diets although nitrogen retention (g d?1) was increased with supplementation of both silages (formic acid, 21·1; formic acid + 60 g, 23·5; formic acid+ 120 g, 28·5; enzyme, 22·6; enzyme + 60 g, 25·8; enzyme+ 120 g, 31·6). Rumen pH, ammonia and total volatile fatty acids patterns were similar. Supplementation increased the amount of organic matter apparently digested in the rumen (ADOMR) with formic acid-treated silage but not with enzyme-treated silage. Liveweight gains were similar for both unsupplemented silages (0·49 kg d?1). These increased to 0·55 and 0·65 kg d?1 for formic + 60 and formic + 120 respectively. Liveweight gains for the corresponding enzyme-treated supplemented diets were 0·81 and 0·91 kg d?1 respectively. Liveweight gains on supplemented enzyme-treated diets were significantly (P < 0·05) greater than those on formic acid-treated diets.  相似文献   

2.
Four grass silages were made from perennial ryegrass ensiled after a 1h wilt in 2-t silos without additive application, with application of formic acid or with one of two enzyme mixtures of hemicellulases and cellulases (enzyme 1 and enzyme 2). Effluent losses were monitored over the ensiling period (130 d).
Analyses of the silage showed that formic acid-treated silage had lower concentrations of lactic acid than the other silages. Both enzyme-treated silages had lower levels of cellulose, acid detergent fibre (ADF) and neutral-detergent fibre (NDF) than the untreated and formic acid treated silages. Effluent production was highest with enzyme-treated silages.
The silages were subsequently fed to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole-tract digestibilities of organic matter constituents were significantly lower ( P < 0·05) with both enzyme-treated silages (untreated; 0·736, formic acid; 0·722, enzyme 1; 0·694, enzyme 2; 0·703). Both untreated and enzyme 2-treated silages sustained higher nitrogen digestibilities (g g−1 intake) (untreated; 0·675, formic acid; 0·636, enzyme 1; 0·630, enzyme 2; 0·662) and N retentions (g d−1) untreated; 16·0, formic acid; 14·0, enzyme 1; 11·6, enzyme 2; 16·6), but none of these differences was significant. When formic acid-treated silage was offered, there was a greater amount of organic matter apparently digested in the rumen (ADOMR). Non-ammonia nitrogen and microbial nitrogen flows at the duodenum were similar on all diets. The efficiency of microbial protein synthesis was highest with enzyme 2-treated silage and lowest with formic acid-treated silage (untreated, 35·4; formic acid, 25·2; enzyme 1, 30·4; enzyme 2, 39·4), but none of these differences were significant.  相似文献   

3.
Three grass silages were made from perennial ryegrass ensiled without additive application (U) or with the application of formic acid (F) or an enzyme mixture of hemicellulases and cellulases (E).
Analysis of silages showed that both untreated and enzyme-treated silages had higher lactic acid concentrations than formic acid-treated silage. Enzyme-treated silage had lower levels of ADF and NDF but higher concentrations of residual WSC than other silages.
The silages were fed to growing steers supplemented with either rapeseed meal (RSM) (60 g kg−1 silage DM) or fishmeal (FM) at a level isonitrogenous with RSM diets, so providing six diets (UR, UF, ER, EF, FR, FF). Organic matter intakes were similar, but ADF intakes were significantly ( P < 0·001) lower with enzyme-treated silage diets (UR, 1163; UF, 1160; ER, 1104; EF, 1035; FR, 1216; FF, 1213), as were intakes of NDF ( P < 0·01) (UR, 1946; UF, 1955; ER, 1877; 1772; FR, 2031; FF, 2041). Apparent whole tract digestibilities of organic matter were significantly ( P < 0·001) higher with enzyme-treated silages (UR, 0·644, UF, 0·644; ER, 0·668; EF, 0·678; FR, 0·633; FF, 0·633). Liveweight gains were generally higher with treated silage diets and RSM supported a greater response than FM (UR, 0·496; UF, 0·498; ER, 0·567; EF, 0·489; FR, 0·543; FF, 0·506) with both enzyme and formic acid-treated silages, although none of these differences were significant.  相似文献   

4.
Eight grass silages were made from two contrasting varieties of perennial ryegrass, four silages each from a late-cut early-maturing (high dry matter, HDM) variety and from an early-cut, late-maturing (low dry matter, LDM) variety. The grass was ensiled without additive (untreated), or with formic acid, or with one of two enzyme mixtures of hemicellulases and cellulases (enzyme 1 and enzyme 2) for a period of 130 d.
Formic acid-treated silage had lower levels of lactic acid at both levels of dry matter than the other silages. Enzyme treatment of grass prior to ensilage resulted in reduced levels of cellulose, acid-detergent fibre and neutral-detergent fibre in LDM silages and lower acid-detergent fibre and neutral-detergent fibre in the HDM silages compared with the corresponding untreated and formic acid-treated silages. Voluntary intakes (g DM d−1) of untreated and enzyme-treated silages were significantly ( P <0·01) lower at both digestibilities compared with formic acid-treated silages (LDM: untreated, 982; formic, 1069; enzyme 1, 868; enzyme 2, 937; HDM: untreated, 931; formic, 1027; enzyme 1, 943; enzyme 2, 914). The organic matter, carbohydrate and nitrogen digestibility coefficients of LDM silages were significantly ( P <0·001) higher than those of HDM silages. There were no significant differences in any component digestibility related to silage additive.
Comparison of digestibility coefficients for constituents of the LDM silages fed to sheep or steers showed no differences between species.  相似文献   

5.
A first cut of timothy, treated with water (untreated), formic acid (FA), cellulase + lactic acid bacteria (CB), cellulase + hemicellulase (CH) or cellulase + hemicellulase + a lignin-modifying enzyme (CHL), was ensiled in pilot-scale silos. Silages, except CB, were fed to four male cattle, each equipped with a rumen and duodenal cannula, in a digestibility trial designed as a 4 × 4 Latin square. The animals were fed a diet of 400 g of concentrate and 600 g of silage at a level of 70 g DM kg?1 live weight (LW0·75). All enzyme-treated silages were well-preserved with a more extensive fermentation than in FA silage. The quality of untreated silage was poorer as indicated by higher pH and ammonia-N content. The amount of effluent from enzyme-treated silages ranged from 116 to 127 g kg?1; for FA and untreated silages values were 101 g kg?1 and 80 g kg?1, respectively. Total DM losses from enzyme-treated silages were higher than from FA silage (P < 0·05). No significant differences were noticed between silages in the apparent digestibility of organic matter (OM), neutral-detergent fibre (NDF), acid-detergent fibre (ADF) or nitrogen (N). The apparent digestibility of cellulose was higher with enzyme-treated silages than with FA silage (P < 0·05). The values for microbial N flow at the duodenum were 80·0, 91·9, 80·7 and 70·5g N d?1, and for the efficiency of rumen microbial N synthesis 38·6, 47·6, 36·9 and 32·5 g N kg?1 OM apparently digested in the rumen for untreated, FA, CH and CHL silages, respectively. In the rumen the molar proportion of propionate was higher (P < 0·01) and that of butyrate lower (P < 0·01) with enzyme-treated silages when compared with FA silage. The proportion of butyrate was also lower with untreated than with other silages (P < 0·01). The rumen residence time of NDF and ADF was longer (P < 0·05) with enzyme-treated silages than with FA silage.  相似文献   

6.
Silages were made from the first cut of a predominantly perennial ryegrass sward. The silages were either untreated (W) or treated with formic acid (31 t−1, F) or with 106 lactic acid bacteria (LAB) g−1 grass of each of three strains alone (A. Lactobacillus plantarum MTD1; B, Pediococcus species 6A2; C, L. plantarum 6A6) or in combination (AB. AC) to give seven treatments. The silage fermentation in 10-kg silos was followed chemically and microbiologically and the nutritive value of selected treatments evaluated using 2-t silos.
The control silage (W) fermented well. Addition of formic acid restricted fermentation and produced a silage with a high ethanol concentration. After day 4, all inoculated silages had lower pH values and higher lactic acid concentrations and a higher ratio of lactic acid to acetic acid than the control silage. Chemically there was little difference between the inoculated silages in terms of final composition. Microbiologically the LAB applied in treatments B and C dominated the LAB populations in those silages when applied alone; however, they were suppressed when applied in combination with inoculant A.
When fed to sheep, the intake of the formic acid-treated silage was significantly ( P < 0·01) lower than that of the other silages and the intake of silage treated with inoculant A significantly ( P < 0·001) higher than that of silages treated with inoculants B and C. The apparent organic matter ( P < 0·001) and nitrogen ( P < 0·01) digestibilities of the formic acid-treated silage were also significantly lower than those of the other silages.  相似文献   

7.
Five experiments were carried out in the years 1980-1983 and 1986 to study the effect of treating grass at ensiling with sulphuric acid (850 g kg?1) and formic acid (850 g kg?1) additives alone, and in mixtures with or without formalin on the preservation of grass, in vivo digestibility in sheep, in-silo loss, intake and performance of finishing cattle. Primary growth grass was ensiled in experiments 1 (3–4 June 1980), 2 (12-15 June 1981) and 3 (31 May-2 June 1982), primary regrowth grass in experiment 4 (1-2 August 1983) and secondary regrowth grass in experiment 5 (7-10 October 1986). During the ensiling period within each experiment, approximately 60 t of unwilted, double-chopped, additive-treated or untreated grass was packed into covered concrete-walled 60-t capacity silos. The dry matter (DM) contents of the ensiled grass in experiments 1, 2 and 5 ranged from 155-180 g kg?1 and were lower than those recorded in experiments 3 and 4 (214 g kg?1). With the exception of grass ensiled in experiment 2, where water-soluble carbohydrate (WSC) contents were low, at 104 g kg?1 DM, grass in all other experiments contained relatively high WSC contents ranging from 140-154 g kg?1 DM. In experiments 1, 3 and 4 all silages were well-preserved. However, in experiment 2 the 450 g kg?1 sulphuric acid-treated and formic acid-treated silages displayed significantly lower pH, buffering capacity (Bc) and ammonia nitrogen contents than the untreated silage. In experiment 5, the sulphuric acid-treated and formic acid-treated silages displayed significantly lower pH, Bc, ammonia nitrogen, butyrate and volatile fatty acid (VFA) contents than the untreated silage. Each of the silages was offered daily with various levels of a supplementary concentrate for approximately 70-d periods to twelve animals of mixed breed in experiments 1, 3, 4 and 5 and to fifteen animals in experiment 2. All animals weighed between 380-470 kg at the start of the experiments. In experiments 1, 2 and 3 there were no significant differences between silages for any of the intake or animal performance parameters. In experiment 4, cattle fed the formic acid-treated silage displayed significantly higher silage DM intakes and daily liveweight gains than those fed the sulphuric acid-treated and untreated silages; in experiment 5, cattle fed the formic acid-treated silage displayed significantly higher silage DM intakes than those fed the untreated silage. It was concluded that formic acid was a more effective silage additive than sulphuric acid. Increasing the level of supplementation significantly decreased silage DM intakes in cattle in experiments 3 and 4, and significantly increased daily liveweight gains and daily carcass in cattle in experiments 1, 3 and 4.  相似文献   

8.
The effects of two commercial cellulase/hemicellulase enzymes derived from Trichoderma reesei on silage fermentation and aerobic stability were investigated in three laboratory-scale experiments. In Experiment 1, perennial ryegrass ( Lolium perenne ) was treated with enzyme A at the rates of 0. 0·125, 0·250, 0·500 and 0·750 cm3 kg-1. In Experiment 2, Italian ryegrass ( Lolium multiflorum ) was treated with the same enzyme at the rates of 0, 0·250 and 0·500 cm3 kg-1 and with 85% formic acid (3·5 cm3 kg-1). In Experiment 3, perennial ryegrass was ensiled untreated, with enzyme A (0·250 and 0·500 cm3 kg-1) and with 0·200 and 0·400 cm3 kg-1 enzyme B which also contained glucose oxidase. All silages were well preserved. Aerobic deterioration was related to numbers of lactate assimilating yeasts. In Experiment 1, all silages were stable over a 4-day period. In Experiment 2, enzyme A treatment delayed the temperature rise compared with the untreated control ( P <0·05), whereas the formic acid-treated silage was stable. In Experiment 3, the temperature rise in the silage treated with the higher level of enzyme B occurred one day later than in the other silages ( P <0·05).  相似文献   

9.
Four grass silages, all made in mid-July from second-harvest perennial ryegrass swards, were compared in a 16-week feeding experiment with twelve Ayrshire cows. Two silages were unwilted and two wilted. All the silages received formic acid ('Add-F') at the rate of 3 litres t-1 either with formalin at the rate of 1 litre t-1 or without formalin. The unwilted and wilted silages had mean dry matter (DM) concentrations of 200 and 243 g kg-1, and in vitro D-values of 0·293 and 0·272 respectively. The silages were offered ad libitum plus 6 kg concentrates per cow per day. The daily intakes of unwilted and wilted silage DM were 10·2 and 9·2 kg per cow respectively on the formic acid treatment, and 10·2 and 9·2 kg on the formic acid + formalin treatment. The mean daily milk yield on the unwilted silage treatments was 19·2 kg per cow which was significantly higher than the yield of 17·2 kg per cow on the wilted silage treatments. The formalin had no significant effect on milk yield. The four silage treatments had small and non-significant effects on milk composition. It is concluded that the unwilted silages, which had excellent fermentation characteristics, were superior to the wilted silages as a feed for dairy cows.  相似文献   

10.
Perennial ryegrass, harvested as second-cut material on 10 and 11 July 1990, was treated with either formic acid at 31 t-1 or an acid-salt type additive at 61 t-1 and ensiled in roofed 150 t bunker silos. Subsequently both silages underwent a predominantly lactic fermentation. Nevertheless the acid-salt-treated silage had a significantly higher quantity of formic acid (19 vs 12 g kg DM-1) and significantly lower levels of lactic (98 vs 118 g kg DM-1) and acetic acid (11 vs 17 g kg DM-1) compared with formic acid-treated silage. In-silo losses and effluent production were similar.
Each silage was individually fed to 10 October-calving Friesian dairy cows (average weight 565 kg) from weeks 2 to 15 of lactation, together with 3 kg d-1 of a compound feed containing 190 g kg DM-1 crude protein and with an estimated metabolizable energy content of 12·6 MJ kg DM-1. The acid-salt additive had no significant effect on silage DM intake, daily milk yield, milk protein or cow liveweight change, but significantly increased milk butterfat content compared with formic acid-treated silage.
It is concluded that the acid-salt type additive produced little difference in terms of either silage fermentation or animal performance compared with formic add treatment.  相似文献   

11.
Two experiments are reported. In the first experiment the amino acid compositions of rumen bacteria and protozoa isolated from sheep given a diet of grass silage were compared with those taken from sheep given a diet of hay and barley; four sheep were assigned to each diet. There were no significant differences (P<0·05) between diets in the amino acid compositions of the microbial fractions and bacterial contents of α-ɛ-diaminopimelic acid were also similar for both diets.
In the second experiment the digestion of a grass silage and barley diet (65:35; 135 g CP (kg DM)-1) was studied using four non-lactating Ayrshire cows fitted with cannulae in the rumen and in the proximal duodenum. The mean N intake was 154 g d-1 and the corresponding duodenal flow was 126 ± 10 g d-1 indicating that 0·21±0·07 of the N intake was absorbed between the mouth and the duodenum. The mean rumen NH3-N concentration was high, 297 g litre-1, and the mean rate of microbial protein synthesis in the rumen was low, 17 g microbial N (kg OM apparently digested in the rumen)-1. There was a low content of bacterial N in the non-ammonia N at the duodenum (mean proportion 0·52±005) and low concentrations of methionine and lysine in the duodenal digesta protein. The results are discussed in relation to previously published data on the digestion of silage diets in sheep and to the utilization of silage diets for milk production in the cow.
It is concluded that with silage diets the supply of methionine and lysine to the duodenum is likely to be low because of the low rates of microbial protein synthesis in the rumen and that in cows those two amino acids may be limiting for milk production.  相似文献   

12.
Herbage from the first regrowth of perennial ryegrass-based swards was directly ensiled after treatment with a bacterial inoculant/enzyme preparation (SIL-ALL, Alltech UK) at 3·0 1 t?1, formic acid (850 g kg?1) at 2·59 1 t?1 or no additive (Control). The mean dry matter (DM) and water-soluble carbohydrate concentrations of the grass were 185 and 24·0 g kg?1 (fresh basis) respectively. Lactic acid concentrations after ensiling increased at a lower rate in formic acid-treated herbage than with the other treatments. All silages were well preserved and formic acid-treated silage had a lower ultimate concentration of lactic acid and higher concentration of water-soluble carbohydrate. Effluent output was increased on a proportional basis by ?0·06 with formic treatment, whereas the inoculant reduced effluent output by 0·05 in comparison with the mean effluent production of the control silage. The in vivo digestibilities of the silages were determined using sheep. The digestibilities of DM, organic matter and energy were significantly higher with inoculant-treated silage than with formic acid treatment, whereas values for the control silage were intermediate. The three silages were offered ad libitum to forty dairy cows with individual recording of daily intakes for a 10-week period in a randomized block experiment with four treatments. Sixteen animals were offered the control silage with half of these offered 3 kg concentrates per day (C3) and the other half offered 7 kg concentrates per day (C7). Twelve animals were allocated to each of the additive-treated silages, with concentrates offered at 5 kg d?1. Treatment effects on animal performance were measured in weeks 7–10. To compare animal performance for the treated silages with the control, an estimate of performance at 5 kg concentrates per day was obtained by regression using values obtained at 3 and 7 kg concentrates. In comparison with estimated silage intake for the control silage with 5 kg d?1 concentrates, inoculant and formic acid treatment of the silages increased dry matter intake by 0·04 (P > 0·05) and 0·13 (P > 0·01) respectively. In comparison with estimated milk production and yield of fat plus protein for the control treatment with 5 kg d?1 concentrates, neither inoculant treatment nor formic acid treatment produced any significant differences.  相似文献   

13.
Data from twenty-two comparisons carried out at ADAS Experimental Husbandary Farms are used to compare untreated and formic acid-treated silages. Additive treatment led to an improved fermentation in some crops, particularly those of low DM concentration (<262 g kg-1). Where this occurred there were associated benefits in silage digestibility (+0·234 units), intake (+16%) and the growth rate of young cattle (+0·28 kg d-1). Where the fermentation of the untreated silage was good, both digestibility and animal performance associated with treated and untreated silages were similar. It is suggested that the justification for using formic acid in a commercial situation is thus restricted to occasions where the untreated crop would be liable to develop a clostridial fermentation. These may be when crops contain less than 35 g water-soluble carbohydrate kg-1.  相似文献   

14.
In a two-year experiment, three silages were prepared from herbage treated either with an inoculant at 1·25 × 105 organisms (g fresh material (FM))−1. formic acid (850 g kg−1) at 4 1 (t FM)−1, or no additive (untreated). In Experiment 1, unwilted and in Experiment 2, wilted silages were investigated and had mean dry matter (DM) and water soluble carbohydrate (WSC) concentrations at ensiling of 171 g kg−1 and 17·6 g (kg FM)−1 and 263 g kg−1 and 25·1 g (kg FM)−1, respectively. In Experiment 1, 45 and in Experiment 2, 54 individually fed cows were used to evaluate the silages in three-treatment, randomized-block design experiments. During weeks 4-12 of lactation the cows were offered silages ad libitum and during weeks 15-26 a constant amount of silage was fed. There were few major differences in chemical composition of the resulting silages. Formic acid had no effect on silage digestibility. Inoculant treatment increased digestibility when the grass had been wilted. The use of formic acid resulted in increased silage DM intake of 9% during weeks 4-12 of lactation in Experiment 1 but not in Experiment 2. The inoculant gave no increase in silage DM intake over the control in Experiment 1 but increased silage DM intake by 7% in Experiment 2. There was no significant response in milk yield to formic acid. In Experiment 2 the response in milk yield to inoculant treatment was significant both in weeks 4-12 of lactation (4%) and in weeks 15-26 of lactation (5%). It is concluded that the response in milk yield to the use of a specific inoculant appears to be mediated through increased intake of metabolizable energy (ME).  相似文献   

15.
Three silages were prepared from herbage treated with either an inoculant (Ecosyl, Imperial Chemical Industries plc) at 3.21 t?1, formic acid (850 g kg?1, Add F BP Chemicals International Ltd) at 2·3 1 t?1, or no additive (control). The herbage used was the first regrowth from perennial ryegrass swards. It was ensiled unwilted, and had mean dry matter and water soluble carbohydrate concentrations at ensiling of 154 and 24·1 g kg?1 respectively. Time course studies showed only minor effects of additive treatment on fermentation patterns within the silo and all three silages had good fermentations. Over an 88 d feeding period, commencing on day 7 of lactation, forty-eight British Friesian cows were used to evaluate the silages in a three-treatment, randomized-block design experiment. The animals were stalled individually, offered the silages ad libitum, and in addition received 5 kg d?1 of a supplement containing 196 g kg?1 crude protein. On the basis of the data recorded during the final 28 d on treatment the animals receiving the inoculant-treated silage consumed 12 and 10% more silage dry matter and produced 2·1 and 2·3 kg d?1 more milk than those given the control and formic acid-treated silages respectively. Over the total experimental period the milk yields were 1957, 1894 and 2094 (±41·3) kg for animals receiving the control, formic acid- and inoculant-treated silages respectively. Animals offered the formic acid treated silage produced milk of significantly higher fat concentration than those given the other two silages. Total ration digestibility studies, conducted with three cows per treatment, indicated no significant differences in digestibility coefficients, nitrogen utilization or metabolizable energy concentrations of the three treatment diets. It is concluded that the higher milk yield recorded with the inoculant-treated silage, and the higher milk fat concentration with the formic acid-treated silage, over that obtained with the control silage, were due to the increases in ME intake of 5 and 16 MJ d?1 for the formic acid and inoculant-treated silages respectively.  相似文献   

16.
An experiment was carried out to study the effect of silage chop length and barley supplementation on silage intake and the performance of store lambs. The silages were cut from a perennial ryegrass regrowth at a relatively mature stage of growth in early July. Different types of harvester were used to produce a long silage (L), single-chopped (S), double-chopped (D), medium precision-chopped (MP) or a short precision-chopped (SP) silage. The chop length of the silages averaged 37.4, 12.4, 8.4, 7.0 and 2.9 cm respectively. All silages were treated with formic acid at 2.51 t?1grass. They were well preserved and of a good quality with a dry-matter (DM) digestibility of 720–760 g kg?1 DM. The silages were fed ad libitum to Suffolk crossbred store lambs over a period of 10 weeks. Each silage was fed either alone or was supplemented with whole barley at 400 g lamb?1 d?1. When offered silage alone, intakes were 738, 679, 773, 980 and 910 (± 30) g DM d?1 for silages L, S, D, MP and SP respectively. Similar relative differences in intakes between the silages were evident when supplemented with barley. Liveweight gain on silage alone was higher on the precision-chopped silages (85–93 g d?1) than the long or flail-chopped silages (28–49 g d?1). Liveweight gain on the precision-chopped silages was also better when supplemented with barley (150 vs. 90–112 (± 90) g d?1). Silage intake and lamb performance were similar for the MP and SP silages, despite the difference in chop length. Barley supplementation reduced silage intake to a similar extent for all silages (-9%) and increased total DM intake (+ 30%) and metabolizable energy intake (+ 37%). The substitution rates of silage for barley were similar for all silages and averaged 0.24 g silage DM g?l barley DM. The response in weight gain per 100g of barley fed was similar for all silages and averaged 20.0 g liveweight gain and 13.4 g carcass gain. Feed conversion efficiency of the total diet was similar for the Mail-chopped and precision-chopped silages but was less for the long silage. The results of this study show that the benefit in weight gain due to the higher intake of precision-chopped silage was maintained when the silage was supplemented with a moderate level of barley. Such silage required supplementation with barley (400 g d?l) to achieve a rate of liveweight gain of 150g d?1.  相似文献   

17.
Silage making practices in respect of 130 samples of autumn made grass silages ensiled in bunkers on commercial farms in South Wales during 1983-1985 were analysed to discern the effect of wilting and/or silage additives on fermentation. Silages were primarily made during late September and early October in fine weather from perennial ryegrass pasture which had not been grazed for 6 weeks. On average 13.9 ha of pasture was cut for silage. Analysis of 120 samples of grass showed it contained 176 g kg?1 dry matter (DM) with (g kg?1 DM) 215 protein, 240 modified acid detergent fibre (MADF), 78 water-soluble carbohydrate (WSC) and 95 ash. Most farmers attempted to pre-wilt grass for 1 day prior to ensilage and one quarter of them made unwilted silage. Silage making was usually completed within 6 days of starting to cut and was generally made with a precision-chop machine. Silage additives applied were (kg t?1) formic acid (4·7), formic acid 4-formalin (5·5), sulphuric acid-+ formalin (5·0) sugars (14) and inoculants (0·65). Formic acid significantly reduced pH, and formic acid with or without formalin significantly reduced ammonia nitrogen (N) content of silages compared with other treatments. Protein contents of acid/formalin treated silages were significantly higher and MADF of acid with or without formalin treated silages were significantly lower than other treatments. Pre-wilting grass prior to ensilage did not significantly increase subsequent silage DM content and significantly increased the pH of non-additive treated silages. Unwilted silages treated with formic acid with or without formalin had a significantly lower ammonia-N content and higher residual WSC than other treatments. It is suggested that only formic acid application either alone or in conjunction with formalin to unwilted silage was successful in producing well preserved silages and that a grass WSC content of 17 g kg?1 would be necessary to achieve this.  相似文献   

18.
Seven laboratory-scale experiments were carried out to study the effects of cellulases/hemicellulases on silage fermentation of herbage from mixed swards of timothy ( Phleum pratense ), meadow fescue ( Festuca pratensis ) and red clover ( Trifolium pretense ). Enzyme-treated silage (approximately 3500 HEC units kg−1 grass) reached a low pH sooner, had lower end pH, contained less NH3-N and more lactic acid than did the untreated silage ( P < 0·05). Applied with an inoculant, these effects were even stronger. With easily ensiled crops (experiments 1, 2, 5 and 6) preservation was first of all improved by inoculation of lactic acid bacteria; however, for the low-sugar crops (experiments 3, 4 and 7) enzyme treatment was more significant. The enzymes derived from Aspergillus spp. gave more acetic acid than the enzymes from Trichoderma reesei. The Trichoderma enzymes liberated 4·8 g WSC kg−1 FM gamma-irradiated grass during 60 d at pH 4·3 ( P < 0·05). On average, for all silages enzyme treatment increased the sum of residual sugar and fermentation products by 3·7 g kg−1 FM (21 g kg−1 DM) compared with the silages not treated with enzymes ( P < 0·001). Enzyme treatment increased the instantly degradable part of the feed, but total in sacco and in vitro digestibilities were not affected.  相似文献   

19.
The main object of the experiment was to assess the effect of the relative proportion of non-protein nitrogen (NPN) to total nitrogen in silage on digestion in the sheep. Four unwilted perennial ryegrass silages were made with the addition of formic acid at 0, 2·2, 4·2 and 5·2 litres t-1 to provide foods with NPN proportions reducing from 0·26 to 0·20 of the total N. The digestion of the silages was studied in a 4 × 4 Latin Square experiment with sheep cannulated in the rumen, proximal duodenum and terminal ileum.
Results for organic matter (OM), cellulose and N showed no major difference between silages in their digestion in the rumen, small intestine and caecum and colon, though small differences ( P <0·25) in rumen fermentation pattern and in the proportion of digestible OM disappearing in the small intestine were observed. Concentrations of ammonia N in the rumen and rates of rumen bacterial protein synthesis did not differ significantly between silages and there were no treatment effects on the passage of individual amino acids to the small intestine. The results indicate that the proportions of NPN to total N in the silages examined had little influence on the efficiency of silage N utilization in the rumen or on the passage of undegraded dietary protein to the small intestine.  相似文献   

20.
The objective of this study was to evaluate the efficacy of potassium diformate (KDF) as a potential additive for alfalfa silage. Fresh alfalfa was untreated or treated with formic acid (4 g/kg fresh weight, FW) or three concentrations of KDF (4, 5.5 or 7 g/kg FW). After 60 days of ensiling, the addition of formic acid and greater levels of KDF (5.5 and 7 g/kg) effectively reduced silage pH and inhibited the undesirable bacteria, indicated by lower butyric acid, ethanol, ammonia N concentrations and microbial populations (including enterobacteria, yeasts, moulds and clostridia). Additives decreased the dry‐matter loss, and more water‐soluble carbohydrates were preserved in the silages with formic acid or potassium diformate than in the control. Alfalfa silages treated with formic acid at 4 g/kg FW or potassium diformate at 5.5 or 7 g/kg FW were classified as the highest quality silage based on the higher Flieg's point (above 70) and remained stable for more than 9 days during aerobic exposure. Potassium diformate is recommended as an effective additive for alfalfa silages at a level of 5.5 or 7 g/kg FW under the humid and hot conditions of southern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号